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Abstract 

In this paper, we perform the numerical modelling of lower-band VLF chorus in the earth’s magnetosphere. Assum-
ing parallel propagation the 1d3v code has one spatial dimension z along the ambient magnetic field, which has 
a parabolic z dependence about the equator. The method used is Vlasov Hybrid Simulation (VHS) also known in 
the literature as the method of Kinetic Phase Point Trajectories (Nunn in Computer Physics Comms 60:1–25, 1990, 
J Computational Phys 108(1):180–196, 1993; Kazeminezhad et al. in Phys Rev E67:026704, 2003). The method is 
straightforward and easy to program, and robust against distribution function filamentation. Importantly, VHS does 
not invoke unphysical smoothing of the distribution function. Previous versions of the VLF/VHS code had a nar-
row bandwidth ~ 100 Hz, which enabled simulation of a wide variety of discrete triggered emissions. The present 
quasi-broadband VHS code has a bandwidth of ~ 3000 Hz, which is far more realistic for the simulation of chorus in 
its entirety. Further, the quasi-broadband code does not require artificial saturation, and does not need to employ 
matched filtering to accommodate large spatial frequency gradients. The aim of this paper which has been achieved 
is to produce VLF chorus Vlasov simulations employing a systematic variety of triggering input signals, namely key 
down, single pulse, PLHR, and broadband hiss.
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Introduction
VLF chorus is currently a topic of considerable scientific 
interest. It presents as a strong self-sustaining whistler 
mode emission, normally found at dusk/dawn outside the 
plasmapause. The generation region is near the equator 
of the earth’s magnetosphere (Omura et al. 2009; Li et al. 
2013) and chorus is observed on satellites, for example 
Cluster (Santolik et  al. 2003; Santolik & Gurnett 2003), 
the Van Allen probes (Fu et al. 2014), the THEMIS mis-
sion (Bortnik et al, 2011; Li et al. 2013) or on the ground 
(Manninen et al. 2012; Macotela et al. 2019). Lower-band 
chorus waves have a main population that is quasi-par-
allel, but also a finite population of very oblique waves 
propagating close to the resonance cone angle (Agapitov 
et al. 2018; Li et al. 2013). Chorus normally has the form 
of a sequence of rising tone emissions, which may be nar-
row band and well-spaced or swishy and closely packed. 
Falling tone chorus is less frequently observed.

Numerous satellite observations suggest equatorial 
generation (Santolik et  al. 2003) and parallel or quasi-
parallel propagation for lower-band chorus. Some satel-
lite observations suggest though that upper band chorus 
has a wide angle between the k vector and local magnetic 
field. (Bortnik et al. 2007).

Chorus is usually divided into two bands, lower-band 
chorus below half the equatorial electron gyrofrequency, 
and upper band chorus above it (Li et al. 2019; Tsurutani 
and Smith 1974). In a recent detailed study (Teng et  al. 
2019), it was found that about 20% of events showed both 
lower and upper band chorus present with a distinct gap 

at half the gyrofrequency. Some 6% of events showed 
both bands present with no gap, and the remaining 
events were lower band only. Various theories have been 
advanced to explain this gap (Omura et al. 2009; Ratcliffe 
& Watt 2017), but to date there is no totally convincing 
explanation. The gap is very precisely located and one 
would be looking for singular behaviour at half gyrofre-
quency in either propagation or wave–particle interac-
tion dynamics.

The generation mechanism
Most historical theoretical and numerical work on cho-
rus generation has assumed propagation parallel to the 
ambient magnetic field and would therefore be mainly 
applicable to lower-band chorus. Nearly all theoretical 
analyses assume that the VLF wavefield is narrow band, 
and it should be born in mind that the presence of side-
bands or finite bandwidth will complicate the theory con-
siderably. It is widely accepted that the generation process 
involves electron cyclotron resonance with the keV (up to 
MeV) hot electron population. The free energy required 
for generation of self-sustaining emissions derives from 
the hot electron distribution anisotropy, typically mod-
elled as a bi-Maxwellian possibly with added loss cone. 
(Kennel & Petschek 1966).

A useful review of early research on nonlinear wave 
generation will be found in Omura et  al. (1991). The 
complex spectral forms of chorus strongly imply that the 
wave–particle interaction process is fully nonlinear. The 
basic nonlinear process involved was expounded in Nunn 

Graphical Abstract



Page 3 of 16Nunn ﻿Earth, Planets and Space          (2021) 73:222 	

(1974), and is nonlinear phase trapping of cyclotron res-
onant keV electrons in an inhomogeneous medium. A 
fully relativistic derivation of nonlinear resonant particle 
dynamics will be found in Omura et al. (2009).

Assuming parallel wave propagation, we define ψ as 
being the angle between the perpendicular velocity vec-
tor of a resonant electron and the perpendicular E field 
of the VLF wavefield, both vectors being perpendicular 
to the ambient field. It may then be shown that ψ obeys 
a pendulum equation with a constant force term S as 
follows:

where z is the coordinate along the field line and S(z,t) 
is the so-called collective inhomogeneity factor, which 
has terms, in order of importance, in ambient magnetic 
field gradient, frequency sweep rate and gradient of cold 
plasma density:

Here, Bw is the local magnitude of the wave B field, and 
Bo(z) is the background magnetic field.

The quantity ωTR is the well-known trapping frequency 
or frequency of oscillation of electrons in the potential 
trap and is given by

The solution to Eq. 1 is well known and has been often 
given in the literature (Nunn 1974). Full relativistic anal-
ysis will be found in Omura et  al. (2009). Here, we will 
emphasise important aspects of the problem. If |S|> 1 
inhomogeneity is too strong, and trapping will not be 
allowed. Electrons will sweep right through resonance—
the so-called passing particles—and the problem will be 
far less nonlinear than the trapped particles and closely 
linear. This is because for passing particles interaction 
time with the wavefield is far less. For |S|< 1 electrons 
may be trapped—and they remain in resonance with the 
wave and relative phase ψ oscillates about the phase lock-
ing angle cos−1S.

The conditions for such motion to be nonlinear are as 
follows. Not only must |S|< 1, but in the frame of the par-
ticle this must be satisfied for at least a trapping period. 
We also require that S itself is slowly varying on a time 
scale of the trapping period. If not then particle motion 
will be far more complex and not described by the above 
model.

