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Abstract 

Poloidal–toroidal magnetic field decomposition is a useful application of the Mie representation and the decomposi‑
tion method enables us to determine the current density observationally and unambiguously in the local region of 
magnetic field measurement. The application and the limits of the decomposition method are tested against the Mer‑
cury magnetic field simulation in view of BepiColombo’s arrival at Mercury in 2025. The simulated magnetic field data 
are evaluated along the planned Mercury Planetary Orbiter (MPO) trajectories and the current system that is crossed 
by the spacecraft is extracted from the magnetic field measurements. Afterwards, the resulting currents are classified 
in terms of the established current system in the vicinity of Mercury.
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Introduction
The fluxgate magnetometer (Glassmeier et  al. 2010; 
Heyner et  al. 2021) on board the Mercury Planetary 
Orbiter (MPO) of the BepiColombo mission (Benkhoff 
et  al. 2010) will provide precise measurements of the 

magnetic field in the vicinity of Mercury which enable the 
detailed characterization of Mercury’s internal magnetic 
field. Due to the plasma physical interaction of Mercury 
with the solar wind, the measurements are composed 
of the desired internal contributions as well as external 
fields resulting from currents flowing within the magne-
tosphere. For the reconstruction of the internal field, each 
contribution has to be parametrized properly. Besides the 
reconstruction of the internal magnetic field, the charac-
terization of the magnetic field contributions within the 
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magnetosphere allows the analysis of the external field 
and the corresponding currents that are crossed by the 
spacecraft. Since the conventionally used Gauss repre-
sentation (Gauss 1839; Glassmeier and Tsurutani 2014) 
is based on the irrotational structure of the magnetic 
field, the Gauss potential theory does not allow to accu-
rately reconstruct the planetary magnetic field if elec-
tric currents are flowing outside the planet and actively 
generate rotational field structures. Typically, magneto-
spheric models are used to estimate the magnetic field 
in current-carrying regions (e.g., Korth et al. 2004, 2015, 
2017; Alexeev et al. 2008). These models approximate the 
magnetic field using a system of modules for the inter-
nal field and the fields generated by the tail and the mag-
netopause currents. As an alternative for the application 
of global magnetospheric models a combination of the 
Gauss representation with the Mie representation (toroi-
dal–poloidal decomposition) (Backus 1986, 1996; Olsen 
1997), called the Gauss–Mie representation (Toepfer 
et  al. 2021a), enables the parametrization of the mag-
netic field in current-carrying regions. This parametriza-
tion generalizes the international geomagnetic reference 
field (IGRF) model for the Earth’s core field (Thébault 
et  al. 2015) and has successfully been applied in order 
to reconstruct Mercury’s internal magnetic field from 
simulated magnetic field data (Toepfer et  al. 2021a) as 
well as for the description of the Earth’s magnetosphere 
(Andreeva and Tsyganenko 2016). Especially, the Gauss–
Mie representation delivers an analytical parametrization 
for the magnetic field and therefore enables the analytical 
calculation of the (local) current density that is crossed 
by the spacecraft. Within the Earth’s magnetosphere the 
Gauss–Mie representation has successfully been applied 
to reconstruct ionospheric F-layer currents from MAG-
SAT and Champ data (Olsen 1997; Engels and Olsen 
1999; Bayer 2001; Mayer and Maier 2006). Tsyganenko 
et  al. (2021) reconstructed magnetospheric storm-time 
dynamics within the terrestrial magnetosphere using the 
Mie representation. Furthermore, the magnetic field can 
be parametrized via Euler potentials (e.g., Stern 1967, 
1970; Cheng and Zaharia 2003; Romashets and Vandas 
2020).

The goal of our study is the determination of the poloi-
dal and toroidal current density flowing in Mercury’s 
magnetosphere in order to validate the parametrization 
of the magnetic field via the Gauss–Mie representation 
for the reconstruction of Mercury’s internal magnetic 
field (Toepfer et al. 2021a). In preparation for the obser-
vations soon to be obtained by the BepiColombo mission, 
the plasma interaction of Mercury with the solar wind is 
simulated numerically using the 3D hybrid model AIKEF 
(adaptive ion kinetic electron fluid) (Müller et al. 2011). 
First of all, the established current system at Mercury in 

comparison with the Earth’s magnetosphere is summa-
rized. Then the mathematical foundations of the Gauss–
Mie representation are revisited and the parametrization 
is applied in order to reconstruct poloidal and toroi-
dal currents in Mercury’s magnetosphere flowing in 
the vicinity of the trajectories of the Mercury Planetary 
Orbiter (MPO) from the simulated magnetic field data. 
After the reconstruction of the currents, the question 
arises how these currents are related to a current system 
around Mercury and how this current system is closed. 
In analogy to the Earth the structure of Mercury’s mag-
netosphere depends on the orientation of the interplan-
etary magnetic field (IMF) (e.g., Grygorov et al. (2017)). 
Thus, the resulting poloidal and toroidal current systems 
are presented for six different IMF-orientations which 
may be regarded as mathematical basis orientations.

