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Abstract:  Precise and reliable information on the tropospheric temperature and water vapor profiles play a key 
role in weather and climate studies. Among the sensors supporting the observations of the troposphere, one can 
distinguish the Global Navigation Satellite System Radio Occultation (RO) technique, which provides accurate 
and high-quality meteorological profiles. However, external knowledge about temperature is essential to esti-
mate other physical atmospheric parameters. To overcome this constraint, I trained and evaluated four different 
machine learning models comprising Artificial Neural Network (ANN) and Random Forest regression algorithms, 
where no auxiliary meteorological data is needed. To develop the models, I employed 150,000 globally distributed 
(45°S–45°N) RO profiles between October 2019 and December 2020. Input vectors consisted of bending angle 
or refractivity profiles from the Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, 
and Climate-2 mission together with the month, hour, and latitude of the RO event. While temperature, pressure, 
and water vapor profiles derived from the modern ERA5 reanalysis and interpolated to the RO location served as 
the models’ targets. Evaluation on the testing data set revealed a good agreement between all model outputs 
and ERA5 targets, where slightly better statistics were noted for ANN and refractivity inputs. Vertically averaged 
root mean square error (RMSE) did not exceed 1.7 K for the temperature and reached around 1.4 hPa and 0.45 hPa 
for the total and water vapor pressures. Additional validation with 477 co-located radiosonde observations and 
the operational one-dimensional variational product showed slightly larger discrepancies with the mean RMSE of 
around 1.9 K, 1.9 hPa, and 0.5 hPa for the temperature, pressure, and water vapor, respectively.
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Introduction
The earth’s troposphere is a complex, inhomogeneous, 
and highly variable environment, which is indispen-
sable to life and the main place of human activity. In 
recent years, studying the earth’s troposphere became a 
major research topic due to climate change and a grow-
ing number of severe weather events, such as intense 
storms and tropical cyclones. Monitoring and prediction 
of the aforementioned phenomena strongly depend on 
the understanding of multiple processes including short-
wave and longwave radiative transfer, the regional and 
global water and energy cycles, land surface-atmosphere 
feedback, and mesoscale circulations, which in turn are 
affected by the distribution and temporal evolution of 
temperature and water vapor in the troposphere. Hence, 
knowledge on the temperature and water vapor profiles 
plays a crucial role in understanding these earth’s sys-
tem processes and is essential in climate and weather 
researches but also affects soil and hydrological studies 
(Wulfmeyer et al. 2015).

Reliable, precise, and accurate monitoring and pre-
diction of the state of the troposphere in terms of tem-
perature and water vapor profiles is a challenging task 
involving many sensors and techniques, which can be 
separated into two key groups: in  situ measurements 
from weather stations, meteorological buoys and radio-
sondes; and remote sensing observations including radar, 
lidar, airborne and satellite soundings (Wulfmeyer et  al. 
2011). Among satellite observations dedicated to tropo-
spheric profiling, one can distinguish the Global Naviga-
tional Satellite System (GNSS) Radio Occultation (RO) 
technique, which was first applied to probe earth’s trop-
osphere in the GPS/MET experiment (Ware et al. 1996) 
and nowadays RO serves as a standard source of informa-
tion about the weather and climate (Kursinski et al. 1997; 
Anthes 2011). RO technique offers accurate and precise 

tropospheric profiles with high vertical resolution and 
global coverage in any weather conditions, which are suc-
cessfully assimilated into numerical weather prediction 
(NWP) models greatly improving forecast quality (Huang 
et al. 2010; Rennie 2010).

RO is an active limb viewing technique, which employs 
the phase and amplitude of two L-band electromagnetic 
signals transmitted from GNSS satellites and received 
on low earth orbit satellites (Kursinski et al. 1997). GNSS 
signal propagating through the earth’s atmosphere is pri-
marily affected by the change of the air density, free elec-
trons in the ionosphere and water vapor, which results in 
the signal’s delay and bending. The latter can be assessed 
as a function of impact parameter from Doppler shifts 
frequency based on accurate and precise clocks, satellite 
orbits and velocity measurements. In the next step, iono-
sphere-corrected bending angle profiles are transformed 
to refractivity using Abel transform, where the assump-
tion of local spherical symmetry is applied. Finally, 
refractivity profiles can be straightforwardly transformed 
to dry temperature and dry pressure profiles using only 
the dry term of refractivity equation in the regions where 
water vapor is negligible (above around 8–14  km alti-
tude) and ideal gas and equilibrium assumptions can be 
applied (Scherllin-Pirscher et al. 2011). However, special 
attention must be paid to the lower troposphere, where 
the dry assumptions are no longer valid due to the pres-
ence of abundant water vapor. Hence, ancillary informa-
tion about temperature, pressure or water vapor pressure 
is required to calculate the physical tropospheric param-
eters (Healy and Eyre 2000). Hitherto applied solutions 
encompass: (1) a direct approach exploiting external 
pressure and temperature profiles from radiosondes 
observations or weather models (Ware et  al. 1996); (2) 
iterative methods using RO refractivity and independ-
ent temperature profiles (Gorbunov and Sokolovskiy 
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1993) or surface observations (O’Sullivan et al. 2000); (3) 
a commonly used one-dimensional variational (1DVar) 
retrieval method, where RO measurements are combined 
with background information from a weather model to 
resolve the one-dimensional tropospheric state in a sta-
tistically optimal way (Healy and Eyre 2000; Poli et  al. 
2002); and eventually, (4) recently proposed simplified 
linearized 1DVar algorithm, which integrates the direct 
method with optimal estimation (Li et al. 2019).

The main limitation of the currently used approaches 
to derive meteorological profiles from RO observa-
tions is a demand for meteorological information from 
external data sources. To overcome this problem, sev-
eral authors have attempted to employ machine learn-
ing (ML) algorithms, the artificial neural network 
(ANN) in particular, where no independent informa-
tion is needed. Bonafoni et al. (2009), as one of the first, 
trained different multilayer perceptron ANN to retrieve 
the meteorological profiles in the lower troposphere. 
They used 445 occultations over the land surface cov-
ered by vegetation and deserts within the tropics dur-
ing the summer. GNSS RO refractivity profiles from 
Formosa Satellite 3/Constellation Observing System for 
Meteorology, Ionosphere, and Climate (COSMIC) mis-
sion served as an input whereas dry and wet refractivity 
profiles together with the dry pressure from European 
Centre for Medium-Range Weather Forecast (ECMWF) 
analysis formed a target during the learning process. 
They revealed the good performance of proposed algo-
rithms with RMSE of slightly below 2 K for the temper-
ature, 2 hPa and 0.7 hPa for the dry and wet pressures, 
respectively in the vegetation zones. The promising ini-
tial results encouraged Pelliccia et al. (2010) to test the 
developed methodology on COSMIC observations over 
tropical oceans. They confirmed the ANN feasibility to 
obtain high-quality meteorological profiles in the lower 
troposphere based on RO data. The currently exploited 
solution was modified in the next work of Pelliccia et al. 
(2011), who revised the ANN topology but also reduced 
the influence of the ECMWF model on the training 
process using RO refractivity weighted by fractional 
contributions of wet and dry components to the total 
refractivity in ECMWF model as the targets. Using 
more than one thousand profiles over the Arctic region 
in the winter season, they evaluated vertically aver-
aged RMSE as almost 1 K for the temperature, 1.6 hPa 
for the pressure and 0.04 hPa for the wet pressure. The 
most recent evidence Shyam et  al. (2016) employed 
almost 5000 samples comprised the month, latitude, 
bending angle, or refractivity from COSMIC mission to 
derive water vapor partial pressure profiles using a fully 
connected three-layer ANN. The results revealed better 