Stable trapping in an inhomogeneous medium has 
profound implications for resonant particle distribution 
function, resonant particle current and thus nonlinear 
growth rates. For trapping times greater than a trap-
ping period trapped electrons undergo large changes in 

(1)d2�/dt2 + ω2
TR[ cos�− S(z, t) ] = 0,

(2)S = 1/Bw[A dBo/dz + C df /dt + D dNe/dz].

(3)ω2
TR = ek BwV⊥/m.

invariants energy and magnetic moment, and they are 
dragged through invariant space. By application of Liou-
ville’s theorem we then expect to see a HOLE or a HILL 
in distribution function in phase space corresponding 
to the trap location as described in Omura et al. (2009). 
Now for rising frequency VLF emissions and rising cho-
rus, the normal situation in the generation region is 
S < 0. Since the generation region is located at the equa-
tor where ambient field gradient is of order zero, then we 
expect S < 0 from the inhomogeneity due to the positive 
frequency sweep rate. We also require wave amplitude 
to be above the threshold for nonlinear growth (Omura 
et al. 2009). With negative inhomogeneity, trapped parti-
cles undergo increases in energy and magnetic moment. 
Whether this gives a hole or a hill in distribution func-
tion depends of course on the shape of the unperturbed 
distribution function F0. For a positive linear cyclotron 
growth rate, it may be shown that S < 0 will give a hole in 
distribution function. The depth of the hole will depend 
on trapping time and the exact shape of F0. It must be 
realised that while some electrons remain trapped, others 
called passing particles stream right through resonance. 
Such particles undergo smaller changes in energy and 
magnetic moment, but there are far more passing par-
ticles than trapped and the total energy exchange with 
passing particles is of opposite sign to that of trapped 
particles and significant. This matter was examined in 
detail by Shklyar & Matsumoto (2009), who compared 
the contribution to nonlinear growth from trapped and 
passing particles.

The resonant particle currents Jr (z,t) and Ji (z,t)
The resonant particle current is evaluated from the famil-
iar plasma theoretic expression which is the integral over 
velocity space of –ev times the distribution function 
F(v,r):

Reference will be seen in the literature to ‘parti-
cle bunching current’ (Helliwell 1967). In phase space 
according to Liouville’s theorem particles do not bunch, 
since particle density in phase space following a phase 
trajectory is conserved. This is true in the presence of a 
non-zero EM field. The concept of particle bunching as 
loosely defined in fact gives no indication of the result of 
the above integral and does not describe how the plasma 
current is produced.

The hill or hole in distribution function located at the 
particle trap in phase space will immediately give a size-
able nonlinear current, perpendicular to the ambient 
magnetic field, whose phase relative to the wave electric 
field will be controlled by the local inhomogeneity factor 

(4)J = −e

∫∫∫

vF(v, r)dv.
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S (z, t) and hence will be either cos−1S or cos−1S + π. The 
component of current Jr (z,t) parallel to the wave electric 
field will give wave growth for a linearly unstable zero 
order distribution function, and this may be several times 
the linear growth rate. The other component Ji(z,t) paral-
lel to the wave B field will modify wave phase and will be 
responsible for the sweeping frequency characteristic of 
individual chorus elements. These current fields will be 
controlled by the trapping dynamics in the inhomogene-
ous medium and will have a nonlinear dependence on the 
entire wave field and its history.

The inhomogeneity and in particular the parabolic 
variation of B0(z) about the equator are absolutely key 
in understanding the chorus problem. Simulations in a 
homogeneous medium will give quite different results. In 
a homogeneous medium nonlinear trapping will give rise 
to growth rate saturation, as opposed to the enhanced 
growth rates of the inhomogeneous case.

Most theoretical analyses of particle trapping dynamics 
make the assumption that S is constant in the frame of a 
resonant particle. This will give a rather simplified view of 
the actual particle motion. In a parabolically varying zero-
order magnetic field S will have a roughly linear variation 
with z and thus time in the resonant particle frame. Par-
ticles first become trapped downstream from the equator 
at a point where S = − 1. Moving towards the equator S 
increases to S = 0 and the trap steadily increases in size, 
drawing in new particles. If a wavefield exists upstream 
from the equator S increases towards S = 1 moving away 
from the equator, and trap size decreases forcing once 
trapped particles out of resonance.

Another complicating factor when considering reso-
nant particle motion comes from spectral broadening and 
sideband formation. It may be shown theoretically (Nunn 
1986) that in a nonlinear trapping situation, assuming an 
unstable plasma, the wavefield is upper sideband unstable 
and lower sideband stable if S < 0, and vice versa if S > 0. 
The separation of resonant sidebands is of the order of 
the trapping frequency. Sidebands will resonate with the 
motion of trapped particles and drive them out of reso-
nance. Where sidebands are of comparable amplitude to 
the main wave particle motion will become very complex 
and more chaotic in nature.

Numerical simulation of chorus generation—
previous work
The paper by Golkowski et  al. (2019) gives an excellent 
summary of active VLF experiments, and also compares 
various methodologies for the numerical simulation of 
VLF wave particle interactions. Previous simulations of 
VLF have used either PIC (particle in cell) methods or 
Vlasov methods. The PIC methodology is of course well 
known, widely used and a classical plasma simulation 

method. The essence of the method is as follows. The full 
set of Maxwell’s equations are solved on a spatial grid. 
The linear cold electron population may be dealt with 
analytically or included as part of the hot population. The 
hot electron population is represented by a large number 
of weighted electrons distributed through phase space in 
accordance with the initial zero order distribution func-
tion. At each timestep the current appertaining to each 
simulation particle is distributed to the nearest spatial 
grid points using area weighting or higher order algo-
rithm. This enables the spatial plasma current field to be 
computed and thus the forward push of the Maxwell set 
of equations.

The RISH group at Kyoto University and co-workers 
have developed over many years 1d3v PIC codes for the 
numerical simulation of VLF chorus generation (Katoh 
& Omura 2016; Hikishima et  al. 2009, 2010a, 2010b.). 
These codes have one spatial dimension and assume 
the VLF wave field is parallel propagating, a reasonable 
approximation at least for lower-band chorus. The zero-
order magnetic field has a parabolic variation about the 
equator. The simulation is of nonlinear electron cyclotron 
resonance only as Landau and higher order resonances 
do not occur. The codes are fully relativistic, rigorously 
broadband, and cover the entire hot electron distribution 
function. With PIC codes it is not possible to limit the 
distribution function to a finite range in parallel veloc-
ity corresponding to a finite VLF frequency bandwidth. 
If this is done, at the point where the distribution is 
abruptly cut off, real plasma instabilities will be invoked 
thus invalidating the simulation. However, in the case 
of the ingenious and excellent PIC df algorithm (Sydora 
2003; Tao et  al. 2017), this will not apply and advanced 
df PIC codes should be able to consider finite ranges in 
parallel velocity.