Current system at Mercury
Before reconstructing the currents in the vicinity of the 
planned MPO trajectories, we shortly summarize the 
established current system at Mercury. As the solar wind 
is a highly conducting medium, Mercury’s internal mag-
netic field is unable to penetrate the solar wind plasma. 
Therefore, the internal field is compressed at the dayside 
and stretched into a tail along the nightside. This defor-
mation of the irrotational internal magnetic field is asso-
ciated with currents flowing in the magnetosphere. In 
comparison to the Earth’s magnetic field, Mercury’s 
internal magnetic field is much weaker so that Mercury’s 
magnetosphere is much smaller than the Earth’s magne-
tosphere. Since the internal dipole moments of both the 
planets are orientated nearly antiparallel to the planetary 
rotation axis, the shape of the magnetospheres is compa-
rable. Therefore, the Chapman–Ferraro currents j

cf
 and 

especially the equatorial magnetopause current j
mp

 iso-
lating the internal magnetic field from the solar wind 
plasma as well as the neutral sheet current j

ns
 in the tail 

are qualitatively the same (e.g., Glassmeier (2000)).
Within the Earth’s magnetosphere the existence of 

a dense ionosphere is of major importance for the cur-
rent closing of field-aligned currents (Iijima and Potemra 
1976; Glassmeier 2000). In contrast to the Earth, Mer-
cury does not possess an ionosphere consisting of a dense 
plasma with a high electrical conductivity, where these 
currents can be closed. Since the physical and chemical 
constitution of Mercury’s surface is not fully resolved yet, 
the question whether the field-aligned currents at Mer-
cury are able to penetrate the surface is under debate 
for decades (e.g., Glassmeier 2000; Janhunen 2004). The 
analysis of spectrometer data from the MESSENGER 
mission suggests the existence of an exosphere which is 
mainly composed of sodium ions Na+ (Korth et al. 2014; 
Raines et al. 2014, 2015; James et al. 2019). However, the 
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absolute value of the sodium ion density, ranging from 
5.1× 10−3 cm−3 up to 22 cm−3 is still under discussion. 
Hybrid simulations of the plasma interaction of Mercury 
with the solar wind considering the existence of a dense 
sodium exosphere show that Region 1 currents j

R1
 are 

able to close within the exosphere (Exner et al. 2020). On 
the other hand, the analysis of MESSENGER magnetic 
field data indicates the closing of field-aligned currents 
through Mercury’s surface (Anderson et al. 2014).

Since the significance of Mercury’s exosphere is still 
under debate, it is not clear whether Region 2 currents as 
well as fully developed ring currents occur within Mercu-
ry’s magnetosphere (e.g., Glassmeier 2000; Baumjohann 
et al. 2010; Exner et al. 2020). In Table 1, the established 
current system at Mercury in comparison with the 
Earth’s magnetosphere is summarized.

Although the magnetospheres of Mercury and the 
Earth are qualitatively comparable, it should be noted 
that the physical processes for the current closure within 
the magnetospheres differ from each other (e.g., Glass-
meier (2000)). Due to its high electrical conductivity the 
ability for the closing of magnetospheric currents even 
without the existence of an ionosphere may be attrib-
uted to the plasma. Therefore, it is debatable, whether the 
naming of the currents that has been established within 
the description of the Earth’s magnetosphere (e.g., Region 
1 current) is directly transferable onto the naming of the 
currents flowing in Mercury’s magnetosphere.

Characterization of the magnetic field 
and the current density
In the following, the basic ideas of the Gauss–Mie rep-
resentation for modeling the magnetic field and the 
current density, based on the works of Backus (1986,  

1996), Olsen (1997) and Toepfer et al. (2021a) are shortly 
revisited.