performance for refractivity as an input to the ANN 
than for bending angle with water vapor RMSE below 
1.5 hPa for the testing data set. However, their analysis 
was restricted only to the monsoon season over India 
and the adjoining region.

The main objective of this study is to test and evaluate 
alternative methods to retrieve tropospheric profiles of 
temperature, pressure, and water vapor from globally dis-
tributed (45°S–45°N) RO measurements based on ANN 
and random forest (RF) regression, requiring no exter-
nal meteorological data. Present works have shown the 
potential and benefits of ANN application in RO-based 
tropospheric profiling, although no one, to the best of 
my knowledge, has used RF regression for this purpose. 
It is widely considered that RF has a few advantages over 
ANN, which can make it an attractive tool for tropo-
spheric profiling. RF belongs to the group of ensem-
ble ML algorithms, which are characterized by stability, 
biasedness and less data required to accurately train the 
model. Furthermore, RF is easier to train due to no need 
for input preparation, such as scaling or normalization 
and a lower number of hyperparameters to tune. Very 
often RF models trained with default configuration bring 
very good results (Siroky 2009). Furthermore, the num-
ber of training examples engaged in developing ANN 
algorithms was limited to less than 5000 observations, 
and proposed solutions should be validated by a larger 
sample size, which may be done by exploiting RO meas-
urements from the newest missions such as the new ones 
COSMIC-2 launched in 2019.

COSMIC-2 is a follow-on mission to the successful 
COSMIC mission and has considerable advantages over 
its precursor (Schreiner et  al. 2020). First, the COS-
MIC-2 mission is designed to also track the signal from 
the Russian GLONASS, which contributes more observa-
tions with over 4000 profiles per day in the tropics and 
sub-tropics in near real time. Second, each COSMIC-2 
satellite is equipped with a high-gain beam-forming RO 
antenna, which exhibits a higher signal-to-noise ratio 
(SNR). Higher SNR allows deeper penetration into the 
lower troposphere (50% of observations reach 200  m 
above the earth’s surface) and reduces the thermal noise 
impact on bending angle errors. And finally, the received 
RO profiles present higher precision and accuracy. 
Derived refractivity profiles are in line with the ECMWF 
short-term forecasts retrievals and radiosonde observa-
tions (RAOBs) below 20  km altitude with minor nega-
tive biases reaching up to around 3% and 4%, respectively 
close to the surface (Schreiner et al. 2020; Ho et al. 2020). 
A comprehensive comparison between COSMIC-2 and 
multiple data sets such as RAOBs, dropsondes, and ERA5 
reanalysis revealed mean absolute errors and standard 
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deviations in the troposphere of usually less than 0.5  °C 
and 1.5  °C for temperature and 1  hPa and 2.5  hPa for 
water vapor pressure (Chen et al. 2021).

Therefore, this study will be the first attempt in ML-
based tropospheric profiling exploiting observations 
from the new COSMIC-2 mission. The growing number 
of high-quality observations will be a useful aid for the 
ML training data set. Furthermore, previous studies have 
been restricted to the particular seasons and areas such 
as tropics, Arctic region, or India and the global approach 
was beyond the scope of those studies.

Within the framework of the above-described criteria, I 
developed and tested RF and ANN models using 150,000 
RO observations between October 2019 and December 
2020, covering the land and wet areas. The input of the 
models consisted of both refractivity and bending angle 
vertical profiles as well as the month, hour, and latitude 
of the RO events. The training target comprised of the 
temperature, pressure, and water vapor partial pressures 
derived from the state-of-the-art ERA5 atmospheric rea-
nalysis (Hersbach et  al. 2020). Then the models’ perfor-
mance was evaluated during the testing phase based on 
the squared mean differences between ML outputs and 

ERA5 meteorological profiles, which are assumed to be 
the truth. However, ERA5, as any reanalysis, is only the 
best fit of the current state of the atmosphere, and it is 
affected by errors coming from the different sources such 
as observations or used assimilation system and using the 
ERA5 in models training and testing may produce inac-
curate results. Therefore, the additional verification with 
the independent operational 1DVar COSMIC products 
and nearby RAOBs is performed; however, the number 
of the available RAOBs is limited to the land area only. 
Eventually, obtained in near real time with high accuracy 
and vertical resolution meteorological profiles afterward 
can serve as an important source of information in the 
weather and climate studies.

Data and methods
In this study, different ML approaches are implemented 
for tropospheric profiling where no external informa-
tion about temperature is needed. ML refers to the 
algorithms, which are capable of improving their per-
formance based on past experience (Michie et al. 1994). 
For this purpose, I tested ANN and RF models with two 
separated inputs consisting of bending angle and refrac-
tivity, which eventually resulted in trained 4 different 
models. The whole process involved the following steps: 
(1) possession of the data, (2) preprocessing, (3) hyperpa-
rameters tuning, (4) training and testing the models, and 
finally, (5) validation with RAOBs.

