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Abstract 

The Xianshuihe Fault Zone is one of the most historically seismically active regions in mainland China. However, the 
seismicity along this fault zone has been quiescent for the past 40 years, since the Daofu M6.9 earthquake in 1981. 
Understanding its current deformation patterns and fault coupling characteristics is of great significance to estimate 
the potential risk of strong earthquakes. In this study, we analyzed the dynamic deformation and fault coupling 
characteristics along the Xianshuihe Fault Zone using Global Navigation Satellite System (GNSS) data for 1999–2007 
and 2016–2020. The results show that the deformation pattern of the Xianshuihe fault zone underwent a dynamic 
adjustment after the 2008 Wenchuan Mw7.9 and 2013 Lushan Mw6.6 earthquakes, i.e., the maximum shear strain accu-
mulation rates of the Luhuo and Daofu sections significantly decreased from 6.0 × 10–8/a to 3.2 × 10–8/a, while that of 
the southeastern segment (i.e., Kangding and Moxi sections) increased from 4.5 × 10–8/a to 6.2 × 10–8/a. Additionally, 
the slip rate and deformation width of the Xianshuihe Fault Zone also changed during these two periods. Combined 
with the near-field cross-fault observation data, we suggest that the surrounding strong earthquakes Wenchuan and 
Lushan had evident differential impacts on the deformation pattern of the Xianshuihe Fault Zone. The fault-coupling 
inversion results show that the locking degree of the Xianshuihe Fault Zone continued to increase after the Wen-
chuan and Lushan earthquakes, especially the Qianning and Moxi sections increased significantly, with an average 
coupling coefficient of greater than 0.9 and left-lateral slip-rate deficits of ~ 5 mm/a and ~ 8 mm/a, respectively. In 
contrast, the locking degree of the Kangding section decreased with almost no slip-rate deficit, which is in a state of 
creeping status. The analysis of the recent rupture history and strain accumulation characteristics of the Xianshuihe 
Fault Zone indicates that both the Qianning and Moxi sections have a high seismic potential for the next strong earth-
quake in the Xianshuihe Fault Zone.
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Introduction
The Xianshuihe Fault Zone, located in the southeastern 
margin of the Tibetan Plateau, is a block boundary fault 
that plays a significant role in accommodating the Late 
Cenozoic crustal deformation of the eastern Tibetan Pla-
teau (Wang et  al. 1998; Tapponnier et  al. 1982; Avouac 
and Tapponnier 1993). This fault is characterized by a 

high left-lateral strike–slip rate and frequent seismic 
activity. Neotectonic and geodetic studies have esti-
mated that the left-lateral slip on the northwestern and 
southeastern segments of the Xianshuihe Fault are 
approximately 15 ± 5  mm/a and 5–9  mm/a (Allen et  al. 
1991; Gan et al. 2007; Wang et al. 2009; Wang and Shen 
2020; Ji et al. 2020). In the past ~ 300 years, at least eight 
M ≥ 7.0 earthquakes and fifteen M ≥ 6.5 earthquakes ini-
tiated in the Xianshuihe Fault Zone (Wen et al. 2008; Yi 
et al. 2015). However, the strong seismic activity on the 
Xianshuihe Fault Zone has been relatively quiescent 

Open Access

*Correspondence:  chdqyw@126.com
1 The First Monitoring and Application Center, CEA, Tianjin 300180, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8251-4838
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-022-01591-9&domain=pdf


Page 2 of 16Li et al. Earth, Planets and Space     (2022) 74:35

for ~ 40  years, with only two moderate earthquakes, 
the Mw5.9 and Mw5.6 Kangding earthquakes in 2014. 
In contrast, a series of strong earthquakes have succes-
sively occurred along the other boundary faults around 
the Bayan Har Block, including the Mw7.8 Kunlun Pass 
earthquake in 2001, the Mw7.9 Wenchuan earthquake 
in 2008, and the Mw6.9 Yushu earthquake in 2010 (Deng 
et al. 2015). Large earthquakes can modulate the crustal 
deformation, stress field, and strain accumulation of the 
surrounding faults (King et al. 1994; Stein 2003; Nalbant 
and McCloskey 2011; Wu et  al. 2018). Therefore, the 
potential seismic hazard posed by the Xianshuihe Fault 
deserves additional attention.