Characterization of the magnetic field
The magnetic field B will be measured around Mercury 
along elliptic orbits like that of the MPO spacecraft. 
Conceptually covering the orbits by a spherical shell 
with inner radius a, outer radius c and mean radius 
b = (a+ c)/2 enables us to distinguish between differ-
ent magnetic field contributions. Due to the superposi-
tion principle, the total measured field can be written 
as

which is called the Gauss–Mie representation of the 
magnetic field (Toepfer et  al. 2021a). The internal field 
Bi results from currents flowing beneath the shell in the 
region r < a . Thus, Bi is purely poloidal and especially 
irrotational within the shell. The currents flowing above 
the shell ( r > c ) generate an external field structure Be of 
the same character. Therefore, these contributions can be 
parametrized via the Gauss representation (Gauss 1839; 
Glassmeier and Tsurutani 2014) and thus, there exist sca-
lar potentials �i and �e with

and

Using body-fixed planetary-centered spherical coordi-
nates with radius r ∈ [RM,∞) , azimuth angle � ∈ [0, 2π ] 
and co-latitude θ ∈ [0,π ] , the corresponding scalar 
potentials �i and �e are given by

and

where RM is the planetary radius of Mercury and Pm
l  are 

the Schmidt-normalized associated Legendre polynomi-
als of degree l and order m (Gauss 1839; Glassmeier and 
Tsurutani 2014). The expansion coefficients gml  and hml  
are the Gauss coefficients for the internal field, the coef-
ficients qml  and sml  are the Gauss coefficients for the exter-
nal field, respectively.

(1)B = Bi + Be + Bsh
T + Bsh

P ,

(2)Bi = −∂x�
i,

(3)Be = −∂x�
e.

(4)�i = RM

∞
∑

l=1

l
∑

m=0

(

RM

r

)l+1
[

gml cos(m�)+ hml sin(m�)
]

Pm
l (cos(θ))

(5)
�e =RM

∞
∑

l=1

l
∑

m=0

(

r

RM

)l

[

qml cos(m�)+ sml sin(m�)
]

Pm
l (cos(θ)),

Table 1  Established current system at Mercury in comparison 
with the Earth’s magnetosphere

Earth Mercury

Dense iono-/exosphere Yes Unknown

Magnetopause currents Yes Yes

Neutral sheet current Yes Yes

Region 1 currents Yes Yes

Region 2 currents Yes Unknown

Ring current Yes Unknown
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The currents flowing within the shell in the region 
a < r < c generate (completely rotational) toroidal Bsh

T  
and (potentially rotational) poloidal Bsh

P  magnetic field 
structures that can be parametrized via the Mie repre-
sentation (Backus 1986, 1996; Olsen 1997) by making 
use of scalar functions �sh

T  and �sh
P  , so that

and

is valid, where r = r er and er is the unit vector in radial 
direction. The functions �sh

T  and �sh
P  can be interpreted 

as a special case of the Euler potentials (Stern 1967, 
1970), as shown within the Appendix. Because of the 
underlying spherical geometry it is straightforward to 
expand the scalar functions �sh

T  and �sh
P  into spherical 

harmonics in analogy to the scalar potentials. Since the 
exact radial dependence of the corresponding expansion 
coefficients is unknown, it is useful to perform a Taylor 
series expansion for the coefficients with respect to the 
radius r in the vicinity of the mean radius b of the spheri-
cal shell (Toepfer et al. 2021a), providing us

and

where

Theoretically, the functions �sh
P  and �sh

T  as well as the 
potentials �i and �e have to be expanded into a series 
containing an infinite set of basis functions. Within the 
practical application, the summations have to be trun-
cated at a suitable degree l < ∞ , where it is desirable to 
incorporate as less terms as possible. On the other hand, 
the magnetic field has to be parametrized adequately. 

(6)Bsh
T = ∂x ×

(

�sh
T r

)

(7)Bsh
P = ∂x ×

[

∂x ×

(

�sh
P r

)]

(8)

�sh
T =

RM

r

∞
∑

l=1

l
∑

m=0

[

αm
l + α′m

l ρ +O(ρ2)

]

Pm
l (cos(θ))

(9)

�sh
P =

R2
M

r

∞
∑

l=1

l
∑

m=0

[

βm
l + β ′m

l ρ +O(ρ2)

]

Pm
l (cos(θ)),

ρ = (r − b)/RM,

αm
l = aml cos(m�)+ bml sin(m�),

α′m
l = a′ml cos(m�)+ b′ml sin(m�),

βm
l = cml cos(m�)+ dml sin(m�),

β ′m
l = c′ml cos(m�)+ d′ml sin(m�).

Thus, it is useful to choose a manageable ansatz for the 
series expansion which can be extended gradually.

Inserting the parametrization of the magnetic field con-
tributions into Eq. (1) delivers

Rearranging the terms of the series expansions into the 
shape matrices Hi , He , Hsh

T
 and Hsh

P
 and summarizing 

the corresponding expansion coefficients into the vec-
tors gi , ge , gsh

T
 and gsh

P
 , the Gauss–Mie representation of 

the magnetic field can be rewritten in the linear algebraic 
form

The H  s mainly contain well-known information 
about the positions, whereas the g  s are the unknown 
coefficients which need to be determined from the 
measurements.