Artificial Neural Network
ANN is a neurologically inspired ML algorithm that 
reflects the behavior of the neurons network present in 
the human brain (Hassoun 1995). ANNs are able to deal 
with highly non-linear problems and learn directly based 
on any kind of data. Due to its flexibility and good per-
formance, ANN found application in a wide variety of 
fields, such as image classification, speech recognition, 
risk management or weather forecasting. One of the 
most commonly used ANN topologies is a feed-forward 
multilayer perceptron (MLP), which was employed in the 
present study. MLP is a supervised network, which trans-
forms the input data into output based on experience 
gained during the training on the data set (Gardner and 
Dorling 1998). The model typically consists of three types 
of layers: an input, one or more hidden layers, and an out-
put interconnected by multiple fundamental processing 
units called neurons or nodes. The number of hidden lay-
ers and the number of nodes in these layers are arbitrary 
and depend on the complexity and the amount of avail-
able data. An example of MLP model architecture used in 
this study is presented in Fig. 1. In a fully connected MLP 
network, each neuron in a certain layer is connected to 
every neuron in the adjacent layer, whereas the strength 

Fig. 1  Example of the MLP structure used in this study. The input 
consists of refractivity (ref ) or bending angle (BA) profiles for 190 
altitude levels (H1–H190) together with latitude, hour and month of 
RO event. Temperature (T), pressure (P) and water vapor pressure (Vp) 
profiles for the corresponding altitude levels form the output
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of the particular connection is expressed by a numeri-
cal weight determined during training. Usually learning 
process is performed iterative using the backpropagation 
algorithm. The input data are repeatedly fed into the neu-
ral network, multiplied by connection weights, summed 
up and passed to the next layer. Eventually, in the last 
layer, the model’s error is estimated based on the differ-
ences between predicted and real outputs. In the next 
step, the calculated error is fed back and used to adjust 
the connections weight, which minimizes the model’s 
error and produces the outputs closer to the targets.

Random Forest regression
RF is a statistical nonparametric learning model based on 
a large ensemble of decision trees. Demonstrated for the 
first time by Breiman (2001), nowadays RF is one of the 
most widely and successfully used machine learning algo-
rithms for both classification and regression tasks. How-
ever, until now, RF has not been fully explored in GNSS 
meteorology, especially in RO tropospheric profiling (Łoś 
et  al. 2020). RF belongs to the group of the Bootstrap 
and Aggregation algorithms, commonly called bagging 
algorithms. Bagging refers to the random subsampling 
with the replacement of the original training data set 
and features to generate multiple base learning models. 
In RF, decision trees serve as the base models; each tree 
is constructed independently for the combination of the 

selected variables and there is no interaction between 
single trees. The final RF result is calculated as the mean 
of the outputs of all individual trees. It is proved that the 
application of RF as the bagging technique contributes to 
the lower variance and stability and, contrary to the sim-
ple decision tree, which is sensitive to the used data set, 
prevents overfitting (Breiman 1996; Ali et al. 2012).

Step 1: data acquisition
Input: RO bending angle and refractivity profiles
Near-real-time RO profiles from the COSMIC-2 con-
stellation gathered in the latitude band 45°S–45°N for a 
period between October 1, 2019, and December 31, 2020, 
were the main products used in this study (Fig.  2). The 
COSMIC-2 is a follow-on mission of the greatly beneficial 
COSMIC program led by the Taiwanese National Space 
Organization, and U.S. National Oceanic and Atmos-
pheric Administration, and other agencies (Schreiner 
et  al. 2020). COSMIC-2 consists of a set of 6 satellites, 
which were successfully launched into low-inclination 
orbits on June 25, 2019. The satellites produce more than 
4 000 atmospheric soundings a day within ± 50° of the 
north and south latitude band providing better insight 
into weather and climate. RO data at various process-
ing levels is published in near real time by 0200 UTC 
the following day and freely available at the COSMIC 
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Fig. 2  Distribution of RO profiles employed in training (a) and testing (b) of machine learning models. Red triangles in (b) emphasizes radiosonde 
stations co-located with RO profiles. Background color shows terrain elevation. Note, the location and number of available RO soundings is 
restricted by the topography
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Data Analysis and Archive Center (CDAAC) website 
(UCAR COSMIC Program 2019). I focused on atmPrf 
and wetPf2 level 2 products. The first one contains verti-
cal profiles of bending angle and refractivity, which con-
stitute the inputs for the ML models. The wetPf2 files 
include meteorological profiles of temperature, pressure 
and water vapor with 100  m vertical resolution derived 
through the 1DVar approach with the ECMWF analysis 
as a background. In the 1DVar approach, a cost function 
J is minimized to estimate with the maximum likelihood 
the optimal tropospheric state profile x:

where y0 is the observation vector, h is the observation 
operator, xb is the background meteorological profile. 
The matrices B, O and F express the background, obser-
vation and observation operator error matrices, respec-
tively (Poli et  al. 2002). Then, the so-called wet profiles 
together with RAOBs were used to assess the accuracy of 
the ANN/RF retrievals. To balance the required number 
of observations to train the models and the need to pro-
file the troposphere close to the surface as much as pos-
sible, only RO profiles, which reached 1 km altitude and 
below, were considered in this study.

Target: ERA5 meteorological profiles
The target variable consists of the meteorological profiles 
of temperature, pressure, and water vapor partial pres-
sure. Specifically, the meteorological data from the ERA5 
reanalysis was employed in the training and testing pro-
cesses. The ERA5 is the most recent global atmospheric 
reanalysis produced by the ECMWF and replaced the 
previously used and very popular ERA-Interim reanalysis 
(Hersbach et al. 2020). The major developments encom-
pass higher 1  h time resolution and 0.25° (31  km) spa-
tial resolution, improvements in Data Assimilation (DA) 
system and rapid 5 day preliminary availability. The DA 
system implemented in ERA5 is based on a hybrid incre-
mental 4DVar with 12  h windows and assimilates more 
than 200 types of conventional meteorological data and 
observations provided by satellites. Meteorological data 
are available for 37 pressure levels with a resolution of 
25 hPa between 1000 and 750 hPa, 50 hPa below 250 hPa 
layer, and 16 irregularly spaced levels above with the top-
level at 1 hPa. However, the ERA5 does not provide water 
vapor partial pressure Vp, which constitutes part of the 
ML output. Instead, it must be calculated from pressure 
P and specific humidity q (Wallace and Hobbs 2006):

(1)
J (x) =

(

h(x)− y0
)T

(O + F)
(

h(x)− y0
)

+

(

x − xb
)T

B−1

(

x − xb
)

where Mw = 18.0152  g  mol−1 and Md = 28.9644  g  mol−1 
are molar masses of moist and dry air, respectively.

Radiosonde observations
In this study, RAOBs served as an additional validation 
data source. Meteorological profiles from the radio-
sonde stations located up to 70 km from the mean RO 
tangent point were downloaded from the National Oce-
anic and Atmospheric Administration Earth System 
Research Laboratory (NOAA/ESRL) radiosonde data-
base (Govett 2020). The database provides temperature, 
pressure, and dew point depression measurements for 
at least 21 mandatory levels of constant pressure. The 
dew point depression Tdd can be transformed to the 
water vapor partial pressure based on the Clausius–
Clapeyron equation (Perry 1950):

where es0 = 6.11  hPa is the reference saturation vapor 
pressure, lv = 2.5·106  J  kg−1 denotes the latent heat of 
vaporization of water, Rv = 461.525  J  K  kg−1 is the gas 
constant for water vapor, T0 = 273.15  K is the reference 
temperature and Td = T − Tdd stands for the dew point 
temperature in K.