The strain rate accumulation, fault coupling, and slip-
rate deficit provide insights into the seismic hazard 
assessment on faults (Miura et al. 2002; Ader et al. 2012; 
Riguzzi et al. 2012; Dogru et al. 2018; Weiss et al. 2020). 
Based on joint inversions of Global Navigation Satellite 
System (GNSS) and Interferometric Synthetic Aperture 
Radar (InSAR) data, Jiang et al. (2015) inverted the dis-
tribution of the interseismic fault locking of the Xian-
shuihe–Zemuhe Fault system and found that a potential 
asperity exists in the Qianning–Kangding section. Guo 
et al. (2018) inverted the slip rate and the locking degree 
of the Xianshuihe Fault Zone using GNSS data from 
1999 to 2017, and suggested that the Daofu–Kangding 
section is at high risk for Mw6.6 or greater earthquakes 
in the future. Using GNSS data from 2004 to 2017, Li 
et al. (2020a) also inverted the slip-rate deficit and lock-
ing degree of the Xianshuihe Fault Zone, and revealed 
that the Daofu–Qianning section is experiencing creep 
at the surface, and it will not be able to generate earth-
quakes with magnitudes of larger than 7.0 in the near 
future. In contrast, they determined that the Selaha Fault 
is most likely to generate a Mw > 7 earthquake. Based on 
2014–2019 InSAR images, Qiao and Zhou (2021) and Li 
and Bürgmann (2021) identified multiple creeping sec-
tions along the Xianshuihe fault zone, and concluded that 
the Qianning section is capable of generating a Mw6.6 or 
Mw6.7 earthquake. Although these studies agree that the 
Xianshuihe Fault Zone presents a high seismic hazard, 
the potential location of the strong earthquakes in the 
Xianshuihe Fault Zone remains controversial.

The dynamic changes in the crustal movement 
obtained via geodetic observations not only respond to 
the rupture process of great earthquakes but also reflect 
the seismogenic processes of strong earthquakes and the 
adjustment process after an earthquake, which is essen-
tial information for determining the subsequent seismic 
potentials of large earthquakes (Jiang et  al. 2009; Zou 
et al. 2015; Wu et al. 2018; Zhao et al. 2020). In this study, 
we focused on the dynamic deformation characteristics 
of the Xianshuihe Fault Zone using two periods of GNSS 

observations and estimated the potential seismic hazards 
it poses. First, we analyzed the characteristics of the his-
torical seismic activity along the Xianshuihe Fault Zone, 
and then, we analyzed the dynamic deformation char-
acteristics by calculating the strain rate fields and GNSS 
velocity profiles. Finally, based on the negative disloca-
tion model, we inverted the fault coupling and slip-rate 
deficit distribution to provide a detailed estimation of the 
potential seismic hazards posed by the Xianshuihe Fault 
Zone.

Tectonic setting and seismicity
Tectonic setting
The Xianshuihe Fault Zone is a highly active left-lat-
eral strike–slip boundary fault between the Bayan Har 
Block and the Sichuan-Yunnan Block within the east-
ern Tibetan Plateau (Zhang et al. 2003). The Xianshuihe 
Fault is approximately 400 km long, strikes N40°–50°W, 
and has a steep dip angle. It extends from Donggu, Ganzi 
County in the northwest through Luhuo County, Daofu 
County, and Kangding County to Shimian County in the 
south (Qian et al. 1988; Wen et al. 1989; Xu et al. 2003). 
The Xianshuihe Fault Zone is divided into northwestern 
and southeastern segments by a geometric discontinuity 
near the Qianning Basin (Qian et  al. 1988). The north-
western segment has a simple fault geometry and consists 
of the Luhuo, Daofu, and Qianning sections, whereas the 
structure of the southeastern segment is relatively com-
plicated (Bai et  al. 2018). The Kangding section, which 
extends from the Qianning Basin to Kangding County, 
consists of three nearly parallel secondary faults, the Yala 
River, Selaha, and Zheduotang branches. The Moxi sec-
tion extends from south of Kangding to Shimian county, 
and the surface trace of this fault is distinct (Fig. 1). The 
detailed geometry of each fault section is presented in 
Table 1.

Historic seismic activity
The Xianshuihe Fault Zone has experienced numerous 
historic strong earthquakes. Here, we compiled a cata-
log of the M ≥ 6.0 earthquakes during 1700–2020 from 
two sources, including records of historical earthquakes 
in China and data from China Earthquake Networks 
Center. Meanwhile,  earthquake rupture data from Wen 
et  al. (2008) were also collected. The magnitude–time 
frequency diagram and spatiotemporal distribution of 
the strong earthquake (M ≥ 6.0) ruptures in the Xian-
shuihe Fault Zone are shown in Fig. 2. We identified two 
seismically active periods, 1700–1816 and 1893–present 
(Fig. 2a). During 1700–1816, at least nine M ≥ 6.0 earth-
quakes occurred in the Xianshuihe Fault Zone, includ-
ing three M ≥ 7.0 earthquakes, which led to the rupture 
of most of the sections of the Xianshuihe Fault Zone 
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(Fig. 2b). During the second active period, i.e., since 1893, 
seven M ≥ 6.5 earthquakes occurred in the Xianshuihe 
Fault Zone, including five M ≥ 7.0 earthquakes. However, 
most of these earthquakes occurred in the northwestern 
segment. Only the M 7.5 Zheduotang earthquake in 1955 
occurred in the Kangding section, and the seismicity 

in the southeastern segment was sparse. Although the 
Mw5.9 and Mw5.6 Kangding earthquakes occurred in 
2014, their rupture scales were small, only about 30 km 
long (Yi et  al. 2015). In addition, there have been no 
strong earthquakes in the Moxi section since 1786, and 

Fig. 1  Tectonic setting and historic seismicity in the eastern Tibetan Plateau. S1–S5 represent the Luhuo, Daofu, Qianning, Kangding, and Moxi 
sections, respectively. The gray circles represent M ≥ 6.5 earthquakes since 1970, and the black beach balls represent the focal mechanisms of the 
M ≥ 6.7 strong earthquakes from 1900 to 2000 (data  source: Xu et al. (2013)). The red beach balls represent the typical earthquakes occurred in the 
study area since 2000



Page 4 of 16Li et al. Earth, Planets and Space     (2022) 74:35

234 years have passed since the last earthquake. Thus, the 
seismicity of this section is also worthy of attention.