For the reconstruction of Mercury’s internal mag-
netic field, the application of the thin shell approxi-
mation (Backus 1986, 1996; Olsen 1997; Toepfer et  al. 
2021a) is a valid assumption. The thin shell approxi-
mation allows the negligence of the poloidal field Bsh

P  
generated by toroidal currents flowing within the shell, 
when the width of the shell is smaller than the length 
scale on which the currents change in radial direc-
tion. For the analysis of the full current density inside 
the shell this negligence, in turn, causes a problem, as 
for this purpose the knowledge of Bsh

P  is indispensable. 
The way out works as follows. After the application of 
the thin shell approximation, the internal Gauss coef-
ficients gml  and hml  , the external Gauss coefficients qml  
and sml  as well as the expansion coefficients aml  , bml  , a′ml  , 
b′ml  for the toroidal magnetic field can be estimated 
by making use of a suitable inversion method such as 
Capon’s method (Capon 1969; Motschmann et al. 1996; 
Toepfer et al. 2020b, 2021b), that serves as a powerful 
tool for the analysis of planetary magnetic fields (Toep-
fer et al. 2020a). Afterwards, the expansion coefficients 
cml  , dml  , c′ml  , d′ml  for the poloidal magnetic field can be 
estimated by obtaining an approximate solution of

for the coefficient vector gsh
P

 . It should be noted that the 
expansion coefficients for the poloidal magnetic field 
cannot be estimated simultaneously with the internal 

(10)
B = −∂x�

i − ∂x�
e + ∂x ×

(

�sh
T r

)

+ ∂x ×

[

∂x ×

(

�sh
P r

)]

.

(11)B = Higi +Hege +Hsh
T
gsh
T
+Hsh

P
gsh
P
.

(12)Bsh
P = B−

(

Bi + Be + Bsh
T

)

= Hsh
P
gsh
P
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and external Gauss coefficients. As discussed in Toep-
fer et al. (2021a), these fields follow the same topological 
structure, so that the poloidal field Bsh

P  cannot be distin-
guished from the internal Bi and external field Be within 
the reconstruction procedure.

Characterization of the current density
After the reconstruction of the poloidal gsh

P
 and toroidal 

coefficients gsh
T

 from the magnetic field data, the cor-
responding current density jsh flowing within the shell 
can be determined using Ampère’s law

so that jsh describes a solenoidal vector field. Inserting 
the parametrization of the magnetic field (cf. Equation 1) 
and using

the current density within the shell is given by

Considering the divergence-free nature of the current 
density (no charge accumulation), jsh can be decomposed 
into its toroidal part

and poloidal part

in analogy to the magnetic field. Thus,

and simultaneously

hold so that the poloidal and the toroidal current systems 
are closed independently of each other.

(13)jsh =
1

µ0
∂x × B,

(14)∂x × Bi = 0 = ∂x × Be,

(15)jsh =
1

µ0
∂x × B =

1

µ0
∂x × Bsh

T +
1

µ0
∂x × Bsh

P .

(16)

jsh
T

=
1

µ0

∂x × Bsh
P =

1

µ0

∂x × ∂x ×

[

∂x ×

(

�sh
P r

)]

=
1

µ0

∂x ×

[(

−∂2x�
sh
P

)

r
]

(17)jsh
P

=
1

µ0
∂x × Bsh

T =
1

µ0
∂x ×

[

∂x ×

(

�sh
T r

)]

(18)∂x · j
sh
P

= 0

(19)∂x · j
sh
T

= 0

Application to simulated Mercury magnetic field 
data
For a first validation of the Gauss–Mie representation 
suggested here to reconstruct the current density jsh in 
the vicinity of the planned MPO orbits, simulated sta-
tionary magnetic field data and electric currents system 
information based on using the AIKEF hybrid code (elec-
tron fluid, kinetic ions) (Müller et al. 2011) are analyzed. 
This code has successfully been applied to several prob-
lems in Mercury’s plasma interaction (e.g., Exner et  al. 
2018, 2020). From the simulated magnetic field data, the 
current system is derived using the above described new 
approach and the results are compared with the electric 
currents directly derived from the simulation.

Mercury’s internal magnetic field is modeled as a 
dipole field with an internal dipole moment of −190 nT , 
which is shifted northward by 0.2RM . This field can 
equivalently be described as a multipole field with 
the internal Gauss coefficients g01 = −190 nT for the 
dipole field, g02 = −78 nT for the quadrupole field and 
g03 = −20 nT for the octupole field (Anderson et  al. 
2012; Wardinski et  al. 2019). The internal Gauss coeffi-
cients determining the internal stationary magnetic field 
are implemented in the simulation code and the plasma 
interaction of Mercury with the solar wind is simulated. 
The interplanetary magnetic field with a magnitude of 
BIMF = 20 nT (Winslow et  al. 2013) is orientated along 
the vector 