Step 2: preprocessing
After the acquisition of the needed data and before the 
training, it was necessary to perform the preprocess-
ing, which included vertical and 3D interpolation of 
the RO and ERA5 profiles, splitting the data into train-
ing and testing subsets, and eventually, co-location of 
RO and radiosonde observations and their vertical 
interpolation.

The models’ inputs comprised of latitude, month, 
and hour of RO event as well as the vertical profiles of 
bending angle or refractivity linearly interpolated to 
100 m resolution between 1 and 20 km resulting in 190 
fixed levels. The upper boundary of 20  km was chosen 
as a compromise between computational speed, model 
complexity, and the altitude, above which water vapor 
becomes negligible.

To derive the target profiles of the temperature, pres-
sure, and water vapor at the RO location, 3D interpola-
tion (horizontal and vertical) was applied to the ERA5 
meteorological data. Since the ERA5 stands out with 
the high 1  h resolution, temporal interpolation to the 

(2)Vp =
q · P

Mw
Md

+

(

1−
Mw
Md

)

· q

(3)Vp = es0 · e
lv
Rv

(

1

T0
−

1

Td

)
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time of the RO observations was omitted. Therefore, 
first, the vertical spacing of the ERA5 data was adjusted 
to the RO altitude (100  m resolution within 1–20  km 
altitude). I applied different interpolation strategies 
depending on the meteorological parameters. For the 
temperature, a simple linear interpolation was used, the 
water vapor partial pressure was interpolated exponen-
tially, while the pressure at the particular height h was 
calculated based on the pressure Pi of the adjacent layer 
i at height hi (Boehm and Schuh 2004; Wallace and 
Hobbs 2006):

where Rd is the gas constant for dry air, gm denotes accel-
eration due to gravity, which can be calculated as a func-
tion of latitude and height (Kraus 2007), and Tv stands 
for the virtual temperature, which expresses the dry tem-
perature with the same density as the moist air with the 
constant pressure:

Afterward, the vertically uniform ERA5 profiles were 
interpolated horizontally to the mean RO tangent point 
position using bilinear interpolation.

In the next step, the pairs of input RO and output 
ERA5 profiles were subdivided into training and testing 
data sets. Since the total number of available RO obser-
vations exceeded 1.75 million, to reduce computational 
cost and satisfy memory constraints in the estimation 
of model parameters, the subsampling was performed. 
10  000 random samples for each month between Octo-
ber 2019 and September 2020, giving 120,000 profiles 
in total, entered into a learning set and the 30,000 ran-
dom observations between October and December 2020 
were used for model testing (Fig. 2). It should be noted, 
that the Earth’s topography was one of the factors, which 
constrained the RO technique to sound the atmosphere 
down below 1  km, which was set as a threshold in this 
study. Therefore, most (100,150, 83.5%) of RO profiles 
used for training were located over the wet areas and the 
rest 19,850 (16.5%) observations occurred above land. 
Similarly, the test data set consisted of 24,270 (80.9%) 
and 5730 (19.1%) samples, which took place over the 
oceans and land, respectively. The RO events included in 
the testing data set were co-located with nearby RAOBs 
using a 2 h time window and 70 km as a maximum spatial 
distance between the mean tangent point of RO profile 
and location of radiosonde station. This resulted in 477 
pairs of co-located RAOB-RO cases, which distribution is 
presented in Fig. 2b.

(4)P = Pi · e
−
(h−hi)·gm

Rd ·Tv

(5)Tv =
T ·P

P−
(

1−
Mw
Md

)

·Vp

Originally, RAOBs are provided at constant pressure 
levels, which correspond to different geometric heights 
depending on the current weather conditions. Hence, it 
was necessary to first determine the radiosonde data at 
common altitudes to be able to evaluate the ML model 
performance. Since the vertical resolution of radiosonde 
measurements is relatively sparse, I interpolated mete-
orological data at the chosen 10 rigid height levels of 1.5, 
3.1, 5.8, 7.5, 9.6, 10.9, 12.4, 14.2, 16.6, and 18.7 km, which 
approximately equal to the mandatory pressure levels of 
850, 700, 500, 400, 300, 250, 200, 150, 100, and 70 hPa.

Although the RF does not require any additional pre-
processing steps before the training, for the ANN, it is 
recommended to perform data normalization, which 
leads to speeding up the learning, a more stable algo-
rithm, and faster convergence. In this study, for con-
venience, min–max normalization was applied to input 
features (bending angle/refractivity, latitude, month, and 
hour) of both algorithms (ANN and RF), transforming 
them into the 0–1 range. Furthermore, it has to be noted 
that the vertical input profiles were scaled separately at 
each altitude level.

Step 3: hyperparameters tuning
Hyperparameters are configuration parameters, which 
control the learning process and, contrary to the model 
parameters, must be set in advance before the training. 
Hyperparameters can significantly influence the model 
performance and the selection set of the most optimal 
variables is one of the biggest challenges in model build-
ing. To mitigate this problem, a few hyperparameter 
optimization techniques have been developed, such as 
Random Search, Bayesian optimization, or Gaussian Pro-
cess (Bergstra et al. 2011; Bergstra and Bengio 2012). In 
this study, I exploited the Random Search, separately for 
the bending angle/refractivity and ANN/RF models. The 
Random Search approach allows scanning a large domain 
of hyperparameters by selection and evaluation n ran-
dom combinations. The number of n was set to 200 in 
this research. The evaluation of each set of hyperparam-
eters was performed using the popular K-fold cross-val-
idation. In the K-fold cross-validation, the training data 
set is randomly split into K equal-sized subsets, where 
one of the partitions is used in testing and the rest K-1 of 
data serves in the model learning. The process is repeated 
K times and the final output is estimated as the average of 
the K fitting results.

ANN and RF are characterized by different sets of 
available hyperparameters. For RF, the following hyper-
parameters were considered, where the numbers in the 
parentheses specify the ranges of values to try:
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1.	 N estimators—the number of trees in a forest (50, 60, 
…, 600).

2.	 Max depth—the maximum depth of the tree (4, 6, 
…,26)

3.	 Min samples split—the minimum number of sam-
ples to consider for each split (30, 40, …, 90, 100, 150, 
200,…, 500).

4.	 Min samples leaf—the minimum number of samples 
required to be at a leaf node (10, 15, 20, …, 45, 50, 60, 
…, 100).

5.	 Max features—the number of features consider when 
looking for the best split (10, 15, 20, …, 190, 194).

6.	 Bootstrap—defines whether some samples will be 
used multiple times in a single tree (True, False).

Note, the pre-pruning technique was used to mitigate 
the chance of overfitting. Tested ranges of hyperparam-
eters, such as max depth, min samples split, and min 
samples leaf were constraint to prevent full growth of 
single trees.

