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Abstract 

We performed zircon U–Pb dating on the Pliocene Tanigawa-dake granites (Makihata and Tanigawa bodies) and the 
Cretaceous Minakami quartzdiorite, Northeast Japan Arc. Concordia ages were estimated to be 3.95 ± 0.11 Ma (± 2 
sigma) for the Makihata body, 3.18 ± 0.13 Ma and 3.32 ± 0.15 Ma for the Tanigawa body, and 109.4 ± 2.2 Ma for the 
Minakami quartzdiorite. The Minakami quartzdiorite is possibly correlated to the bedrock in the Ashio belt because 
the age of the Minakami quartzdiorite is consistent with the zircon U–Pb ages of the earliest Tadamigawa granites 
(107–62 Ma) which are distributed to the northeast of the Tanigawa-dake region and belong to the Ashio belt. All 
the zircon U–Pb ages of the Tanigawa-dake granites are older than the previously reported cooling ages, i.e., K–Ar 
ages and zircon fission-track ages, being consistent with their difference in closure temperature. On the basis of 
these results, we concluded that the intrusive ages of the Tanigawa-dake granites are ~ 4–3 Ma, which are among the 
youngest exposed plutons on Earth. The U–Pb ages of the Makihata body and the Tanigawa body are different signifi-
cantly in the 2 sigma error range. Thus, the Tanigawa body intruded later than the Makihata body by ~ 0.7 Myr.
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Introduction
Granites are formed generally at a crustal depth of a 
few to dozen kilometers. Therefore, the regions where 
young granites are exposed must have been uplifted and 
denuded at an extraordinary high rate. Granites younger 
than ~ 5 Ma have been discovered basically along conver-
gent plate boundaries (Harayama 1992). In the Japanese 
Islands, such young granites have been reported along 
arc–arc junctions in central Japan based on zircon U–Pb 
dating, e.g., 10–0.8 Ma in the Hida range, Northern Japan 
Alps (Ito et al. 2013) and ~ 4 Ma in the Tanzawa moun-
tains, Izu collision zone (Tani et al. 2010). The Tanigawa-
dake region, southern end of the Northeast Japan Arc, 
can also involve young granites (Sato 2016) consider-
ing the young cooling ages (Ganzawa and Kubota 1987; 
Kawano et al. 1992; Ohira and Honda 1999; Kubo et al. 
2013; Sato 2016) although this region is located away 
from the arc–arc junctions. For instance, Rb–Sr age of 
whole rock is estimated to be 5.27 ± 1.28 Ma representing 
formation age of the granite (Ohira et al. 1998; Ohira and 
Honda 1999). Biotite K–Ar ages are 3.9–3.1 Ma (Kawano 
et  al. 1992; Sato 2016), whose closure temperature is 
350–400  °C (Harrison et  al. 1985; Grove and Harrison 

1996). Zircon fission-track ages are 3.3–2.9  Ma (Ohira 
and Honda 1999), whose closure temperature is 250–
350 °C (Yamada et al. 2007; Ketcham 2019). However, the 
previous studies have two problems to estimate the intru-
sive age: (1) Rb–Sr age was obtained only from a single 
locality and has a large error, and (2) biotite K–Ar ages 
and zircon fission-track ages are cooling ages, probably 
younger than the intrusive ages. Thus, this study aims to 
estimate the reliable intrusive ages. We collected samples 
from the intrusive bodies and applied zircon U–Pb dat-
ing, as well as the late Cretaceous granites intruded by 
the young plutons.

Geology and sampling
The Tanigawa-dake area is located on the back-arc side 
of the Northeast Japan Arc. Mt. Tanigawa-dake (1977 m 
high) is a non-volcanic mountain surrounded by Qua-
ternary volcanoes, such as, Mt. Naeba, Mt. Iiji and Mt. 
Hotaka (Fig. 1). Coastal areas of the Sea of Japan, includ-
ing the Tanigawa-dake area, is one of the heaviest snow 
areas in the world (e.g., Ueda et al. 2015). In addition, gla-
cial landforms formed at the last glacial period are dis-
tributed in the Tanigawa-dake and adjacent mountains 
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(Koaze 2002). Therefore, although the uplift mechanism 
is not well-known, the Tanigawa-dake region is expected 
to be denuded rapidly enough to expose the Pliocene 
plutons.