Data and methods
Data collection and processing
The GNSS data used in this study were collected from 
the Crustal Movement Observation Network of China 
(CMONOC I) and the Tectonic and Environmental 
Observation Network of Mainland China (CMONOC II). 
Most of the stations have operated for over 10  years or 
have had at least five observational campaigns with the 
campaign sites being observed for 4  days during each 
campaign, which allowed us to obtain high-accuracy 

velocities. In general, the crustal deformation recorded by 
the GNSS stations not only contains interseismic tectonic 
motion, but also the co- and post-seismic effects associ-
ated with strong earthquakes (Jiang et al. 2017; Guo et al. 
2018). It should be noted that three earthquakes, includ-
ing the Mw7.9 Wenchuan earthquake in 2008, the Mw6.6 
Lushan earthquake in 2013, and the Mw5.9 and Mw5.6 
Kangding earthquake in 2014 (here taken as one seismic 
event), occurred in our study area. The latest studies sug-
gested that the postseismic horizontal displacement rate 
caused by the Wenchuan earthquake is ~ 1.7 mm/year by 
9 years after this event (Wang et  al. 2021), far less than 
the annual tectonic loading, and the postseismic effects 
associated with moderate–strong earthquakes are mostly 
concentrated near the rupture fault plane (Savage et  al. 
1978; Fialko 2004; Huang et  al. 2014; Sun et  al. 2014). 
So in this study, to minimize the impact of the viscoe-
lastic relaxation effect from the Wenchuan earthquake, 
we divided the GNSS data into two periods, 1999–2007 
and 2016–2020, corresponding to the periods before and 
after these three earthquakes.

The GNSS velocity solutions for the first period were 
collected in 1999, 2001, 2004, and 2007 from the cam-
paign stations. The second period includes continu-
ous and campaign stations. The campaign stations’ data 

Table 1  Segmentation and geometric parameters of the 
Xianshuihe Fault Zone

Number Fault section Strike Dip

S1 Luhuo N45°W NE80°

S2 Daofu N45°W NE80°

S3 Qianning N40°W NE80°

S4 Kangding N30°W NE70°

S5 Moxi N20°W NE70°

Fig. 2  Historical seismicity of the Xianshuihe Fault Zone. a M ≥ 6.0 earthquakes in the Xianshuihe Fault Zone since 1700. b Ruptures of M ≥ 6.0 
earthquakes in the Xianshuihe Fault Zone since 1300 ( modified from Wen et al. (2008)). Reliability of rupture determination: the vertical red solid 
line > the vertical red dotted lines at both ends > the red dotted line
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were collected in 2016, 2017, 2018, 2019, and 2020.We 
processed the GNSS data using GAMIT/GLOBK (ver-
sion 10.61) (Herring et al. 2015a, b). The process mainly 
included three steps. (1) We processed the original 
observation data using GAMIT to obtain the loosely con-
strained daily solutions and satellite orbits. (2) Then, we 
performed the joint adjustment of the loosely constrained 
daily solutions of all the stations to obtain their position 
time series and estimations of the velocities in ITRF2014 
using the software GLOBK10.61. For the details of the 
method used, refer to Liang et al. (2018, 2021) and Su and 
Zhan (2021). (3) We transformed the velocity solutions 
into a fixed-Eurasian reference frame (Fig.  3) using the 
Euler vector for Eurasia with respect to the International 
Terrestrial Reference System (Altamimi et al. 2017).

Methods and model
Strain rate calculations
The strain rate field is an important indicator for describ-
ing regional deformation. It is not affected by the reference 
frame and can reflect the crustal deformation character-
istics on different spatial scales (Ward 1994; Reddy et  al. 
2000; Jin and Park 2006; Zhang and Sagiya 2017; Wang 
et  al. 2019). Considering the observation errors of the 

actual observation data, we used the least-squares colloca-
tion method (Wu et al. 2009, 2011) to derive the strain rate 
fields, which has relatively good robustness. In this method, 
the functional relationship between the GNSS velocity and 
the station locations is constructed, and then, the partial 
derivative function of the displacement and strain are used 
to directly obtain the strain rate tensors ε� , εφ , and ε�φ of 
any grid point from formula (1). In the equations, ϕ is lati-
tude; � is longitude; R is the average radius of the earth; uϕ 
and u� are the velocities in the latitudinal and longitudinal 
directions, respectively. The details of the calculation pro-
cess have been described by Wu et al. (2011):

Then, using Eq. (2), additional strain rate vectors can be 
calculated:

(1)















εϕ =
1
R
∂uϕ
∂ϕ

ε� =
1

R cosϕ
∂u�
∂�

−
uϕ
R tan ϕ

ε�ϕ =
1
2

�

1
R cosϕ

∂uϕ
∂�

+
u�
R tan ϕ +

1
R
∂u�
∂ϕ

�

.