For the ANN, I adjusted parameters related to the 
network structure (1–3) and training algorithm (4–6):

1.	 Layers—number of hidden units (1, 2, 3).
2.	 Neuron—number of units at each hidden layer. (195, 

200, 205,… 500).
3.	 Dropout rate—a fraction of the neurons, which are 

randomly ignored during the training (0, 0.1, … 0.5).
4.	 Activation function (linear, rectified linear unit).
5.	 Epochs (200, 250, 300,…1600).
6.	 Batch—describes how many samples are processed 

before the update of internal ANN parameters (50, 
100, …, 500, 1000, 1500, …, 9500, 10,000).

The weights and learning rates of the ANN were 
determined during the training using a popular and 
effective Adam optimization algorithm, which was pre-
sented for the first time by Kingma and Ba (2014).

It must be pointed out that many various sets of 
hyperparameters may result in a similar performance. 

Hence, to simplify the processing and save computa-
tional time, the RF models with the lowest number of 
trees or ANN with a minimum number of hidden layers 
and neurons were chosen. Eventually, the following ML 
models were revealed as the best during hyperparam-
eters optimization:

•	 bending angle based ANN: 1 hidden layer, 455 neu-
rons, 0 dropout rate, linear activation function, 850 
epochs and batch size of 50 samples,

•	 refractivity based ANN: 1 hidden layer, 405 neu-
rons, 0 dropout rate, linear activation function, 
1150 epochs and batch size of 50 samples,

•	 bending angle based RF: 300 trees, max depth of 20, 
min samples split of 30, min samples leaf of 10, 20 
max features, bootstrap option set False.

•	 refractivity based RF: 190 trees, max depth of 18, 
min samples split of 30, min samples leaf of 10, 15 
max features, bootstrap option set True.

Results
Step 4: training and testing
Training accuracy of the different machine learning 
approaches was evaluated using the root mean square 
error (RMSE) between the outputs of different ML models 
and ERA5 target profiles on the testing data set. The cor-
responding RMSE were computed also on the training data 
set to check if algorithms are prone to either overfitting or 
underfitting. The vertically averaged RMSE for temperature, 
pressure and water vapor partial pressure together with the 
corresponding ERA5 standard deviations are comprised in 
Table 1. The same table also shows RMSE between 1DVar 
results provided by CDAAC in wetPf2 products and ERA5 
targets. The attached ERA5 standard deviations were calcu-
lated based on the entire available data set (150,000 profiles) 
and reflect the climatological variability of the particular 
meteorological parameters. As to temperature, the RMSE 
varies between 1.51  K for the ANN based on refractivity 
up to 1.68  K for the RF with bending angle input. At the 

Table 1  Fitting results obtained on the training and test data sets

Vertically averaged root mean square errors (RMSE) for the temperature, pressure, and water vapor partial pressure between ERA5 and obtained using different 
machine learning models on the training and test data sets indicated by columns ‘L’ and ‘T’, respectively or 1DVar approach stored in operational CDAAC wetPf2 
product. The right column presents vertically averaged standard deviations for the corresponding meteorological parameters calculated from ERA5 reanalysis

Artificial Neural Network Random Forest CDAAC wetPf2 ERA5

Bending angle Refractivity Bending angle Refractivity

L T L T L T L T

Temperature (K) RMSE 1.49 1.56 1.46 1.51 1.44 1.68 1.47 1.60 1.50 STD 4.82

Pressure (hPa) 1.33 1.34 1.20 1.22 1.10 1.42 1.12 1.26 1.05 4.23

Water vapor pressure (hPa) 0.44 0.44 0.43 0.43 0.43 0.48 0.43 0.46 0.45 0.93
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same time, the mean standard deviation of the ERA5 profile 
reaches slightly more than 4.8 K, which is significantly above 
the ML model errors. The comparison between ERA5 and 
wetPf2 temperatures revealed similar performance with 
RMSE of 1.50 K what confirms the good accuracy of tem-
perature profiles retrieved using ML models.

Unfortunately, I obtained slightly worse fitting results 
for the pressure compared to the wetPf2 product. ANN 
and RF with refractivity input show the best performance 
with the vertically averaged RMSE of around 1.25  hPa, 
while the worst performance (1.42 hPa) is noted for the RF 
with bending angle input. The ERA5 mean standard devia-
tion was 4.20 hPa, which is a factor almost 4 higher. Pres-
sure RMSE for 1DVar solution was significantly smaller 
by around 0.2–0.3  hPa than for ML models. Almost the 
same performance is observed for 1DVar CDAAC product, 
both ANN and RF models with vertically averaged RMSE 
of around 0.45 hPa for water vapor pressure. Although the 
mean standard deviation of ERA5 water vapor reached 
0.93 hPa and exceeds the fitting errors for all the models, it 
is only a factor 2 higher, which is small compared to the fac-
tors 3 for temperature and almost 4 for pressure. This result 
may reflect the complex and variable nature of water vapor, 
which is more difficult to predict. Differences between 
RMSE obtained on the training and test data sets were neg-
ligible for both ANN models and more pronounced for RF 
models, in particular for bending angle input. The tempera-
ture and pressure RMSE differences of around 0.2  K and 
0.3 hPa indicate slight overfitting, although the pre-pruning 
was applied before hyperparameters optimization. The rea-
sons for this result are not yet completely understood but 
may be attributed to distinct periods of training (Octo-
ber–September) and test (October–December only) data 
sets but also the difficulty of the problem to solve arising 
from the high number of input and output variables and 
complex nature of bending angle. This is an important issue 
for future research, which should cover feature engineering 
and validation on a larger data sample.

The models’ performance was also evaluated in terms 
of training speed based on the mean of five model 
runs. The analysis was conducted on a machine with 
32  Gb RAM and 16-cores Intel Xeon Silver 4216 CPU 
(2.10  GHz). Although RF models achieved a slightly 
worse accuracy, they outperform the training time of 
ANN with the mean execution times of 9.6 and 36.8 min 
for refractivity and bending angle inputs. Corresponding 
ANN models were computationally more demanding, 
which resulted in training times of 135.6 and 141.0 min, 
which are factors of around 14 and 4 higher.