Lithology of the Tanigawa-dake area consists mainly 
of Cretaceous to Paleogene granitoids, late Miocene to 
Pliocene granitoids, and Miocene to Quaternary vol-
canic rocks (Sato 2016: Fig. 1). The late Miocene to Pli-
ocene granites are called the Tanigawa-dake granites, 
being subdivided into three bodies, i.e., the Makihata 
body, the Tanigawa body, and the Akayu body, from 
east to west (Chihara et al. 1981). The Makihata body 
and the Tanigawa body are exposed on the eastern and 
western sides of Mt. Tanigawa-dake, respectively. The 
Akayu body is distributed on the southern side of Mt. 
Naeba. The late Cretaceous plutonic rock is called the 
Minakami quartzdiorite (Kubo et  al. 2013; Sato 2016) 

which is distributed to the southeast of Mt. Tanigawa-
dake. In the previous studies, these rocks were dated 
based on fission-track dating of zircon and apatite, K–
Ar dating of biotite and whole rock, and Rb–Sr dating 
of whole rock. The biotite K–Ar (3.9–3.1 Ma; Kawano 
et  al 1992; Sato, 2016) and zircon fission-track ages 
(3.3–2.9 Ma; Ohira et al. 1998; Ohira and Honda 1999) 
are consistent with each other within error range of 2 
sigma regardless of location. Therefore, cooling ages of 
the Tanigawa-dake granites were spatially uniformed 
at ~ 250–400 °C. However, thermal histories above the 
temperature range were not well-known, including the 
timing of the intrusion of the Tanigawa-dake granites. 
In this study, for obtaining clearly intrusive ages of the 
Tanigawa-dake granites and intruded granites, we col-
lected 4 rock samples: TNG20-03 and TNG20-10 from 
the Tanigawa body, TNG20-05 from the Makihata 

Fig. 1  Index map of the study area. The geologic map was modified from Sato (2016) and Geological Survey of Japan web page (https://​gbank.​gsj.​
jp/​geona​vi/​geona​vi.​php#​11,36.​83525​,138.​87626). Circle points denote sampling localities. Colored circles denote sampling localities in this study. 
Sampling sites of the previous studies are shown by the following symbols. Filled square: K–Ar ages of biotite (Kawano et al. 1992; Sato 2016; Shibata 
et al. 1984), open squares: K–Ar ages of whole rock (Kubo et al. 2013), filled inverted triangles: fission-track ages of zircon (Ohira et al. 1998; Ohira 
and Honda 1999). Note that the sites of TNG20-10 indicated by a red circle overlap the localities of zircon fission-track and biotite K–Ar ages of the 
previous researches (Kawano et al. 1992; Ohira et al. 1998; Ohira and Honda 1999; Sato 2016). Similarly, the site of TNG20-09 shown by a navy circle 
overlap the locality of K–Ar age of the whole rock (Kubo et al. 2013)

https://gbank.gsj.jp/geonavi/geonavi.php#11,36.83525,138.87626
https://gbank.gsj.jp/geonavi/geonavi.php#11,36.83525,138.87626
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body, and TNG20-09 from the Minakami quartzdiorite 
(Fig. 1, Table 1).