Fig. 3  GNSS velocity fields and profiles across the Xianshuihe Fault Zone. a and b The 1999–2007 and 2016–2020 GNSS velocities relative to the 
stable Eurasian Plate. The black triangles represent the fault-crossing observation sites. The black polygons denote the profiles plotted in Fig. 6
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where ε1 is the principal tensional strain rate, ε2 is the 
principal compressive strain rate, γmax is the maximum 
shear strain rate, and εsurface is the dilatation rate.

GNSS profiles and fault slip rates
The GNSS profile can be used to reveal the differential 
movements and the relationship between the displace-
ment distribution and faults, and it is widely used in the 
analysis of fault deformation characteristics (Jiang et  al. 
2009; Maurin et al. 2010; Zhang 2008). First, we selected 
the GNSS stations within a certain range on both sides 
of the fault zone. Then, we directly projected the GNSS 
velocities onto the directions perpendicular and par-
allel to the fault, and thus, the velocity component was 
obtained. In addition, we used an elastic dislocation 
model (Savage and Burford 1973) to estimate the long-
term slip rate.

DEFNODE negative dislocation inversion
We used the elastic block model (McCaffrey et al. 2002). 
This modeling was implemented using the DEFNODE 
program, and it has mostly been used to estimate fault 
slip deficit. The model combines block rotation, uniform 
block strain, and Okada dislocations (Eq.  3), and it can 
simultaneously estimate the Block’s Euler poles, the fault 
slip rate, and the fault-locking coefficient to provide the 
best fit of the geodetic, geologic, and seismic data. In this 
approach, the spatial variability of the fault coupling is 
defined by the parameter Phi (the coupling coefficient). If 
Phi = 0, the fault is fully creeping or decoupled for a long-
term slip rate. If Phi = 1, the fault is completely locked. 
A value of Phi between 0 and 1 indicates that the fault 
is partially locked. The slip-rate deficit on the fault plane 
was derived by multiplying the fault slip vector by Phi, 
which provides the elastic deformation around the fault:

 where V sf is the observed surface velocity, V br is the 
velocity caused by the rotation of the block, V is is the 
velocity caused by the internal strain of the block, and V fs 
is the velocity caused by the negative dislocation of the 
fault locking.

Compared with general inversion programs of the same 
type, the DEFNODE program increases the inversion of 
the permanent strain inside the block, and the perma-
nent strain inside the block can replace the partial post-
seismic viscoelastic relaxation effect. This program can 

(2)
ε1,2 =

1

2
(ε� + εφ)±

1

2
(4ε2

�φ + (ε� − εφ)
2)

1
2

γmax =
1

2
(ε1 − ε2) εsurface = ε� + εφ ,

(3)V sf = V br + V is + V fs,

be used for related inversions after the earthquake (Zhao 
et al. 2018).

Inversion model
The study area is divided into three tectonic blocks: the 
Bayan Har Block, the Sichuan-Yunnan Block, and the 
South China Block (Zhang et  al. 2003). The Xianshu-
ihe Fault Zone, the Longmenshan Fault Zone, and the 
Anninghe–Xiaojiang fault system were included in our 
inversion. The block properties (rigid body or elasticity) 
need to be set before the inversion. Based on previous 
studies (Zhao et  al. 2015), we defined the Sichuan-Yun-
nan and Bayan Har Blocks as elastic during the inversion, 
which means that the locking degree (locking coefficient), 
the Euler vector of the block motion, and the uniform 
strain tensor inside the block are inverted simultane-
ously. The interior of the South China Block is relatively 
stable with weak deformation, and thus, it was modeled 
as rigid and the components of the strain rate were not 
calculated in the inversion.

Eleven nodes were set along the fault’s strike, and the 
average distance between these nodes was approximately 
35–40 km. The depth of the fault model was set to 20 km 
based on the results of the following previous studies. 
Zhu et  al. (2005) relocated the small earthquakes that 
occurred in western Sichuan and found that 90% of the 
small earthquake events in the Xianshuihe Fault Zone 
occurred in the upper crust at depths of 0–15  km. Liu 
et al. (2014) concluded that the stress concentration was 
generally within 20 km of the upper crust based on the 
joint inversion of P-wave receiver functions and back-
ground noise. The details of the models structure are 
shown in Fig. 4.

Results
Strain rate fields
Since the differences in the station spacing during 1999–
2007 and 2016–2020 would have a certain effect on the 
strain rate fields, we selected the data for the same GNSS 
station in both periods and used the least-squares collo-
cation method to calculate the dynamic strain rate fields, 
which covered the Xianshuihe Fault Zone. The calcula-
tion results are shown in Fig. 5.