(

x, y, z
)T

= (0, 0,−1)T in the Mercury-Anti-
Solar-Orbital coordinate system (MASO), i.e., the x-axis 
is orientated towards the nightside of Mercury (away 
from the sun), the z-axis is orientated parallel to the rota-
tion axis (i.e., antiparallel to the internal dipole moment) 
and the y-axis completes the right hand system. The 
solar wind velocity of usw = 400 km/s points along the 
x-axis and the solar wind proton density was chosen to 
nsw = 30 cm−3 (cf. Winslow et  al. (2013)). Mercury’s 
outer mantle ( 0.7RM ≤ r ≤ 1RM ) is modeled with a radi-
ally symmetric planetary resistivity profile with a resis-
tivity of ηS ≈ 840 k�m (or conductivity of 10−6 S/m ) at 
the surface and the core possesses a vanishing resistiv-
ity (Jia et al. 2015; Exner et al. 2018, 2020). The influence 
of Mercury’s exosphere is neglected, since the plasma 
interaction is only affected by the exosphere in the case 
of an extremely high ion density and the absolute value 
of the density is unknown (Exner et al. 2020). The result-
ing simulated magnetic field data are evaluated along the 
ellipsoid

(20)E =

{

(

x, y, z
)T

∣

∣

∣

(x − 0.2RM)2

(1.4 RM)2
+

y2

(1.2RM)2
+

z2

(1.16RM)2
= 1

}

,
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which describes the envelope of the elliptical MPO orbit 
rotated in longitudinal direction from −50◦ (afternoon/
post-midnight sector) over 0◦ (noon/midnight, x–z-
plane) to 50◦ (morning/pre-midnight sector) around the 
rotation axis (z-axis).

For the reconstruction of the current density jsh from 
the magnetic field data B , the scalar potentials �i , �e of 
the internal and external fields are expanded into spheri-
cal harmonics up to the third degree and order represent-
ing the internal/external dipole, quadrupole and octupole 
field. The scalar functions �sh

P  , �sh
T  of the poloidal and 

toroidal magnetic fields are expanded into spherical har-
monics up to the fourth degree and order. Furthermore, 
the scalar function �sh

P  is expanded into a Taylor series 
with respect to the radius r in the vicinity of the mean 
radius b of the spherical shell up to the first order. The 
function �sh

T  is cut off at the zeroth order for the radius 
describing the influence of the radial currents (Toepfer 
et al. 2021a) since it is expectable that the radial currents 
are the dominating poloidal currents in the vicinity of 
the surface. Thus, the magnetic field is modeled with 102 
expansion coefficients in the data analysis, i.e., 15 inter-
nal Gauss coefficients, 15 external Gauss coefficients, 24 
toroidal coefficients, 48 poloidal coefficients. As a proof 
of concept, the maximum orders of the series expansions 
are chosen to achieve a reasonable qualitative agreement 
between the simulated and the reconstructed currents. 
For a detailed quantitative analysis, it is worthwhile to 
incorporate higher orders of the series expansions. The 
wanted expansion coefficients are estimated with Capon’s 

method (Capon 1969; Motschmann et  al. 1996; Toepfer 
et al. 2020a, b, 2021b) from the simulated magnetic field 
data. Afterwards, the estimated expansion coefficients 
gsh
P

 for the poloidal magnetic field and the coefficients gsh
T

 
for the toroidal magnetic field are used to reconstruct the 
current density jsh (cf. Equation 15) within the shell.

The simulated and the reconstructed current density 
jsh along the ellipsoid E on the nightside and dayside of 
Mercury are displayed in Figs. 1 and  2, respectively. The 
simulated current system is dominated by equatorial cur-
rents flowing from dawn ( y > 0 ) to dusk ( y < 0 ) at the 
nightside (red arrows in Fig. 1a) and vice versa at the day-
side (red arrows in Fig. 2a). The reconstructed equatorial 
currents (yellow arrows in Fig.  1b and green arrows in 
Fig. 2b) follow this geometry. At the nightside, the equa-
torial currents split into a current flowing towards Mer-
cury at the dawnside and depart from the planet at the 
duskside. The polar regions are characterized by horizon-
tal currents. At the northern pole, the currents penetrate 
the surface in the region y > 0 (green arrows in Fig. 2a, 
yellow arrows in Fig.  2b) and leave the planet at y < 0 
(red arrows in Fig.  2a, red arrows in Fig.  2b). It should 
be noted that the reconstructed currents are calculated 
analytically and therefore, the reconstruction is smoother 
than the numerical simulation. However, the reconstruc-
tion method reproduces the structure of the simulated 
currents (cf. Figs. 1b and 2b) and thus, the Mie represen-
tation is capable of describing the geometrical nature of 
the currents flowing in the vicinity of the MPO orbit.
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Fig. 1  Simulated current density in multiples of 
∣
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∣