PIC codes are in principle noisy as compared to Vlasov 
methods (Denavit 1972) and they require a very large 
number of simulation particles (~ 1 billion) in order to 
accurately represent the plasma dynamics. Successful 
runs were performed in which an initial input broadband 
noise developed into rising chorus waveforms consist-
ing of a succession of rising elements. This represented 
the first chorus simulations using a fully broadband code. 
Although PIC methodology is computationally expensive 
PIC codes can be useful if one is investigating particle 
heating, diffusion and or particle precipitation, all very 
important issues (Hikishima et al. 2010b).

Thanks to use of greater computer power, the most 
recent 1D simulations with PIC code (Katoh and Omura 
2016) are able to use magnetospherically correct param-
eters. The results are certainly the best so far with broad-
band noise input triggering a clean sequence of rising 
frequency chorus elements. As of now these PIC codes 
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have been less successful in producing the less com-
mon falling chorus or hook shaped emissions. However, 
recently in realistic conditions falling tones have been 
simulated in a specific magnetic field gradient geometry. 
(Wu et al. 2020).

Successful simulations of chorus have been performed 
with the DAWN code (Tao et al. 2017). This code is PIC, 
but uses the dF method of Sydora 2003. The method is 
fully nonlinear, but particles are used to sample only the 
perturbed part of the distribution so it can significantly 
reduce the simulation noise. This method is very pow-
erful and greatly reduces the noise level of PIC codes. 
The DAWN code has successfully simulated chorus with 
chirping signals.

Mention should be made of recent 2d3v PIC simula-
tions of chorus generation in a dipole magnetic geom-
etry, with two spatial dimensions (Ke et al. 2017). These 
simulations have been very successful at simulating rising 
chorus generated at the equator in quasi-parallel mode 
and which becomes increasingly oblique as it propagates 
away from the equator.

Simulations of discrete VLF emissions have been made 
using the VHS method, which is the subject of this paper 
(Nunn et  al. 1997, 2009; Nunn & Omura, 2012; Omura 
and Nunn 2011). The VHS codes used were with a lim-
ited bandwidth of the order of several trapping frequen-
cies (~ 100  Hz bandwidth). A number of reasonable 
approximations are made, for example that group veloc-
ity remains constant over the bandwidth of the emission. 
The code can only simulate chorus if viewed as a suc-
cession of discrete emission events (Nunn et  al. 2009). 
The central frequency of the simulation is continuously 
shifted as the emission frequency rises or falls. Risers are 
preferred but with higher growth rates fallers or hooks 
may be produced. Furthermore, because the solution for 
a chorus element with sweeping frequency involves sub-
stantial spatial dependence of frequency it was necessary 
to employ matched filtering to accommodate this. It was 
also necessary to employ artificial saturation to prevent 
wave amplitudes from achieving very large values.

The current code, which we may call quasi-broadband 
VHS has an order of magnitude increase of bandwidth 
to 3  kHz, and may dispense with matched filtering and 
artificial saturation. In this sense it is far more effective at 
simulating true chorus.

The Vlasov Hybrid Simulation method
Vlasov Hybrid Simulation (VHS) is a completely general 
method for the numerical simulation of collision-free 
plasma, where it is desired to resolve the distribution 
function in phase space. The method was first devel-
oped for the VLF-triggered emission problem (Nunn 
1990, 1993). The excellent paper by Kazeminezhad et al. 

(2003) proposed an identical algorithm, but named it 
the Method of phase point trajectories. The latter paper 
concerns electrostatic waves and covers various stability 
aspects not considered in the VLF papers. It is well worth 
reading.

The basic methodology of VHS is as follows:

1.	 Define the phase space simulation box which may be 
a function of time. Employ a phase space grid within 
the box. The grid may be adaptive and have varying 
resolution within the box.

2.	 Fill the box with simulation particles (SPs) with a 
density at least 1/grid cell. The density may be greater 
than this. Particles need not be located at grid points 
at the start or subsequently.

3.	 Follow particle trajectories which is the same as the 
phase space trajectories continuously forwards in 
time. Applying Liouville’s theorem distribution func-
tion Fl for the lth particle will be known and a con-
stant value, being given by Fo at that particle’s phase 
point at the start of the simulation. Simulation par-
ticles are embedded in the Vlasov fluid, and act as 
markers conveying information, namely the value of 
F at that point in phase space.

4.	 In order to compute accurately the plasma charge/
current field on the spatial grid, we need F defined on 
the regular phase space grid. It is therefore necessary 
to interpolate distribution function F from simula-
tion particles onto the phase space grid. This process 
is fundamentally different from that of assignment of 
charge/current onto the nearest grid point, as occurs 
in PIC. The interpolation is easily achieved as follows. 
Using the area weighting coefficients αk (as in PIC) 
the product αk Fl is assigned to nearest grid points 
and the weighting coefficients themselves are also 
assigned. At each phase space grid point i the inter-
polant of F is then given by

where for each grid point i the sum j is over all SPs that lie 
in the adjacent cells. The reader may be concerned that 
some grid points will have no adjacent SPs and thus no 
value of F. Applying Liouville’s theorem to the assembly 
of particles which are the simulation particles it follows 
that density of simulation particles is conserved and par-
ticles do not bunch in phase space, in spite of references 
to ‘phase bunching’ in the literature (Helliwell, 1967). 
In this classic paper, a group of resonant particles were 
selected with the same energy and magnetic moment 
and equispaced gyrophase. It was found that as a result 
of a resonant wavefield the gyrophases of the particles 

(5)Fi =

∑

j αjFj
∑

j αj
,
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bunched. It is not clear how this influences the plasma 
physical problem which is based upon Maxwell’s equa-
tions and Liouville’s theorem. The well-known hole/peak 
in distribution function does not arise from any bunch-
ing process but is understood by a direct application of 
Liouville’s theorem. Particles are dragged through invari-
ant space and retain the phase space density appropriate 
to their start point. To the author’s knowledge no expres-
sion exists for a particle bunching current. By contrast 
the concept of phase trapping is well known and firmly 
based upon the particle equations of motion in an inho-
mogeneous medium. Trapped particles remain close to 
resonance for a long time, and the gyrophase relative to 
wave electric field oscillates about a phase locking angle 
dependent upon inhomogeneity.