The strain rate fields show that (Fig.  5a) before the 
Wenchuan earthquake, the maximum shear strain rate 
was relatively high in the Luhuo and Daofu sections in 
the northwestern segment of the Xianshuihe Fault Zone, 
with maximum values of 6.0 × 10–8/a and 5.7 × 10–8/a, 
respectively, which was significantly higher than that of 
the southeastern section (Table  2). However, after the 
Wenchuan and Lushan earthquakes, the maximum shear 
strain rates of the Luhuo and Daofu sections decreased 
significantly (Fig.  5b), while that of the southeastern 
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segment (Kangding and Moxi sections) increased, that is, 
the maximum shear strain accumulation rate increased 
from 4.5 × 10–8/a to 6.2 × 10–8/a (Table  2), reflecting 
the shear deformation pattern of the Xianshuihe Fault 
Zone underwent a dynamic adjustment after the Wen-
chuan and Lushan earthquakes. In addition, the Qian-
ning section also deserves special attention, because the 

shear strain accumulation rate of this section remained 
unchanged during the two periods, indicating that this 
section tends to be locked.

The principal strain rates calculated for 1999–2007 and 
2016–2020 (Fig.  5) demonstrate that the roughly E–W 
directed compression and N–S directed extension were 
dominant in the northwestern segment of the Xianshuihe 

Fig. 4  Three-dimensional fault structure and node setting of the Xianshuihe Fault Zone

Fig. 5  Principal and maximum shear strain rate fields around the Xianshuihe Fault Zone. a and b The results during 1999–2007 and 2016–2020. The 
black arrows represent the principal strain rates; and the background contours represent the maximum shear strain rate
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Fault, and from NW to SE along the strike of the Xian-
shuihe Fault, the compression gradually transitioned 
to NW–SE directed and the extension transitioned to 
NE–SW directed. Furthermore, we noted that the val-
ues of the principal strain rates in the northwestern seg-
ment were larger than those in the southeastern segment 
during 1999–2007. However, after the Wenchuan and 
Lushan earthquakes, the values of the principal strain rate 
in the northwestern segment decreased, while the values 
in the southeastern segment significantly increased, indi-
cating that the tectonic stress on the southeastern section 
enhanced.

GNSS velocity profile
We created two velocity profiles (A and B) across the 
Xianshuihe Fault Zone. The locations of profiles are 

shown in Fig. 3. The profiles are 400 km long and 130 km 
(A) and 110 km (B) wide.

The velocity profile results in Fig. 6 show that an obvi-
ous left-lateral strike deformation characteristic domi-
nates in the Xianshuihe Fault Zone. Before the Mw7.9 
Wenchuan earthquake, the left-lateral strike–slip rate of 
the northwestern segment of the Xianshuihe Fault Zone 
was ~ 11.5 mm/a, but it decreased to ~ 7.8 mm/a after the 
Wenchuan and Lushan earthquakes. Moreover, the near-
field deformation width of the fault was about 125  km 
before the Wenchuan earthquake, but it decreased 
to within the vicinity of the fault (~ 50  km) after the 
earthquake.

The velocity profile results (Fig.  6c, 6d) show that 
before the Mw7.9 Wenchuan earthquake, the left-lateral 
strike–slip rate of the southeastern segment of the Xian-
shuihe Fault Zone was ~ 11 mm/a, but it hardly decreased 
after the Mw6.6 Lushan and Mw5.9 Kangding earth-
quakes, kept a left-lateral strike–slip rate of ~ 10.8 mm/a. 
Moreover, the near-field deformation width of the fault 
almost unchanged during the two periods.

Fault locking
Based on the fault model above, we obtained the optimal 
model parameters through multiple calculations. Fig-
ure 7 shows the GNSS velocity residuals for the two time 
periods for the best-fit model. The predicted velocities fit 
the GNSS velocities well without systematic error. The 
majority of the residuals are within the error range, and 
the directions of the residuals are stochastic throughout 

Table 2  Maximum shear strain rates on each segment of the 
Xianshuihe Fault Zone

Number Fault section 1999–2007(10-

8 · a-1)
2016–2020(10-

8 · a-1)

Value Error Value Error

S1 Luhuo 6.0  0.34 5.0  0.18

S2 Daofu 5.7  0.29 3.2  0.20

S3 Qianning 3.4  0.34 3.2  0.19

S4 Kangding 4.5  0.33 6.2  0.21

S5 Moxi 4.5  0.39 6.2  0.20

Fig. 6  GNSS velocity profiles across the Xianshuihe Fault Zone. a and b The velocity parallel to the northwestern section of the Xianshuihe 
Fault Zone during 1999–2007 and 2016–2020; and c and d the velocity parallel to the southeastern section of the Xianshuihe Fault Zone during 
1999–2007 and 2016–2020
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the entire study area. Only the residuals near the Zemuhe 
Fault Zone are slightly larger.