U–Pb zircon dating method
Zircon grains were separated from the granitoid sam-
ples by crushing, sieving, panning, magnetic separation 
and heavy liquid techniques. The zircon grains were 
mounted in resin (SpeciFix, Struers ApS, Denmark) 
and then used for cathodoluminescence (CL) observa-
tion and U–Pb isotopic analysis using field-emission 
electron probe microanalyzer (FE-EPMA, JEOL JXA-
8530F) and multiple collector inductively coupled 
plasma mass spectrometer (Neptune-Plus, Thermo 
Fisher Scientific, Bremen, Germany) with an excimer 
laser system (Analyte G2; Photon Machines, Redmond, 
WA, USA) (LA-MC-ICP-MS), respectively, at Tono 
Geoscience Center, JAEA. Elemental fractionation and 
instrumental mass bias on 206Pb/238U, 207Pb/206Pb ratios 
were corrected using the measured isotope ratio of 
the 91,500 zircon (Wiedenbeck et al. 1995) as primary 
standard with a standard-sample bracketing approach. 
The OD-3 zircon (Iwano et al., 2013) was used as sec-
ondary standard material for age quality control. The 
details of analytical setting are summarized in Addi-
tional file 1: Table S1. The analytical spots of unknowns 
were determined based on the growth structures of 
zircons observed by CL images (Fig.  2); the structures 
show oscillatory zoning patterns (e.g., 1-TNG20-
05–01, 1-TNG20-09–04) or homogeneous textures 
(e.g., 1-TNG20-03–13, TNG20-10–08). The zircon 
grains were measured for each of the 4 samples, and 
the results are summarized in Table  1 (for the details, 
see also Additional file  2: Table  S2). In this paper, the 
data were defined as ‘concordant’ when overlapping 
the concordia curve on a concordia diagram within 
error range of 1sigma. Isoplot software ver. 4.15 (Lud-
wig 2012) was used to produce the concordia diagrams 

and the concordia ages (2 sigma-weighted mean age of 
207Pb/235U and 206Pb/238U isotopes; Ludwig, 1998) using 
the ‘concordant’ data (Fig. 2).

Results and geo‑/thermo‑chronologic 
interpretation
Summaries of the dating results are shown in Table 1 and 
Fig. 2; uncertainties of the ages indicate 2 sigma. Zircon 
U–Pb ages of OD-3 (secondary standard) were com-
puted to be 33.4 ± 2.8 Ma, 33.1 ± 1.8 Ma, 32.9 ± 2.1 Ma, 
32.0 ± 2.0  Ma. These ages are consistent with the refer-
ence age (33.0 ± 0.1  Ma, 2 sigma; Iwano et  al. 2013) 
within the 2 sigma error range.

The concordia ages were calculated from 30 zircon 
grains for TNG20-05, 29 zircon grains for TNG20-03 
and TNG20-09, and 20 zircon grains for TNG20-10. 
One discordant grain was identified in TNG20-03 and 
TNG20-09, respectively, which was removed from the 
concordia age calculation. Consequently, the concordia 
ages were calculated to be 3.18 ± 0.13  Ma for TNG20-
03, 3.95 ± 0.11  Ma for TNG20-05, 3.32 ± 0.15  Ma for 
TNG20-10 and 109.4 ± 2.2 Ma for TNG20-09.

The zircon U–Pb ages obtained in this study were com-
pared with the reported cooling ages, i.e., K–Ar ages of 
biotite and fission-track ages of zircon. The comparison 
did not include the Rb–Sr age of whole rock and K–Ar age 
of whole rock because the sampling point of Rb–Sr age 
is unknown and the closure temperature of the two dat-
ing methods cannot be defined. The reported ages of the 
Tanigawa-dake granites are 3.9–3.1 Ma based on biotite K–
Ar dating (Kawano et al. 1992; Sato 2016) and 3.3–2.9 Ma 
based on zircon fission-track dating (Ohira et al. 1998). The 
obtained zircon U–Pb ages are consistent with the reported 
ages given the higher closure temperature (> 900ºC; Cher-
niak and Watson 2000). Namely, zircon U–Pb ages are 
coincident with or older than the reported ages close to 
each sampling locality within the error range of 2 sigma.

Table 1  Summary of dating results

The reference age of OD-3 is 33.0 ± 0.1 Ma (± 2 sigma) (Iwano et al. 2013)

Body name Sample Lithology Locality U–Pb ages (Ma) Number 
of grains

Longitude Latitude Concordia Age  ± 2 sigma

Tanigawa TNG20-03 Granodiorite 138°47′39.93"E 36°48′28.31"N 3.18 0.13 29

Makihata TNG20-05 Porphyritic granites 138°57′7.45"E 36°50′27.19"N 3.95 0.11 30

Minakami TNG20-09 Quartzdiorite 138°58′34.44"E 36°47′6.50"N 109.4 2.2 29

Tanigawa TNG20-10 Granodiorite 138°52′16.74"E 36°52′5.04"N 3.32 0.15 20

OD-3-A 33.4 2.8 4

OD-3-B 33.1 1.8 6

OD-3-C 32.9 2.1 3

OD-3-D 32.0 2.0 3
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For the Minakami quartzdiorite, the K–Ar age of whole 
rock was estimated at ~ 70 Ma (Kubo et al. 2013), which 
is the only geochronologic datum reported previously. 
The zircon U–Pb age is older than the K–Ar age of whole 
rock by 40 Myr.