We may argue this point also as follows. Liouville’s 
theorem concerns the interaction of a specified distribu-
tion of particles with a known wavefield. No considera-
tion of self-consistency between particle charge/current 
and field is involved. For the total distribution function 
or subset thereof it states that density in phase space ‘F’ 
is conserved following a particle trajectory. Now there 
are two distribution functions involved here. One is the 
distribution function appropriate to the plasma physical 
problem to hand. The other is the distribution of simu-
lation particles. This will normally be constant through-
out the simulation box. Applying Liouville’s theorem this 
distribution F will remain constant everywhere, except at 
the phase box boundary where Vlasov fluid is inflowing.

Particles move around in phase space maintaining a 
constant density. The VHS/VLF code in this paper con-
tinuously monitors occurrence of uncovered grid points 
and it is very low ~ 1/1000 with a particle density ~ 1.5 
per cell. Increasing particle density will quickly reduce 
this figure to vanishingly small values. Where missed grid 
points occur a value of F can be found by interpolating 
from neighbouring grid points. One place where uncov-
ered grid points occur is at the boundary of the phase 
box, where Vlasov fluid is flowing into the phase box. The 
VHS code must check boundary cells for absence of SP’s 
at every timestep. Where this is the case a new SP must 
be inserted and assigned the zero-order value of F. The 
new particles must be inserted carefully to avoid excess 
particle density in the incoming Vlasov fluid. Placing 
them in the centre of the boundary cells was found to be 
satisfactory. Note that here there is a further restriction 
on simulation timestep. Where Vlasov fluid is incom-
ing at the boundary a particle should not penetrate into 
the phase box by more than say 2 cells. The current code 
checks continuously for cells with no adjacent particles, 
and so if there is under density of SPs this will be flagged 
and the program halted. In many years of use the code 
has never halted in this way. Note that where Vlasov fluid 

has the value F = 0 it must still be represented by simula-
tion particles, otherwise unresolved distribution function 
fine structure will give serious errors. In the VLF chorus 
problem in an inhomogeneous magnetic field there is 
a very strong flux of Vlasov fluid into the phase box as 
particles drift into resonance with the wave due to the 
inhomogeneity.

It is worthwhile to compare VHS with other algo-
rithms. Although particles are followed continuously in 
time like PIC the algorithm is NOT the same as PIC as 
has been suggested. Application of Liouville’s theorem 
to these phase space trajectories imparts far more infor-
mation, namely the value of F, and allows the distribu-
tion function to be constructed. Indeed VHS resembles 
forward semi-Lagrangian more closely (Sonnendrucker 
et al. 1999; Besse & Sonnendrucker 2003), except the lat-
ter interpolates F back onto the phase space grid at each 
time-step and restarts trajectories at the grid points. 
This is not necessary, nor desirable as it results in non-
physical diffusion of the distribution function resulting 
from repeated interpolation onto the grid. VHS has the 
advantage that it is robust against distribution function 
filamentation, and can never produce negative distribu-
tion function. Distribution function fine structure is not 
resolved of course, but this has no effect on algorithm 
stability. VHS does not invoke unphysical diffusion of the 
distribution function, unlike conventional Vlasov meth-
ods (Cheng & Knorr 1976; Cheng 1977).

A detailed analysis of VHS algorithm stability will be 
found in Kazeminezhad et al, (2003). A separate 1D elec-
trostatic VHS demonstrator code has been written at 
Southampton University, and it shows that energy and 
particles are conserved to a high degree of accuracy. Inci-
dentally, in VHS codes particle density is not the num-
ber of simulation particles but the integral of F over the 
velocity space grid.

Excellent plasma simulations have been performed 
using the VHS method at North Western University 
in South Africa (Jenab & Brodin 2019). The important 
paper Killian et  al. (2018) presents a highly optimised 
parallelised code for the VHS simulations of electrostatic 
waves and the reader is referred to this.

The quasi‑broadband VHS VLF code
The quasi-broadband VHS/VLF code is a 1d3v simulation 
code with one spatial dimension for interaction between 
hot electrons (~ keV) and band-limited VLF waves, the 
assumption being that propagation is parallel to the 
ambient field direction. The ambient field is assumed to 
have a parabolic variation about the equator, as a func-
tion of coordinate z along the magnetic field. The field 
value at the equator and its spatial variation is appropri-
ate to the L = 5 field line.
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The nonlinear interaction takes place in the equatorial 
region. Well away from the equator, the large field gra-
dient prohibits trapping and also linear cyclotron growth 
rates fall off quickly as cyclotron resonance velocity rises. 
The spatial simulation box extends about 7000 km either 
side of the equator and covers the region where nonlin-
ear trapping is possible. Following each run it must be 
checked that the achieved wave amplitudes do not permit 
trapping outside the box.

The bandwidth of the simulation is about 3 kHz, cen-
tred on the base or central frequency, and the wave field 
is spatially band pass filtered to this band, by DFT/IDFT 
(discrete Fourier transform and its inverse). In response 
to changing wave spectrum, the band itself is moveable. 
The phase box dimension Vz is centred on the local reso-
nance velocity at the current average frequency and has a 
width of at least 3 trapping widths, and must include the 
range of resonance velocities appropriate to the chosen 
simulation bandwidth. Of course if the average frequency 
changes, the range of Vz in the phase box will incremen-
tally change. Only particles within the phase box, and 
with the prescribed range of Vz contribute to the nonlin-
ear current.