The inversion results show that before the Wenchuan 
earthquake (Fig. 8a), the Luhuo section of the Xianshuihe 

Fault Zone was strong coupled at depth of ~ 5 km, with an 
average fault-coupling coefficient of 0.85, except the loca-
tion of Ganzi locked to a depths of ~ 16  km which may 
be affected by boundary effects. The Daofu section was 

Figure 7  Velocity residuals for the two time periods for the best-fit model. Bold black lines represent the boundaries of the secondary blocks. Bold 
red line is the fault model correspond to the Xianshuihe–Anninghe–Zemuhe–Xiaojiang fault system and the Longmenshan fault Zone
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shallowly coupled at depths of < 5  km and the Qianning 
section was coupled only at the surface. Moreover, the 
Kangding section also showed a shallow locking depth at 
the surface. However, the Moxi section exhibited a high 
degree of locking, which was locked to a depth of ~ 16 km, 
and the locking depth in the southeastern segment gradu-
ally weakened from northwest to southeast. After the Wen-
chuan and Lushan earthquakes (Fig. 8b), the locking degree 
of the Kangding section became completely decoupled and 
freely crept. In contrast, the locking degrees of the Daofu, 
Qianning, and Moxi sections increased, with average cou-
pling coefficients of greater than 0.9 at depths 8 km, 8 km 
and 16 km, respectively. The details are shown in Fig. 8b.

The fault-parallel slip-rate deficit demonstrates that 
the Xianshuihe Fault Zone experienced a left-lateral 
slip-rate deficit (positive value) (Fig. 9). Before the Wen-
chuan earthquake, the left-lateral slip-rate deficit of the 
Luhuo and Daofu sections was the highest (8–10 mm/a), 
followed by the Moxi Sect. (6–8 mm/a). After the Wen-
chuan and Lushan earthquakes, the left-lateral slip-rate 
deficit decreased to 2–6 mm/a in the Luhuo, Daofu, and 
Qianning sections. After the Wenchuan and Lushan 

earthquakes, the Kangding section exhibited almost no 
left-lateral slip-rate deficit, and that of the southern tip of 
the Moxi section remained at approximately 6–8 mm/a.

Discussion
Different impacts of major earthquakes on the Xianshuihe 
Fault Zone
The spatial pattern and rate of the strain accumula-
tion during the interseismic phase are very important 
for interpreting the mechanisms of earthquakes and for 
evaluating the seismic potentials of faults (Navarro et al. 
2003; Fialko, 2006; Moreno et  al. 2010). The current 
deformation characteristics of the Xianshuihe Fault Zone 
can be described by the strain rate field, the fault slip 
across the block boundaries, and the fault coupling based 
on geodetic data. Our results show that the high shear 
strain rates were concentrated in the Xianshuihe Fault 
Zone, and the values in the northwestern section were 
significantly larger than those in the southeastern section 
before the Wenchuan earthquake, which is consistent 
with the previous studies (Xu et al. 2018; Li et al. 2019). 
The higher shear strain rate along the Xianshuihe Fault 

Fig. 8  Locking degree in the Xianshuihe Fault Zone. a and b The locking degrees of the Xianshuihe Fault Zone in 1999–2007 and 2016–2020. S1–S5 
represent the Luhuo, Daofu, Qianning, Kangding, and Moxi sections, respectively
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Zone is consistent with its high slip rate (Meade, 2007; 
Qu et al. 2018; Zhang et al. 2019), which is a basic feature 
of the block-like tectonic extrusion model (Avouac and 
Tapponnier, 1993; Tapponnier et al. 1982).

After the strong Wenchuan and Lushan earthquakes, 
the shear strain rate in the Luhuo and Daofu sections sig-
nificantly decreased. The left-lateral slip-rate and the slip-
rate deficit in these sections also decreased (Figs. 6b, 9b). 
We conclude that these variations were mainly caused 
by the large-scale decoupling of the central and southern 
sections of the Longmenshan Fault Zone accompanied 
by the Wenchuan and Lushan earthquakes. After the 
Wenchuan earthquake, the extrusion rate of the Bayan 
Har Block toward the Sichuan Basin accelerated which 
decreased the far-field left-lateral strike–slip rate and the 
fault slip-rate deficit and increased the tensile movement 
of the northwestern section of the Xianshuihe Fault. 
These major earthquakes may have alleviated the strain 
accumulation rate in the northwestern segment of the 
Xianshuihe Fault Zone.

To further verify the impacts of the Wenchuan earth-
quake and the other regional strong earthquakes on 
the Xianshuihe Fault Zone; we also collected near-field 
cross-fault short-baseline observational data for the 

northwestern segment of the Xianshuihe Fault Zone from 
1980 to 2019. The distributions of the fault-crossing sites 
are shown in Fig. 3. Fault-crossing deformation observa-
tions can directly reflect the local tectonic deformation 
and changes in the stress state of active faults, and they 
have been used to analyze near-field fault activity (Bo 
et al. 1998; Li et al. 2016, 2017). In this study, the calcula-
tion method of Bo et al. (1998) was used to quantitatively 
calculate the horizontal strike–slip component and the 
horizontal tension and compression components. The 
positive slope of the curve indicates right-lateral and ten-
sion movements (Fig. 10).