∣ = 40 nA/m2 and reconstructed current density in multiples of 
∣

∣jsh
0

∣

∣ = 25 nA/m2 along the 
ellipsoid E on the nightside of Mercury
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Furthermore, the simulated and the reconstructed 
current densities are of the same order. The magnitude 
of the reconstructed current density with a maximum 
amplitude of about 20 nA/m2 up to 25 nA/m2 in the 
polar regions differs only by the factor two from the 
simulated magnitude with a maximum value of about 

40 nA/m2 in the polar regions. Since the scalar func-
tions �sh

P  and �sh
T  are expanded into spherical harmon-

ics up to the fourth degree and order, it is expectable 
that the extension of the series expansion by degrees 
l > 4 will close the void between the reconstructed 
and the simulated magnitude of the current density. 
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Fig. 3  Decomposition of the reconstructed current density jsh into its poloidal and toroidal parts along the ellipsoid E on the nightside of Mercury. 
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Figure  3 displays the poloidal jsh
P

 and toroidal parts 
jsh
T

 of the reconstructed current density. The toroidal 
currents are characterized by closed loops with the 
divergence-free nature of jsh

T
 being immediately visible. 

Since the radial (poloidal) currents cross the ellipsoid 
E , from the first point of view it is not obvious how 
these currents are closed. Moreover, the magnitude 
of the toroidal current density with a maximum value 
of 

∣

∣jsh
T

∣

∣ ≈ 15 nA/m2 at the northern pole is smaller 
than the magnitude of the poloidal current density 
( 
∣

∣jsh
P

∣

∣ ≈ 20 nA/m2 up to 25 nA/m2 at the northern pole), 
but both the magnitudes are of the same order.

Poloidal and toroidal current systems under different 
IMF‑orientations
The simulated current density has reasonably been 
reconstructed from the simulated magnetic field data. 
Now, the question arises how the currents are related 
to the current system around Mercury presented in 
the section “Current system at Mercury” and how the 
poloidal currents are closed.

Besides the geometry of the internal magnetic field the 
current system depends on the direction of the inter-
planetary magnetic field (IMF) (Ganushkina et al. 2015; 
Milan et  al. 2017; Ganushkina et  al. 2018). To investi-
gate the qualitative structure of the current system 
around Mercury, simulated stationary magnetic field 
data and current densities resulting from the plasma 
interaction of Mercury with the solar wind under 
different IMF-orientations, i.e., BIMF = ±20 nT ex , 
BIMF = ±20 nT ey , BIMF = ±20 nT ez , where ex , ey and 
ez are the unit vectors of the corresponding main axes 
in the MASO system, are analyzed. Although Mercury’s 
magnetosphere is a highly dynamic system, the inter-
planetary magnetic field in the vicinity of Mercury’s 
orbit can be regarded as stationary for a time period 
of 20–40 min in times of a calm upstream solar wind 
(He et al. 2017; James et al. 2017). The resulting poloi-
dal and toroidal current systems on the nightside and 
on the dayside of Mercury for each IMF-direction are 
sketched in Figs. 4 and  5.

The dayside current system is dominated by the Chap-
man–Ferraro currents j

cf
 . These currents decompose 

into poloidal (orange) and toroidal currents (green). The 
toroidal part of the Chapman–Ferraro currents is charac-
terized by closed loops so that this part of the current 
system is closed within the magnetospheric plasma. The 
nightside current system is dominated by the neutral 
sheet current j

ns
 , simplified by just a single dawn–dusk-

directed arrow. The magnetopause current j
mp

 as well as 
the neutral sheet current are connected via poloidal cur-
rents at the dawn ( y > 0 ) and duskside ( y < 0 ) so that 
both the currents are characterized by a poloidal 

topology. Since the structure of the magnetopause cur-
rent and the neutral sheet current is determined by the 
internal magnetic field, these currents remain qualita-
tively unchanged for all IMF-directions. In the polar 
regions the poloidal part of the Chapman–Ferraro cur-
rents transits into poloidal Region 1 currents j

R1
 . Due to 

the high conductivity within Mercury’s core, the Region 1 
currents flowing in radial direction towards the planet at 
the dawnside and depart from the planet at the duskside 
are able to penetrate the surface and partially close via 
the core–mantle boundary, as proposed by Anderson 
et al. (2014). The currents flowing depart from the planet 
are closed within the nightside magnetosphere. Within 
the simulation presented here, no exosphere has been 
adopted. Considering the influence of Mercury’s exo-
sphere on the current system, a significant portion of the 
Region 1 currents can be closed within a sodium exo-
sphere of sufficient density, in similarity to Earth’s iono-
sphere, as shown by Exner et al. (2020).