The vertical RMSE profiles for temperature, pres-
sure, and water vapor partial pressure with regard to 
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Fig. 3  Temperature (a), pressure (b) and water vapor partial pressure 
(c) RMSE vertical profiles. The errors are obtained on the testing data 
set from the operational 1DVar CDAAC wetPf2 product (orange lines), 
ANN (blue lines) and RF (green lines) approaches with bending angle 
(solid lines) or refractivity (dashed lines) inputs, with respect to the 
ERA5 targets. The pink lines present the ERA5 standard deviations of 
particular meteorological parameters
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Fig. 5  Fitting results for different months on the Northern (left panels) and Southern (right panels) hemispheres. The bars show vertically averaged 
RMSE for temperature (a, d), pressure (b, e), and water vapor partial pressure (c, f) computed between ERA5 and different ML models or CDAAC 
wetPf2 product on test data sets. Blue, green, and yellow distinguish events in October, November and December
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different ML models and operational 1DVar CDAAC 
product are presented in Fig. 3. The retrieval errors for 
the temperature (Fig. 3a) for all ML models and wetPf2 
product are quite stable between 5 and 17 km altitude 
and equal to approximately 1.5 K. However, the RMSE 
for the RF model with bending angle input stands out 
slightly by around 0.2 K, what is in line with the high-
est vertically averaged RMSE. Unfortunately, below 
3  km the temperature RMSE increases up to almost 
3  K with negligible differences between the models, 
while the results for wetPf2 are significantly smaller by 
around 1 K. Between 17 and 19 km the opposite pattern 
is observed, ML RMSE are around 1.5 K, while 1DVar 
RMSE rises up to 2.5  K. At the same time, the ERA5 
standard deviation greatly exceeds 4  K with an excep-
tion between 12 and 15  km with a drop below 3  K, 
which may be related to the tropopause height inducing 
lower temperature variability.

The pressure RMSE (Fig.  3b) for all ML models are 
in quite good agreement and drop from 2.7 to 1.0 hPa 
between 1.0 and 20.0  km. However, the RF model 
with bending angle input stands out with errors larger 
by around 0.2  hPa. A similar pattern but with slightly 
smaller RMSE is visible for the CDAAC product, where 
the maximum and minimum RMSE reached approxi-
mately 2  hPa and 0.5  hPa. While, the largest ERA5 
standard deviation of more than 6 hPa is visible around 
10.5 km altitude.

RMSE for the water vapor (Fig.  3c) shows a grad-
ual decrease from 2.5  hPa to almost 0 between 2.5 to 
12.5  km for all ML models and 1DVar solution and 
together with ERA5 standard deviation become neg-
ligible above the upper altitude. The results for all ML 
models and wetPf2 product are in good agreement; only 
in the lowest part below 2.5 km, RF models are charac-
terized by larger errors by around 0.5  hPa. At the same 
time, ERA5 standard deviation reaches approximately 
5.5  hPa at 1.0  km altitude, which is a factor of 2 larger. 
As mentioned before, most of the RO profiles took place 
over the oceans, which can have different characteris-
tics and accuracy compared to the observations above 
the ground. Therefore, I computed RMSE separately for 

each group, which vertical profiles are depicted in Fig. 4. 
For temperature, the slightly worse performance of ML 
models is noted for land, in particular below 3 km, where 
RMSE gradually grows up to over 4  K for RF models 
with decreasing altitude. In comparison, RMSE for wet 
areas reaches less than 2.5 K, which may be related to the 
smaller ERA5 standard deviation. The different tendency 
is seen in pressure errors (Fig. 4b and d). Although ERA5 
standard deviation below 6 km is larger by 1 hPa for wet 
areas, the accuracy of ML models is similar. The pat-
terns of pressure RMSE for all ML models and CDAAC 
product are steady but shifted by around 0.1 hPa for wet 
areas compared to land. Similar to pressure, water vapor 
pressure errors are consistent for land and wet areas and 
differ only in the lowest part of the troposphere. A larger 
RMSE by around 0.5 hPa was noted for land, which may 
be a consequence of the larger water vapor variability 
reflected in the ERA5 standard deviation. The above find-
ings suggest that the location of RO event or further, land 
cover, may have a significant impact on models training 
should be employed in a feature space.

In addition, fitting accuracy on the test data set was 
examined for different months and hemispheres. In the 
Northern Hemisphere (left panels in Fig.  5), tempera-
ture and pressure RMSE for all ML models and CDAAC 
wetPf2 gradually increase every month. The largest errors 
are noted in December, especially for the RF model with 
bending angle input with maxima of around 1.9  K and 
1.7 hPa, respectively. Interestingly, temperature errors for 
all ML models and CDAAC product are similar in Octo-
ber and equal to around 1.3 K. Different pattern is visible 
in the Southern Hemisphere (right panels in Fig. 5), since 
it experienced reversed seasons and is covered mostly by 
water. The smallest temperature RMSE of around 1.5  K 
were in December, while bigger errors by around 0.1  K 
were in October and November. For pressure, the largest 
discrepancies are noted in November with values varying 
between 1.2 to just below 1.5 hPa. I obtained consistent 
results for water vapor partial pressure for both hemi-
spheres and all tested months with the best accuracy of 
0.42  hPa for the ANN model with refractivity input in 
October in the Southern Hemisphere.

Table 2  Results of validation with RAOBs

Vertically averaged RMSE between the temperature, pressure, and water vapor partial pressure obtained using different inputs and machine learning models, 
operational CDAAC wetPf2 and 477 co-located RAOBs with co-location criteria of 70 km and 2 h time window

Artificial Neural Network Random Forest CDAAC wetPf2

Bending angle Refractivity Bending angle Refractivity

Temperature [K] 1.89 1.81 2.16 2.01 1.29

Pressure [hPa] 1.93 1.83 2.13 1.89 1.35

Water vapor pressure [hPa] 0.47 0.46 0.54 0.52 0.41
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Step 5: validation with radiosondes
In this study, RAOBs were used as an additional valida-
tion data source for the ML retrievals. Table 2 compares 
the vertically averaged RMSE for temperature, pressure 
and water vapor partial pressure between trained ML 
models, operational CDAAC 1DVar retrievals stored 
in wetPf2 products and 477 co-located RAOBs. For all 
meteorological parameters, the best performance among 
ML models is noted for the refractivity-based ANN, 
which is in line with the testing results presented in the 
previous subsection. The mean RMSE between the pre-
dicted and RAOBs temperature, pressure are equal to 
1.87 K and 1.83 hPa, respectively. While the mean water 
vapor RMSE for all ML models are barely distinguishable 
with the smallest RMSE of 0.46  hPa. The worst results 
were obtained for RF with bending angle with the mean 
RMSE of 2.16 K, 2.13 hPa, and 0.54 hPa for the tempera-
ture, pressure, and water vapor. Furthermore, it is worth 
noticing that using the bending angle as an input vector 
in both, ANN and RF, models results in larger discrepan-
cies than corresponding models with refractivity inputs. 
Unfortunately, the validation results for ML models are 
worse than calculated for the CDAAC product with the 
mean RMSE of 1.29  K, 1.35  hPa, and 0.41  hPa for the 
temperature, pressure and water vapor. However, only 
profiles over land were taken into account in the valida-
tion, which comes from the limitation of the location of 
radiosonde stations. As presented in Fig. 4, the ML learn-
ing accuracy decreases over land areas, especially in the 
lower troposphere. Thus, the above results further sup-
port the idea to include the information about wet/land 
location in the input features.