The axes of the phase box are coordinates z, Vz, and 
gyro phase angle Ψ between the perpendicular velocity 
vector and wave electric field. The number of grid points 
along each axis are Nz = 2048 in the z direction, Nv = 500 
in the Vz direction and NΨ = 20 in gyro phase. The per-
pendicular velocity coordinate V⊥ is relatively unimpor-
tant. The contribution to nonlinear growth comes from 
a relatively narrow range of perpendicular velocities 
centred on a pitch angle ~ 50 degrees. It is a reasonable 
approximation to consider each value of V⊥ as a sepa-
rate 1d2v VHS simulation, whence we may use quite a 
small number of V⊥ values NV⊥

  = 10. Alternatively, one 
can have a larger value NV⊥

 = 30 say and run a 1d3v VHS 
simulation. With NV⊥

 = 10 the total simulation particle 
count comes to 300 M, assuming a density of 1.5 parti-
cles per phase space cell. Note that the relatively coarse 
resolution in V⊥ is not permitted with PIC codes, which 
must use a full range of perpendicular velocities. How-
ever, where particle precipitation and heating are issues, 
PIC codes are very useful. This code is described as being 
quasi-broadband in that field push is achieved using the 
narrow band field equation appropriate to the trigger-
ing frequency rather than formally solving Maxwell’s 
equations. This approximation is reasonable and avoids 
explicit computation of Maxwell’s equations. Regarding 
the integration of the particle phase space trajectories, a 
simple leap frog scheme is used.

The simulation is initiated by introducing a trigger-
ing signal at the upstream boundary z = − 7000 km. The 
initiating signal may be a pulse or key down, and consist 

of either a CW single-frequency tone, or any number of 
frequencies. Broadband input is represented by a large 
number ~ 160 of single-frequency waves with small fre-
quency separation and random phases. The broadband 
signal generated by the beginning and end of a pulse is 
removed by the filtering process in the code. In any case, 
the pulse ends are rounded off with an exponential shape 
function.

In this paper, we assume the zero-order distribution 
function Fo is multiple bi-Maxwellian with anisotropy 
factor A = 2.0 according to the usual definition as stated 
in Kennel and Petschek 1966. This is linearly unstable 
to VLF waves and provides the free energy to drive the 
nonlinear instability. The magnitude of resonant particle 
fluxes is fixed by specifying the linear electron cyclotron 
growth rate at the equator at the mean (base) frequency.

The broadband field equation
It is of some interest to spell out how the wave field is for-
ward pushed in time through the broadband field equa-
tion. We assume parallel propagation coordinate z being 
the distance from the equator along the field line. There 
is no functional dependence upon coordinates x and y 
perpendicular to ambient field. We ignore small terms 
derived from duct curvature, duct inhomogeneity and 
ducting geometry. We first define wavefields perpendicu-
lar to the ambient magnetic field as

and for the nonlinear resonant particle current

and for the current due to the linear cold plasma

From Maxwell’s equations and the linear equation of 
motion of the cold plasma electrons, we may readily 
derive the differential equation governing the time devel-
opment of the complex electric field:

where Ω(z) is electron gyrofrequency and П(z) is elec-
tron plasma frequency. To develop a narrow band field 
equation, we now specify a base frequency ω normally 
the triggering or start frequency, but in the case of trig-
gered risers could be selected at the riser half way point. 
We now divide out the fast base phase to give complex 

(6)E⊥ = Ex + iEy;B⊥ = Bx + iBy,

(7)J⊥ = Jx + iJy,

(8)J⊥(cold) = Jx(cold)+ iJy(cold).

(9)

[

(

∂

∂t
− i�(z)

)[

∂2

∂z2
−

1

c2

∂2

∂t2

]

−

∏

(z)2

c2

∂

∂t

]

E⊥

= µ0

(

∂

∂t
− i�(z)

)

∂

∂t
J⊥,
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electric field F and nonlinear current G that are slowly 
varying functions of z and t:

It is now convenient to work in dimensionless units as 
follows:

Define ωb = Ωe(0)/2 as half the equatorial electron 
gyrofrequency  and  kb = Пe(0)/c then we de-dimen-
sionalise with respect to tunit = 1/ ωb and zunit = 1/kb., 
vunit = ωb/kb. The dimensionless base frequency is given 
by ω0 = ω/ωb and k0 = k/kb. The dimensionless complex 
wave amplitude R and dimensionless complex current I 
are given by

where ζ is the wave electric field phase relative to base 
phase. The dimensionless linear recursion relation now 
becomes

 
The dimensionless group velocity Vg is given by

 where in dimensionless units

 and

 
From Eqs.  9–17, we may derive the narrow band 

dimensionless field equation at frequency ω0 assuming 
amplitude R and current I are slowly varying with respect 
to z and t:

(10)ϕ0 = ωt −
z
∫ k

(

z′
)

dz′,

(11)E⊥ = H(z, t)eiϕ0 ,

(12)J⊥ = G(z, t)eiϕ0 .

(13)R =
eHkb

mω2
b

= |R|eiζ ,

I =
eGµ0

2mωbkb
,

(14)k20 =
geω0

2β − ω0
.

(15)Vg =
ω0(2β − ω0)

k0β
,

(16)β = B0(z)/B0(0) = 1+ 0.5χz2,

(17)ge = Ne(z)/Ne(0) = 1+ 0.5νz2.

(18)

[

∂

∂t
+ Vg (z,ω0)

∂

∂z

]

R(z, t) =

{

−ω0Vg (z,ω0)

k0(z,ω0)

}

I(z, t).

The physical significance of the terms in the above equa-
tion are as follows. The complex wave amplitude is 
advected at the local group velocity and updated by the 
complex current I. Any errors in the constant term in 
curly brackets will have no great significance as this only 
corresponds to a change in resonant particle flux.

To develop the quasi-broadband field equation, we now 
allow complex wave amplitude R to have a bandwidth 
of ± 1500  Hz centred on the base frequency. The field 
is low-pass filtered to this band by DFT/IDFT, as Fou-
rier components outside the band are not provided with 
resonant particles. We now ignore the z dependence of 
group velocity and use only the value of Vg at the base 
frequency and at the equator. This means Vg is a con-
stant, which ignores dispersion. The quasi-broadband 
field equation now becomes

Since Vg is a universal constant, the complex wave 
amplitude may be defined on the field grid with grid spac-
ing Vg dt, where dt is the simulation timestep. At each 
step the complex field is advanced by one grid point, and 
is updated by complex I, cross interpolated from a sepa-
rate grid on which particles and resonant particle current 
are defined. For the present runs timestep dt = 0.125 ms.

The broadband field equation is most accurate in the 
triggering phase when wave frequencies are close to the 
base frequency. Once chorus is triggered and wave fre-
quencies are quite a bit different from the base frequency 
group velocity becomes inaccurate though the essential 
physics of the nonlinear wave particle interaction process 
is retained.