Analogously to the plasma interaction of the Earth’s 
magnetic field with the solar wind, there occur field-
aligned currents j

fac
 at the northern and at the southern 

pole in the case of a non-vanishing By-component of the 
IMF (cf. Figs.  4b and   5b) (Leontyev and Lyatsky 1974; 
Trondsen et al. 1999; Liou and Mitchell 2019). Due to the 
frozen-in theorem the motional electric field is given by

In the case of By  = 0 ( Bx = Bz = 0 ), the electric field 
is orientated (anti-)parallel to the z-axis, since the solar 
wind velocity is orientated along the x-axis. We find that 
the field-aligned currents flow towards the planet at the 
northern pole and depart from the planet at the southern 
pole in the case of By > 0 and vice versa in the case of 
By < 0.

Furthermore, the IMF-direction determines the sym-
metry of the magnetosphere. A non-vanishing By-com-
ponent results in dawn–dusk asymmetries within the tail, 
whereas the Bx-component influences the north–south 
symmetry of the magnetosphere.

In the case of BIMF = 20 nT ex as well as 
BIMF = ±20 nT ey (cf. Figs.  4a and b,  5b), within the 
reconstruction procedure there occur toroidal currents 
with an amplitude of about 10 nA/m2 that are oppositely 
directed to the (poloidal) magnetopause current at the 
dayside of Mercury and oppositely directed to the (poloi-
dal) neutral sheet current at the nightside. This behavior 
is founded on the mathematical decomposition of the 
current density as a vector field. First of all, the quanti-
ties jsh

P
 and jsh

T
 are mathematical vector fields, which do 

not mandatorily exist as physical quantities. Thus, a van-
ishing current at a point x0 can equivalently be described 
as a superposition of oppositely directed non-vanishing 

(21)EIMF = −usw × BIMF.
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poloidal and toroidal currents with the same magnitude 
so that

is valid locally as schematically sketched in Fig.  6a 
and b. Due to the finite spatial extent of the currents, 

(22)jsh
P
(x0)+ jsh

T
(x0) = 0

at least partially they can flow independently of each 
other in regions this side of x0 or beyond x0 (cf. Fig. 6c). 
Although the total (physical) current j is determined by 
the superposition of the poloidal and the toroidal cur-
rent, the mathematical decomposition of the current 
density enables us to predict the potential origin of the 
current and to analyze the potential trajectories of the 

Fig. 4  Sketch of the poloidal (orange) and toroidal (green) currents under positive BIMF with various orientations in the MASO coordinate system
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particles carrying the current. Thus, the toroidal current 
flowing antiparallel to the magnetopause current as well 
as antiparallel to the neutral sheet current can be inter-
preted as a ring current which superposes with the poloi-
dal neutral sheet current and the magnetopause current. 
This ring current should be partially trackable along the 
planned MPO orbits.

In terms of the poloidal–toroidal decomposition, the 
current system around Mercury as sketched in Figs.  4 
and  5 can be summarized as follows. The poloidal cur-
rent (orange) flows towards Mercury at the dawnside 
( y > 0 ) and splits into the neutral sheet current j

ns
 , the 

Fig. 5  Sketch of the poloidal (orange) and toroidal (green) currents under negative BIMF with various orientations in the MASO coordinate system
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j = jP + jT

jT

jP

j P

jT

(a) Total current density j. (b) Equivalent decomposition.

(c) Independent currents.
Fig. 6  Superposition of poloidal (orange) and toroidal (green) currents. A vanishing current density j = 0 on the left side of the grey sphere (a) can 
equivalently be described as a superposition of non-vanishing poloidal and toroidal currents, so that j

P
+ j

T
= 0 is valid locally (b). The currents can 

flow independently of each other in a certain spatial distance (c)
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Region 1 current j
R1

 and the dayside magnetopause cur-
rent j

mp
 . The Region 1 currents are able to penetrate the 

surface. These currents close via the core–mantle bound-
ary and leave the planet at the duskside ( y < 0 ), where 
they reconnect with the magnetopause current and the 
neutral sheet current. This poloidal current system 
remains qualitatively similar for all IMF-directions. The 
toroidal Chapman–Ferraro currents j

cf
 are characterized 

by closed loops (green). The position of these loops varies 
for different IMF-orientations. In the case of 
BIMF = 20 nT ex as well as BIMF = ±20 nT ey the equato-
rial parts of the loops at the dayside are orientated 
antiparallel to the magnetopause current as well as 
antiparallel to the neutral sheet current at the nightside. 
For a non-vanishing By-component, the (poloidal) field-
aligned currents j

fac
 at the northern and at the southern 

pole also penetrate the surface and close via the core–
mantle boundary.