Comparison between the vertical profiles of RMSE 
and mean differences for temperature, pressure, and 
water vapor between ML, 1DVar CDAAC retrievals and 
co-located RAOBs is presented in Fig.  6. As mentioned 
above, the lowest temperature RMSE is observed for the 
wetPf2 product where the mean error is approximately 
1.2 K up to 12.5 km and gradually reaches almost 2.0 K 
at 20 km altitude (Fig. 6a). A similar but shifted by over 
0.5 K pattern is visible for the ML outputs. However, the 
mean RMSE at 1.5 km ranges from 2.8 to 3.3 K with the 
lowest and highest values for refractivity-based ANN 
and RF with bending angle input, respectively. Similar 
to the 1DVar results, there is a significant increase in 
RMSE above 12.5 km, which reaches more than 2.5 K at 
the highest analyzed level. Mean temperature biases for 
all ML models and wetPf2 product (Fig.  6d) are mostly 
negative with absolute values below 0.5 K. However, con-
trary to RMSE, the best results were obtained for ANN 
with refractivity input. The largest temperature discrep-
ancy of around -0.9  K is present for both RF models at 
16.6  km, which may be related to tropopause altitude. 

Interestingly, the largest wetPf2 bias of over − 0.5  K is 
visible at 7.5 km.

The vertical profiles of pressure RMSE for ML models 
follow each other above 9.6  km, while below, there are 
significant discrepancies (Fig. 6b). The maximum differ-
ence of around 0.7 hPa is noted between RF with bending 
angle input and ANN with refractivity input, which pre-
sents the best performance. The largest RMSE of 3.0 hPa 
is seen at 1.5 km for bending angle ANN, while the low-
est errors of around 1.2 hPa below 7.0 km are noted for 
the wetPf2 product. It is clear from Fig. 6e that ML mod-
els tend to overestimate pressure, especially below 10 km 
with maximum biases of over − 0.5 hPa for bending angle 
based ANN and RF. Opposite Similar to the temperature 
and pressure, the best agreement is observed between 
RAOBs and CDAAC water vapor pressure, with RMSE 
slowly decreasing from just above 2.0  hPa to almost 0 
above 12.4 km. However, the big peak of over − 0.2 hPa 
is seen at 3.1 km in the mean bias profile (Fig. 6f ) Among 
the ML models, the smallest RMSE is noted for ANN 
with bending angle input with a maximum of 2.2 hPa at 
1.5  km altitude. Surprisingly, RF with refractivity input 
shows the best performance in terms of mean differences 
with absolute values staying within ± 0.1 hPa.

Figure  7 presents the differences of the temperature 
(a–c), pressure (d–f) and water vapor pressure (g–i) 
between ML, CDAAC outputs and RAOBs for 3 out of 
477 co-located RO events. The events were selected 
based on the spatial and time differences below 15  km 
and 30  min for mid (> 35°), subtropical (23.5°–35.0°) 
and tropical (0–23.5°) latitudes. The upper panel shows 
the RO case result, which occurred at 12:15 UTC on 
December 7, 2020, and RAOB from the station located in 
Topeka (95.62°W 39.07° N) in the USA with the distance 
of 8 km to the mean RO tangent point. For the tempera-
ture (Fig. 7a), differences for CDAAC and ML retrievals 
are mostly within ± 2  K below 16  km, while the largest 
errors of − 4  K and 5  K are noted for RF with bending 
angle input at the most upper layer. There is a satisfac-
tory agreement between various ML outputs for the 
pressure, which are mostly positive and less than 2 hPa. 
Surprisingly, the differences between the official CDAAC 
product and RAOB are almost always positive with the 
exception of a negative peak of over − 2.5 hPa at 3.1 km. 
The water vapor differences (Fig.  7g) are often close to 
zero with an exception for RF models with large spikes of 
− 1.5 to − 3.0 hPa.

The second analyzed event (middle panels) took place 
at 23:12 UTC on December 15, 2020, where the closest 
available RAOB was located 14 km away in Delhi, Safdar-
jung (77.20° E 28.58° N) in India. Contrary to the previ-
ous event, all of the differences (Fig. 7b, e, h) are mostly 
negative. As to the temperature, the largest errors of over 
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− 5 K are reported at 9.6 km for wetPf2 and at 12.4 km 
for RF with bending angle input. A similar negative peak 
for wetPf2 of slightly exceeding 4 hPa is seen at 7.5 km 
in the pressure profiles. The water vapor errors fluctu-
ate around zero for all ML models and CDAAC product; 
however, the RF model with bending angle input stands 
out with an unexpected error of over 3 hPa at 16.6 km. 
Interestingly, the best overall performance was recorded 
for the ANN with bending angle input.

The bottom panel in Fig.  7 shows the results for the 
RO event, which happened at 23:31 UTC on October 
21, 2020, with relation to the RAOB taken 6 km away in 
Legazpi, Luzon (123.73° E 13.15° N) in the Philippines. 
The zigzagging temperature differences for all ML mod-
els and 1DVar solution hardly exceeds 2.5  K, while the 
pressure differences (Fig.  7f ) are quite stable and below 
1.1 hPa and tightly follow each other for all altitudes. The 
best performance was recorded for water vapor pressure, 
where all the differences stay within 0.7  hPa, which is 
quite surprising, since the radiosonde station is located in 
the tropics characterized by abundant water vapor.