Since the wavefield is filtered by DFT/IDFT it is of 
course possible to perform the field push in the spatial 
Fourier domain as in Eq.  20, where subscript n denotes 
the nth Fourier component:

In the actual code, the field is pushed using the time 
domain Eq. 19.

The resonant particle equations of motion
The basics of nonlinear wave–particle interaction 
between cyclotron resonant electrons and VLF waves has 
been extensively studied in the literature. In particular, 
the reader is referred to Katoh and Omura (2016) for a 
detailed study of the problem. Here, we summarise how 
the particle equations of motion are dealt with in this 
code.

(19)

[

∂

∂t
+ Vg (0,ω0)

∂

∂z

]

R(z, t) =

{

−ω0Vg (0,ω0)

k0(0,ω0)

}

I(z, t).

(20)

[

∂

∂t
+ Vg (0,ω0)ikn

]

Rn(t) =

{

−ω0Vg (0,ω0)

k0(0,ω0)

}

In(t).
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Defining a complex dimensionless perpendicular veloc-
ity vector by

we now define ψ as the gyrophase η relative to the base 
phase

In the above dimensionless units, the equations of 
motion become

where the dash symbol denotes d/dt. For perpendicular 
velocity we have

The rate of change of gyrophase relative to base phase 
is given by

where

where V* is the difference between parallel velocity and 
resonance velocity at the base frequency and its time 
derivative given by

where Q0(z) is factor due to the magnetic field inhomoge-
neity and cold plasma inhomogeneity:

Since the zero-order distribution function F0(μ,W) 
is a function of magnetic moment μ and energy W, the 
change in these invariants is of special significance:

The rate of change of particle energy W is easily shown 
to be

(21)Vx + iVy = V⊥ = |V⊥| e
iη,

(22)ψ = η − ϕ0.

(23)

v
′

z = z′′ = −

(

|R|k0

ω0

)

|V⊥| cos (ψ − ζ )−
V 2
⊥

2β

∂β

∂z
,

(24)

|V⊥|
′

= −

(

1−
k0Vz

ω0

)

|R| cos (ψ − ζ )+
|V⊥|Vz

2β

∂β

∂z
.

(25)ψ ′ = k0V
∗ = 2β − ω0 + k0Vz ,

(26)V∗ = Vz − Vres(z);Vres(z) = (ω0 − 2β)/k0(z),

(27)V ∗′ = −

(

|R|k0

ω0

)

|V⊥| cos (ψ − ζ )+ Q0(z),

(28)

Q0(z) = χz

[

3Vres

k0
− |V⊥|

2/2β

]

+ νz
[

V 2
res/2ge

]

.

(29)µ =
0.5|V⊥|

2

β
;W = 0.5

(

|V⊥|
2 + V 2

z

)

.

(30)W ′ = −|R||V⊥| cos(ψ − ζ ) = 0.5ω0µ
′,

which gives the rate of change of magnetic moment to 
a very good approximation. In integrating simulation 
particle trajectories, which are phase space trajectories, 
the code follows the variables gyrophase ψ, V*, inte-
grated energy change ΔW and hence integrated magnetic 
moment change Δμ. Also, the quantities |V⊥| and Vz are 
required and need to be tracked. Applying Liouville’s the-
orem the value of distribution function at the phase space 
point occupied by a particle is given by

In the framework of the current formalism, we may 
recover the classical trapping equation. Define Θ as the 
phase between the perpendicular velocity vector and the 
electric field vector

whence

where the dash symbol represents d/dt in the frame of 
the resonant particle. The cyclotron resonance velocity 
V*res is given by the equation below and will be the centre 
point of the dimension V* in the phase space box:

From Eqs. 27 and 33 we get the trapping equation

where S is the collective inhomogeneity factor as dis-
cussed extensively in Omura et al 2009 and Nunn 1990:

where < ζ’’ > represents a spatial average of the accelera-
tion of additional phase viewed in the frame of the reso-
nant particle. This quantity is related to frequency sweep 
rate through the approximate expression

Here ωTR is the well-known trapping frequency of fre-
quency of oscillation of electrons in the potential trap:

Following the development of the chorus equations 
in Omura et  al. 2009, we may use Eqs.  32–35 to derive 
an expression for frequency sweep rate. At the equator, 
which is the centre of the generating region, we have 
Q0(0) = 0 we may derive

(31)F = F0(µ−�µ, W −�W ).

(32)� = ψ − ζ

(33)�′ = k0V
∗ − ζ ′,

�′ = 0 ; V ∗
res =< ζ ′ > /k0.

(34)�′′ = ω2
TR( S − cos�),

(35)S =
(

k0Q0(z)− < ζ ′′ >
)

/ω2
TR,

(36)< ζ ′′ >=
(

1− Vres/Vg

)2
dω/dt.

(37)ω2
TR = |R|k20 |V⊥|/ω0.
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 We assume strong nonlinear trapping in the genera-
tion region. Nonlinear growth maximises at S = −  0.4, 
so we assume this value at the equator. We have applied 
this equation to the riser in Fig. 1 assuming an rms wave 
amplitude at the equator of 50pT, which gives a sweep 
rate + 2709 Hz/s, quite close to the observed sweep rate. 
It would thus seem that the chorus equations are use-
ful and valid and give a good estimator of sweep rate. It 
should be pointed out that Eq. 38 is not an exact science. 
Both trapping frequency and inhomogeneity are func-
tions of pitch angle, and inhomogeneity S probably does 
not have to be exactly − 0.4 at the equator.

Other researchers have developed theoretical expres-
sions for frequency sweep rate, namely Vomvoridis et al., 
1982, Omura et  al. (2008), and Demekhov and Trakht-
engerts (2008), all in good agreement with observations 
(Cully et al., 2011; Tao et al.2012; Nunn et al. 2009).

Results of the chorus simulations
The first run of the quasi-broadband VHS code will be of 
chorus triggered by weak hiss.

The data for this run are as follows. We assume L = 5 
and take realistic values for ambient plasma values as 
follows. We take an equatorial cold plasma density of 
5.4 electrons/cc., equatorial electron gyro frequency of 
6700 Hz and electron plasma frequency of 20869 Hz. The 
variation of ambient field Bo(z) about the equator is para-
bolic and given in MKS units by

(38)dω/dt = ω2
TR|S|/

(

1− Vres/Vg

)2
.