The results of the fault activity analysis (Fig. 10) reveal 
that the northwestern segment of the Xianshuihe Fault 
Zone has predominantly experienced left-lateral strike–
slip movement (the slope of the curve was negative), with 
a low tension and compression rate, before the Wen-
chuan earthquake. However, after the Wenchuan earth-
quake, and especially after the Lushan earthquake, the 
tensile activity in the northwestern segment of the Xian-
shuihe Fault Zone increased significantly. Furthermore, 
it was found that the near-field left-lateral strike–slip 
movement at some of the sites, such as Zhuwo, Goupu, 
and Laoqianning, decreased slightly. Therefore, the 

Fig. 9  Fault-parallel slip-rate deficit in the Xianshuihe Fault Zone. a and b The fault-parallel slip-rate deficits in 1999–2007 and 2016–2020. S1–S5 
represent the Luhuo, Daofu, Qianning, Kangding, and Moxi sections, respectively
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results of the near-field cross-fault observations also indi-
cate that the Wenchuan and Lushan earthquakes affected 
the movement features and strain accumulation rate of 
the northwestern section of the Xianshuihe Fault Zone.

In addition, we noted that the shear strain rates of the 
southeastern section of the Xianshuihe Fault increased 
after the series of earthquakes (Fig.  5b). The Kangding 
section has almost no left-lateral slip-rate deficit (Fig. 9b) 
and still has a high left-lateral slip-rate, while the Moxi 
section remains strongly coupled, with a high left-lateral 
slip-rate deficit of 8 mm/a in the second period (Figs. 8b, 
9b). This is consistent with the latest InSAR results (Qiao 
and Zhou 2021), which also indicate a high shallow slip 
rate (16.3–19.8  mm/a) in the western Kangding section 
during 2014–2019, and a locking depth of 18.5 km in the 
Moxi section. The southeastern section of the Xianshuihe 
Fault Zone is located in the triple junction area where the 
three major fault zones interact and restrict one another. 
The Wenchuan and Lushan earthquakes occurred in the 
central northern segment and southern segment of the 

Longmenshan Fault Zone, respectively. The postseis-
mic geological survey and precise aftershock positioning 
results reveal that the ruptures of the Lushan earthquake 
and the Wenchuan earthquake did not pass through, and 
the Lushan earthquake did not cause the entire southern 
section of the Longmenshan fault to decouple (Fang et al. 
2013; Gao et al. 2014; Xu et al. 2013). The triple junction 
area is still in a strong compressional strained environ-
ment. More than a year after the Lushan earthquake, the 
2014 Mw5.9 and Mw5.6 Kangding earthquakes occurred 
on the Selaha fault between the Kangding and Qian-
ning sections of the Xianshuihe Fault Zone, which also 
confirms that this area had a high level of stress accu-
mulation after the Wenchuan and Lushan earthquakes. 
However, owing to the small-scale rupture and the lim-
ited energy released by the Mw5.9 Kangding earthquake, 
the event was not sufficient to significantly change the 
strain throughout the entire triple junction area. There-
fore, the southeastern section of the Xianshuihe Fault 
still had a high strain accumulation rate after the series 

Fig. 10  Time series curves of the motion components of the Xianshuihe Fault Zone. The red line denotes the horizontal strike–slip component, and 
the blue line denotes the horizontal tension and compression components
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of earthquakes. All of these results indicate that the sur-
rounding strong earthquakes, i.e., the Mw7.9 Wenchuan 
earthquake in 2008 and the Mw6.6 Lushan earthquake in 
2013, had evident differential impacts on the strain accu-
mulation pattern of the Xianshuihe Fault Zone.

Shallow creep along the Xianshuihe fault
Previous studies have demonstrated that there is shal-
low aseismic slip on the Xianshuihe Fault Zone (Allen 
et al. 1991; Du et al. 2010; Qiao and Zhou 2021; Li and 
Bürgmann 2021). Allen et  al. (1991) first pointed out a 
stable shallow creep of 6 mm/a at the Xialatuo site near 
the 1973 Luhuo earthquake rapture during 1976–1984. 
Based on short baselines and short leveling, Du et  al. 
(2010) estimated a fault creep rate of 10.27  mm/a at 
the Xialatuo site (located on the Luhuo segment) in the 
first five years after the Luhuo earthquake, and showed 
that after 1979, the creep rate has been slowing down 
to 2.27  mm/a in 2009 gradually following a logarithmic 
function, and the fault plane has been tending to re-
couple with some strain built-up. Moreover, they esti-
mated the fault segment will entirely re-lock, enter the 
stage of interseismic locking in the next 15 to 25  years. 
Recently, Li and Bürgmann (2021) used high-resolution 
InSAR data to show evidence of fault creep, suggesting 
the Xialatuo, Goupu–Songlingkou and Bamei–Selaha–
Kangding creep from 0–6 mm/year along the Xianshuihe 
Fault. In contrast, Li et al. (2021) found a shallow locking 
depth of 2–3 km of the Luhuo section, and suggested that 
creeping at the Xialatuo site ended during 2000–2018. 
Our inversion result showed that the Luhuo segment was 
locked down to 3–5  km with an average fault-coupling 
coefficient of 0.85, consistent with those results by Du 
et al. (2010) and Li et al. (2021), indicating that the fault 
plane of the Luhuo segment is in a state of re-coupling 
with some strain built-up currently.