Discussion
RO technique provides meteorological profiles with 
high vertical resolution and accuracy. However, com-
monly applied solutions to derive tropospheric profiles 
depend on the a priori information about temperature 
or pressure. To overcome this problem, recent studies 
focused on ANN approaches, where no auxiliary data is 
needed. In one of the first studies, Bonafoni et al. (2009) 
reported RMSE between ECMWF analysis and ANN 
outputs reaching more than 3 K for the temperature and 
2.5 hPa for the water vapor pressure for vegetation zone 
at around 1.5  km altitude. Slightly better results were 
observed for the tropics in the work of Pelliccia et  al. 
(2010) where the maximum RMSE for the temperature 
was just above 3 K and for the water vapor pressure did 
not exceed 2.5  hPa. While the best performance was 
achieved by Pelliccia et al. (2011) with RMSE of less than 
2  K, 4  hPa, and 0.2  hPa for the temperature, pressure, 
and water vapor, respectively. My findings agree well 
with these results in terms of temperature and pressure 
RMSE, which were mostly around 1.5 K and below 2 hPa. 
As expected, only for the water vapor, I computed larger 
RMSE of around 2.0–2.5 hPa at the lowest altitudes. The 
prime reason for the discrepancy is the restricted use of 
RO profiles only to the winter season in the north of the 
Arctic Polar Circle, where water vapor content is small 
and less variable. It is confirmed by the small standard 
deviation of water vapor from ECMWF analysis, which 
did not exceed 1.2 hPa in their work, whereas in the cur-
rent study, I calculated the ERA5 standard deviation of 
more than 5  hPa. Furthermore, their comparison of 2 

RO events co-located with RAOBs revealed huge pres-
sure differences of more than − 4 hPa, while in the cur-
rent study, the differences between ML models and 
RAOBs were mostly within − 3 to 3  hPa (Fig.  7) and 
rarely exceeded this range. The lower pressure differences 
obtained in the present study may also be a consequence 
of the output used to train the models. The former study 
used only ECMWF analysis, whereas the current work 
exploited state-of-the-art ERA5 reanalysis, which pro-
vides meteorological profiles with higher accuracy and 
higher spatial and temporal resolutions.

Shyam et al. (2016) tested two different inputs of bend-
ing angle or refractivity to derive water vapor profiles 
using ANN. Their study revealed better performance 
for ANN with refractivity input. The maximum RMSE 
between ANN with refractivity and bending angle inputs 
and CDAAC product was below 1.5 and 5  hPa, respec-
tively. My results confirm the better performance of ML 
models with refractivity input. Nevertheless, the differ-
ences between water vapor RMSE for ML models with 
refractivity and bending angle inputs are smaller and 
do not exceed 0.2  hPa compared to the 3.5  hPa dem-
onstrated by Shyam et  al. (2016). These negligible dif-
ferences can be explained by improved SNR in the 
COSMIC-2 mission, which contributes to the smaller 
bending angle errors.

Conclusion
This study compares different methods to determine 
tropospheric profiles of temperature, pressure, and water 
vapor pressure based on the RO observations from the 
COSMIC-2 mission. For this purpose, I trained and 
tested 4 ML models embracing ANN and RF algorithms 
with refractivity and bending angle profile as the inputs. 
ML is a powerful tool to estimate meteorological profiles 
using only RO data without external knowledge on tem-
perature or pressure from weather models or other meas-
urements. As an input, I exploited globally distributed 
150,000 RO profiles between October 2019 and Decem-
ber 2020, whereas the training target consisted of ERA5 
meteorological profiles of temperature, pressure, and 
water vapor interpolated to the position of the RO event.

I obtained acceptable and consistent results for all 
trained ML models. The vertically averaged RMSE 
between predicted and target ERA5 profiles were around 
1.5 K for temperature, 1.3 hPa for pressure, and 0.5 hPa 
for water vapor. The largest errors of almost 3 K, 2.7 hPa, 
and a little more than 2.5  hPa are noted below 2.5  km 
altitude. Disappointingly, further comparison carried 
out with RAOBs revealed bigger discrepancies. Verti-
cally averaged RMSE between ML outputs and obser-
vations varied from 1.8 to 2.2  K for temperature and 
1.8–2.1  hPa for pressure. Only the water vapor errors 
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of around 0.5  hPa are in good agreement with the pre-
vious findings. Similar examination with respect to the 
operational 1DVar CDAAC product showed smaller 
errors of 1.3  K for temperature and 1.4  hPa for pres-
sure, whilst RMSE of just above 0.4 hPa for water vapor 
pressure compares well with the ML models accuracy. 
The substantial disagreement between ML models and 
CDAAC product was noted below 5 km altitude. As well 
known, the lower troposphere is highly variable and dif-
ficult to predict environment, which consequently results 
in the decline of ML models performance. The obtained 
errors are higher than I expected and there is certainly 
room for improvement. Hence, to address this issue, I 
am planning to train separate ML models for the upper 
and lower troposphere, which are represented by differ-
ent characteristics and processes. Taken together, apart 
from the slight disagreement for temperature and pres-
sure, I believe the presented results compare quite well 
with CDAAC retrievals and encourages further research 
in this field.

To the best of my knowledge, it was the first attempt 
to apply the RF algorithm to profile the troposphere 
based on RO measurements. Current solutions focused 
only on the ANN application, whilst the use of RF was 
disregarded. In general, my results demonstrated a quite 
good agreement between ANN and RF retrievals with the 
RMSE differences between the models mostly of around 
0.2  K for the temperature and 0.1  hPa for the pressure, 
and negligible for water vapor partial pressure. These dif-
ferences can be explained by usually better prediction 
skills of good-tuned ANN models as the problem com-
plexity and size of the training data set increase (Kayri 
et al. 2017) compared to RF, which is successfully applied 
in tasks, where limited data sample is available. However, 
one of the major ANN drawbacks is the long develop-
ment time and a good way to mitigate this problem is 
using RF instead. Although RF models showed slightly 
worse accuracy, they were a few times faster to train and 
outperformed ANN with processing speeds of around 
10 and 40 min.

It is plausible that a number of limitations could have 
influenced the results obtained. First, I developed and 
tested the models using only subsamples of all the avail-
able observations. Second, I did not include the contribu-
tion of hydrometeors in the output vector. Hydrometeors 
are products of the condensation or deposition of atmos-
pheric water vapor, such as rain, snow, fog, or clouds. It 
is widely assumed that hydrometeors have a negligible 
impact on GNSS signal. However, the more recent evi-
dence (Yang and Zou 2012; Zou et al. 2012; Lasota et al. 
2018) emphasizes their importance in GNSS retrievals, 
where ignoring their contribution may lead to the signifi-
cant errors of derived water vapor profiles. An additional 

possible source of the error may arise from the used fea-
tures. Selection and extraction of relevant and independ-
ent features play a key role in ML models’ training and 
can improve their speed and accuracy. Here, the features 
set consisted of the refractivity/bending angle profile 
and latitude, month, and hour of the RO event. Bonafoni 
et al. (2009) trained two separate ANN for vegetation and 
desert areas, which resulted in different model accuracy. 
As also presented in the comparisons between retrievals 
over land and oceans, different hemispheres and months, 
and indirectly in the validation with the RAOBs, exten-
sion of the feature set by the information about surface/
land cover and elimination of less important characteris-
tics should be undertaken in the next study. Furthermore, 
future work will concentrate on the detection of severe 
weather events, such as extratropical storms, heavy pre-
cipitation, or tropical cyclones and training appropriate 
ML models. Eventually, to further my research, I plan to 
exploit convolutional neural networks, which take into 
account spatial relationships, which may have a signifi-
cant contribution to tropospheric profiling.
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