Bo(z) = Bo(0)
(

1+ az2
)

,

where a = 9 10–6 / (6370 L)2.
 The  cold plasma density has a weaker parabolic z 

dependence

 
The zero-order distribution function consists of 

two bi-Maxwellians, the first has T⊥  = 44  keV and T‖

= 15  keV, the second has T⊥ = 192  keV and T‖= 60  keV. 
The distribution function is linearly unstable with ani-
sotropy factor A ~ 2, and a linear equatorial growth rate 
at the start frequency of 130db/s. This growth rate cor-
responds to a ratio of hot electrons to cold electrons of 
Nh/Ne = 0.00521. The base frequency of the simulation is 
2010 Hz.

The triggering signal is introduced at z = − 7000 km 
and is broadband covering the range 1500–2500 Hz. It 
is represented by 160 CW signals with equal separation 
and random phases. The signal is introduced continu-
ously (key down) and is weak with an overall amplitude 
of 0.8pT.

The results of the simulation are presented in Fig.  1 
as a frequency–time spectrogram of the complex 
amplitude sequence at the exit of the spatial simula-
tion box at z = 7000  km. The spectrogram is derived 
from overlapping time DFTs with Hamming weight-
ing. The spectral power plotted is in units of pT 2  Hz 
−0.5. The same units are used throughout the paper. The 
start frequency of 2010 Hz is arbitrarily assigned and is 
below the frequency of maximum linear growth which 
is ~ 3  kHz. This gives better simulations than starting 
at the linear growth rate maximum. In reality chorus/
emission start frequencies may be determined as much 
by the availability of trigger signals as by the frequency 
of maximum growth. The frequency at which a rising 
emission stops is probably determined when the local 
linear growth rate falls below the threshold needed to 
produce a self-sustaining generation region (Nunn 
et al. 2009).

This simulation is of particular interest. The hiss band 
triggers a strong riser which then itself triggers a chorus 
sequence with realistic values of sweep rate of 2 kHz/s, 
element separation ~ 0.1  s. Note that the triggering 
hiss band does not figure in this plot as it is extremely 
weak. The achieved wave amplitudes are ~ 150pT. The 
quasi-broadband code does not require artificial satu-
ration probably due to the increased fine structure in 
the wavefield which considerably reduces the extent of 
nonlinear trapping and nonlinear growth.

Ne(z) = Ne(0)
(

1+ 0.3az2
)

.

Fig. 1  Spectrogram of the exit wavefield at z = 7000 km. It shows a 
simulation of narrow band chorus, triggered by a strong riser, which 
in turn is triggered by a weak hiss band
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Figure 2 shows a short segment of the output wave field 
in pT observed at z =  + 2000 km. It is seen that there is 
considerable fine structure with the output amplitude 
comprising a sequence of short wave packets of order 
5–10 ms in length. Five recent papers (Nunn et al. 2021; 
Zhang et al. 2021, 2020, 2018; Agapitov et al. 2013) com-
cern   satellite observations of lower-band VLF chorus 
structure and compare with VHS simulation results and 
results from PIC codes. The probability distribution of 
packet lengths and frequency sweep rates of individual 
sub packets showed very good agreement.

Our second run has all the same plasma data as before, 
but the triggering signal is a key down narrow band signal 
at 2010 Hz and an amplitude of 7pT as in the well known 
Siple VLF experiment (Helliwell  1983). Figure  3 shows 
the frequency–time spectrogram of the data sequence 
at the exit point z = 7000 km. It is seen that three strong 
risers are produced with time spacings ~ 500  ms. This 
is the time taken to create a generation region starting 
from the trigger signal. These risers have peak ampli-
tudes ~ 200pT and sweep rates of order 3 kHz/s. Interest-
ingly, the first riser has a small downward hook at the top, 
and the second riser shows bifurcation in which second-
ary emissions are triggered by the main emission. All the 
emissions reveal sideband structure with rather variable 
sideband separation ~ 50-200  Hz. Figure  4 gives a time 
snapshot of the riser generation region, plotting wave 
amplitude, current Jr in phase with wave electric field 
and current Ji in phase with wave magnetic field, all as 
functions of z. The unit of current is the linear in phase 
current at the equator at the trigger frequency and trig-
ger wave amplitude. The wave packet structure of the 
emission is clearly visible. The generation region is clearly 
located in the equatorial region, but the amplitude pro-
file extends upstream from the equator by some 2000 km. 
The resonant particle currents are both negative, where Jr 
gives nonlinear growth and Ji winds up the phase giving 
sweeping frequency. 

The third run has PLHR (Power line Harmonic radia-
tion) as input trigger signal, modelled as five keydown 
CW signals each of 8pT, with 50 Hz separation extend-
ing from 1835 to 2135 Hz. All the remaining plasma data 
are the same. Figure  5 presents the f/t spectrogram at 
z = 7000  km. Clearly a substantial signal is triggered off 
the top of the original 5 lines. This has the appearance of 
rising chorus with separation ~ 10 ms.

The fourth run is a simulation of an emission with an 
N shaped frequency profile. Figure  6 shows a ground 
observation in Northern Finland of an unusual emission 
with an N spectrogram consisting of a riser, followed by 
a faller, then a riser. This entire emission then undergoes 
two 2 hop reflections which show successive dispersion 
and spectral broadening.

We have been able to simulate an N emission, but 
have not attempted to replicate the plasma data of the 
observed event as the L shell and cold plasma density are 
not known.

Our simulation of the N emission uses the same plasma 
data as previously except that the linear growth rate at 
the equator at the start frequency of 2 kHz is increased 
to 380db/s. The zero-order distribution function is a sin-
gle bi-Maxwellian with T⊥ = 62 keV and T‖= 20 keV or an 
anisotropy factor A ~ 2. The initiating signal is a key down 
doublet consisting of 2 waves of 80pT and a separation 

Fig. 2  A plot of wave amplitude Bw in a zoomed segment of the 
previous event, at z = + 2000 km. This shows strong sideband activity. 
The output wavefield consists of a series of wave packets of variable 
length 10–20 ms

Fig. 3  Strong risers with separation 500 ms triggered by a CW key 
down signal of magnitude 7pT. Note the downward hook on riser 1 
and bifurcation on riser 2
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of 200 Hz. Figure 7 shows the f/t spectrogram of the data 
sequence at z = 7000  km. The initial activity is complex 
with a self-triggered riser which triggers a slow faller off 

its mid-point. The faller then triggers a steep riser fol-
lowed by a steep faller.