The creeping section identified by our inversion result 
is from Qianning Basin to the Kangding County along 
the Xianshuihe fault, which is in good agreement with 
the latest studies (Li and Bürgmann 2021; Li et al. 2021).
This section in the period of 1999–2007 showed a shal-
low locking depth at the surface except for the location of 
Kangding locked to a depth of ~ 16 km. The 2014 Mw5.9 
Kangding earthquake occurred in the north of Kang-
ding County that was relatively weakly coupled with an 
average coupling coefficient of 0.6, which led to part of 
the strain energy releasing, and this section experienced 
completely decoupling and freely creeping between 2016 
and 2020. An issue that deserves attention is that the 
2014 Mw5.9 Kangding earthquake occurred in the weakly 
coupled area we inverted in the 1999–2007 period, one 
reason we suggested which is triggered owing to stress 
perturbations from surrounding large earthquakes, 

especially the 2008 Mw 7.9 Wenchuan earthquake and 
the 2013 Mw 6.6 Lushan earthquake (Shan et al. 2013).

Seismic hazard analysis
The seismic gaps, locking degree, low b-value section 
of the background seismic activity, and Coulomb stress 
changes are effective indicators for determining the loca-
tions where strong earthquakes may occur in the future 
(Hubert-Ferrari et al. 2000; Nalbant et al. 1998; Shan et al. 
2015; Stein et al. 1997; Wen et al. 2008; Yi et al. 2008).

The spatial and temporal distributions of the earth-
quake ruptures caused by the major earthquakes along 
the Xianshuihe Fault Zone reveal that no strong earth-
quakes have occurred in the Qianning section since the 
M7.0 Qianning earthquake in 1893, and the elapsed time 
exceeds the recurrence interval of the historic strong 
earthquakes, indicating that this seismic gap is a poten-
tial location for strong earthquakes in the future. Fol-
lowing the Wenchuan and Lushan earthquakes, the 
locking degree and locking depth of the Qianning sec-
tion increased. In addition, the GNSS-derived strain rates 
show that the Qianning section is an invariant defor-
mation adjustment zone. These results indicate that the 
Qianning section is in a coupled state with little defor-
mation. Yi et al. (2008) calculated the b-value from seis-
mic data (from the China Seismic Network and Sichuan 
Regional Seismic Network) for 1976–2006 and found 
a large-scale asperity with a low b-value from Daofu to 
Qianning (defined as the Qianning section here) of the 
Xianshuihe Fault Zone. The weak deformation of this 
section may be related to the large-scale asperity. In addi-
tion, the Coulomb stress change shows that the occur-
rences of the Wenchuan and Lushan earthquakes caused 
increased stress in the Qianning section (Li et  al. 2012; 
Luo and Liu 2018; Parsons et al. 2008; Shan et al. 2013; 
Toda et al. 2008; Wan and Shen 2010), which is consist-
ent with our inversion results. Therefore, we suggest that 
the Qianning section may be a potential seismogenic 
source for a future strong earthquake.

Another potential seismogenic source of a strong 
future earthquake is the Moxi section, which is located 
at the triple junction of the Xianshuihe Fault Zone, the 
Anninghe Fault Zone, and the Longmenshan Fault 
Zone. The tectonics of this area are especially complex. 
It has been over 200  years since the M7.7 Kangding-
Moxi earthquake occurred in 1786 in the Moxi section 
(Wen et  al. 2008). Owing to the influence of long-term 
tectonic loading, this section already has a high strain 
accumulation (Wang et  al. 2016). In addition, our fault-
coupling inversion results show that this section has a 
high degree of fault-locking and a high left-lateral rate 
deficit. Moreover, the Coulomb stress change in this 
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section has been enhanced by historical strong earth-
quakes (Li et al. 2020b; Shao et al. 2016). Therefore, the 
risk of future strong earthquakes in this area also requires 
more attention.

Conclusions
In this study, we focus on exploiting the dynamic defor-
mation characteristics of the Xianshuihe Fault Zone 
and its potential risk of strong earthquakes occurring 
using GNSS data for 1999–2007 and 2016–2020. The 
main conclusions drawn are as follows:

(1)	 The Xianshuihe Fault Zone had  a relatively  high 
shear strain rate, and the values of the northwestern 
section were greater than those of the southeastern 
section before the Wenchuan earthquake, which 
is consistent with the spatial differences in the slip 
rate.

(2)	 The deformation mode of the Xianshuihe Fault 
Zone underwent a dynamic adjustment after the 
Wenchuan and Lushan earthquakes. The shear 
strain accumulation rates of the Luhuo and Daofu 
sections decreased from 6.0 × 10–8/a to 3.2 × 10–8/a, 
while that of the southeastern segment increased 
from 4.5 × 10–8/a to 6.2 × 10–8/a. The slip rate and 
deformation width of the Xianshuihe Fault Zone 
also changed during these two periods, reflecting 
the differential impacts of the surrounding major 
earthquakes on the deformation pattern of the 
Xianshuihe Fault Zone.

(3)	 The locking degree of the Qianning and Moxi sec-
tions increased significantly after the Wenchuan 
earthquakes, while no slip-rate deficit occurred in 
the Kangding section, which is at present in a state 
of creeping from the surface to a depth of 20  km. 
Strain accumulation characteristics and the recent 
rupture history of the Xianshuihe Fault Zone sug-
gest that both the Qianning and Moxi sections have 
a high potential for future strong earthquakes.
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