Although the plasma interaction of Mercury with the 
solar wind does not linearily depend on the IMF-orienta-
tion, it is expectable that the resulting current system for 
any other IMF-orientation can be constructed by super-
posing the cases presented above.

Summary and outlook
The analysis of current systems is of major importance 
for the comprehension of Mercury’s magnetosphere. 
Since the Mie representation delivers an analytical par-
ametrization for rotational magnetic fields, it enables 
the analytical calculation of the current density flowing 
in regions that are crossed by the Mercury Planetary 
Orbiter (MPO) from the measured magnetic field data. 
As a proxy for the not yet available MPO data, the mag-
netic field in the vicinity of Mercury is simulated with 
the hybrid code AIKEF and the data are evaluated along 
the planned trajectories of the MPO. The comparison 
of the simulated and the reconstructed current density 
shows, that the reconstructed currents are in reasonable 
agreement with the simulated currents. Thus, the Mie 
representation serves as a useful model for the analysis 
of currents that are crossed by the spacecraft. Further-
more, the Mie representation enables the decomposition 
of the current density into its poloidal and toroidal parts. 
The reconstructed toroidal currents are characterized 
by closed loops, whereas the poloidal currents cross the 
envelope of the trajectories in radial direction. Especially, 
the mathematical decomposition of the current density 
enables us to predict the potential origin of the current 
and to analyze the potential physical trajectories of the 
particles carrying the current.

After the reconstruction procedure, the question 
arises how the poloidal currents are closed and how the 

reconstructed currents are related to a complete current 
system around Mercury. Since the structure of Mercury’s 
magnetosphere depends on the orientation of the inter-
planetary magnetic field (IMF), the plasma interaction of 
Mercury with the solar wind is simulated for six different 
IMF-directions along the main axes in the MASO sys-
tem. It turns out that the poloidal current system remains 
qualitatively unchanged since, for example, the magne-
topause current as well as the neutral sheet current is 
mainly determined by Mercury’s internal magnetic field. 
In the case of a non-vanishing By-component of the IMF, 
there occur field-aligned currents in the polar regions 
which follow the motional electric field. Furthermore, the 
non-vanishing By-component yields dawn–dusk asym-
metries, whereas the existence of a non-vanishing Bx

-component violates the north–south symmetry.
Within the present study, the magnetic field data have 

been evaluated along a complete ellipsoid to reconstruct 
the current density for each IMF-orientation. Analyz-
ing in  situ magnetic field data, the current density can 
be reconstructed along segments of the MPO orbit for 
each IMF-orientation and the results can be classified 
in terms of the complete current system presented here. 
In addition, it should be noted that the Mie representa-
tion requires the series expansion of the magnetic field. 
Within the practical application, the series expansions 
have to be truncated at a suitable degree, where the 
choice of the maximum degree depends on the distribu-
tion and the amount of the available data points.

Furthermore, Mercury’s exosphere has been neglected 
within the simulations so that the field-aligned currents 
close via the core–mantle boundary. Therefore, the influ-
ence of Mercury’s exosphere on the poloidal and toroi-
dal current systems should be analyzed in future studies. 
Moreover, it is worthwhile to investigate the influence of 
dynamical effects on the current system within Mercury’s 
magnetosphere (Korth et al. 2017; Slavin et al. 2021).

Concerning the BepiColombo mission, this work 
establishes the basis for the application of the Mie rep-
resentation to calculate currents from the magnetic field 
measurements analytically and to analyze their poloidal 
and toroidal contributions.

Appendix
Within the Mie representation the magnetic field can be 
written as

and the corresponding vector potential is given by

(23)B = ∂x × (�T r)+ ∂x ×
[

∂x × (�P r)
]
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so that B = ∂x × A is valid (Toepfer et al. 2021a). Alter-
natively, the magnetic field can be parametrized via Euler 
potentials α and β (Stern 1967, 1970) resulting in

The corresponding vector potential can be written as

The Mie representation is based on the decomposition of 
the magnetic field with respect to spherical coordinates. 
Expanding Eq. (27) in spherical coordinates

and comparing the coefficients with Eq. (25) delivers

as well as

Thus, the scalar functions �P and �T can be interpreted 
as a special case of the Euler potentials α and β.
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(25)= �T r er +
1

r sin(θ)
∂�(�Pr)eθ −

1

r
∂θ (�Pr)e�,

(26)B = ∂xα × ∂xβ .

(27)A = α ∂xβ .

(28)α ∂xβ = α

[

∂rβ er +
1

r
∂θβ eθ +

1

r sin(θ)
∂�β e�

]

(29)�T =
α

r
∂rβ

(30)α ∂θβ =
r

sin(θ)
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sin(θ)
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