Geological implication
Based on the zircon U–Pb age of TNG20-09, the 
Minakami quartzdiorite might be correlated with the 
Tadamigawa granites. The Tadamigawa granites are 
located to the northeast of Mt. Tanigawa-dake, belonging 
to the Ashio belt. The Minakami quartzdiorite age is con-
sistent with the oldest zircon U–Pb age of the Tadami-
gawa granites (106.7 ± 0.6  Ma; 95% confidence interval: 
Wakasugi et al. 2020) within the error range of 2 sigma. 
As a result, the igneous activity to form the Minakami 
quartzdiorite is compared to the first igneous event to 
form the Tadamigawa granites. Namely, the Minakami 
quartzdiorite can be an associated body as the bedrock 
distributed in Ashio belt.

According to zircon U–Pb ages of TNG20-03, TNG20-
05 and TNG20-10, the Tanigawa body is considered to 
have intruded after the Makihata body. The intrusion 
age for the Tanigawa body was estimated to ~ 3.3–3.2 Ma 
because the zircon U–Pb ages of TNG20-03 and TNG20-
10 in the Tanigawa body are consistent within error 
range of 2 sigma. On the other hand, zircon U–Pb age of 
the Makihata body, TNG20-05, is significantly older than 
those of the Tanigawa body with error range of 2 sigma. 
Therefore, the Tanigawa body could have intruded 0.7 
Myr later than the Makihata body. The Tanigawa-dake 
granites were estimated to be formed by at least two 
magmatism.

On the other hand, the previously reported cooling 
ages, i.e., biotite K–Ar ages and zircon fission-track ages, 
are not significantly different for Makihata and Tanigawa 
bodies despite the different intrusive ages. The two pos-
sible reasons follow below: (1) the biotite K–Ar and zir-
con fission-track ages of the Makihata body were reset by 
the thermal effect of the intrusion of the Tanigawa body, 

2-TNG20-03-27

Fig. 2  The concordia diagrams and the cathodoluminescence images. The diagrams were drawn by using Isoplot 4.15 (Ludwig 2012). In the 
concordia diagrams, red solid circles indicate concordant dates and blue open circles mean discordant dates within the error range of 1 sigma. 
The heavy line circles are the concordia ages with 2 sigma errors, calculated from the concordant data. The discordant data of TNG20-09 are not 
displayed because it is away from the concordant curve. The red open circles in the CL images signify the analytical spots
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and (2) the Makihata body was more slowly cooled than 
the Tanigawa body from the intrusion to ~ 250–400ºC. 
In either case, the Tanigawa body and the Makihata 
body might have experienced different cooling histories 
above ~ 400 °C.

Conclusion
To determine the intrusive ages, a sequence of zircon 
U–Pb dating was performed for the Pliocene gran-
ites at 3 localities and late Cretaceous quartzdiorite at 
1 locality in the Tanigawa-dake area. The ages of the 
Tanigawa body are 3.18 ± 0.13  Ma for TNG20-03 and 
3.32 ± 0.15  Ma for TNG20-10, the age of the Maki-
hata body is 3.95 ± 0.11  Ma for TNG20-05, and the 
age of the Minakami quartzdiorite is 109.4 ± 2.2  Ma 
for TNG20-09. From these results, the age of the 
Minakami quartzdiorite is considered to correspond 
to the Tadamigawa granite, bedrock of the Ashio belts. 
Additionally, the Makihata body intruded earlier than 
the Tanigawa body by 0.7 Myr. Thus, the Tanigawa-
dake granites are estimated to be formed by at least two 
times of magmatism, being among the youngest plu-
tons exposed on Earth.
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