The main N event is triggered by the doublet at 2 kHz. 
This initial riser then becomes a faller. This is due to the 
very large growth rates at the turning frequency, caus-
ing the wave profile to creep upstream into the region 
occupied by a faller generation region. When the faller 
reaches the doublet frequency nonlinear trapping is com-
promised, and as a result of the reduced growth rate the 
wave profile slips downstream into the riser position, 
giving a riser. It might be noticed that the emissions go 
past the half-gyrofrequency, and there is no sign of a gap. 
All elements of the emission reveal substantial sideband 
structure, and appear to consist of steep falling elements 
stacked together.

The last run concerns development of spectral fine 
structure in hiss bands due to nonlinear wave particle 
interactions. It has been noted (Summers et  al. 2014) 
that VLF hiss bands often exhibit fine structure. This run 
has plasma data the same as in run 1, except we have a 
lower linear growth rate of 90db/s. This is low enough 

Fig. 4  Time snapshot of the generation region of a strong riser from the previous simulation. The graphs show wave amplitude, resonant particle 
current Jr in phase with the wave electric field (blue curve) and current Ji in phase with the wave magnetic field (green curve). Note the strong 
sideband activity. The overall shape of the current curves is as expected for trapping in a parabolic inhomogeneity. Although the generation region 
is in the equatorial zone, the wave profile extends upstream from the equator by some 2000 km

Fig. 5  Wave particle effects in PLHR radiation. The signal breaks up 
into rising elements with short risers at the top of the active band
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Fig. 6  Spectrogram of N-shaped VLF emission as observed at a receiving station in Northern Finland. Note the repeated reflections and dispersion 
of the N emission

Fig. 7  Spectrogram of simulation of VLF emission with N-shaped 
frequency–time profile. The equatorial linear growth rate is increased 
to a high-level 380db/s. The triggering wavefield is a strong key down 
doublet of amplitude 80pT, frequencies 2140 and 2340 Hz

Fig. 8  Nonlinear wave particle interaction effects in a strong hiss 
band of RMS amplitude 27pT. This results in spectral structuring in the 
form of a riser sequence. Linear growth rate of 90db/s is too small for 
full emission activity
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that full-scale triggering does not take place. The initial 
wavefield consists of a hiss band from 1500–2500 Hz rep-
resented by 80 CW waves with random phases. The RMS 
amplitude of the hiss band is 27pT and is large enough 
for nonlinear wpi effects to occur. Figure  8 shows the 
spectrogram of the exit field at z = 7000  km and shows 
substantial spectral structuring. This appears as stacked 
rising elements. This might resemble chorus but this is 
not a self-sustaining emission and should be regarded as 
spectral structure. Rudimentary risers appear at the band 
top, but there is insufficient growth rate for these to take 
off.

Conclusions
In this paper, we have simulated lower-band VLF chorus 
using the method of Vlasov Hybrid Simulation (VHS) 
also called the method of Kinetic Phase Point Trajectories 
(Kazeminezhad et al. 2003). Simulation particle trajecto-
ries are followed forwards in time continuously, which is 
synonymous with a phase space trajectory. From Liou-
ville’s theorem, distribution function F is then known at 
the phase points occupied by the particles. Interpola-
tion of distribution function to the phase space grid is 
achieved with a simple low-order interpolator which 
does not permit negative distribution function. Higher 
order interpolators are not necessary as the interpolation 
process is only required to calculate the charge/current 
fields which are the integrals of distribution function over 
velocity space. Continuous forward integration in time 
is only allowable because in phase space particles do not 
bunch and leave grid points devoid of simulation par-
ticles. The algorithm is very simple and easily encoded. 
The trickiest part to program is where Vlasov fluid flows 
into the simulation box and particles need to be inserted 
into the Vlasov fluid with appropriate density.

The VHS code has a finite bandwidth. The previous 
version had a fairly narrow bandwidth ~ 100  Hz or of 
the order of several trapping frequencies. The current 
version is quasi-broadband with a simulation band-
width ~ 3 kHz, which is achieved by increasing the range 
of parallel velocity and thus Nv. The wavefield is continu-
ously spatially band pass filtered to the simulation band 
by DFT/IDFT, in order to remove out of band field which 
is not provided with resonant particles. This is not done 
to enforce algorithm stability. This is in contrast to PIC 
codes which model the entire distribution function and 
do not filter the wavefield. The code is termed quasi-
broadband because it uses the narrow band field equa-
tion to advance the wavefield.

The narrow band version of the code can only model 
discrete VLF emissions, and also required artificial satu-
ration and use of matched filters to accommodate sub-
stantial spatial gradients of frequency and wave number. 

By contrast the current quasi-broadband version is able 
to properly simulate chorus and complex triggering 
events involving considerable bandwidth as well as the 
situation where the trigger signal is broadband hiss. This 
code does not use matched filters and saturates naturally.

In contrast, the excellent 1d3v PIC codes of Omura 
and co-workers and Tao and the 2D pic codes of Ke 
et  al. (2017) are all truly broadband and advance the 
wave field by solving Maxwell’s equations directly. The 
characteristic time of field variables is now wave period 
and these codes have a much smaller timestep than 
VHS and are thus much more expensive. However, suc-
cessful simulations of rising chorus have been achieved 
due to parallelisation of the codes.

Arguably, we have achieved our aim of simulat-
ing lower-band chorus with a Vlasov code. The quasi-
broadband version is far superior to the narrowband 
version and well suited to the chorus problem. Interest-
ingly, the nature of the triggered event does depend on 
the trigger signal and to a large extent on linear growth 
rate/energetic particle flux. We have demonstrated 
chorus triggered by weak hiss, spectral structuring of 
strong hiss due to nonlinear wave particle interaction 
and triggering of a sequence of risers by a keydown CW 
signal.

Much work remains to be done in this field. A fully 
broadband VHS code needs to be developed that solves 
Maxwell’s equations explicitly. This will be far more 
computationally intensive and require massively parallel 
code. Extension to 2D and even 3D codes is the next step 
and here Ke et al. (2017) have led the way. Vlasov codes 
are notoriously expensive at higher dimensionality but a 
2d3v VHS code should at least be possible, particularly if 
the perpendicular velocity dimension is simplified. Even-
tually one hopes to see codes with three spatial dimen-
sions. Modern PIC codes are very sophisticated and may 
be able to achieve this.
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