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Abstract 

One of the characteristic features of the gravity recordings produced by the superconducting gravimeter CT #036 at 
Ishigakijima, Japan, is that it indicates gravity increase when a typhoon (hurricane) approaches the island. Since we are 
trying to detect small gravity signals associated with the long-term slow slip events in this region, it is very important 
in the interpretation of the observed data whether such gravity changes are of natural or instrumental origin. In this 
paper, we investigate whether or not nonlinearity in the sensor of the superconducting gravimeter is responsible for 
this phenomenon. Here we take the same theoretical approach as taken by our previous study which investigated 
the effect of coupling between horizontal and vertical components of the gravity sensor in order to understand the 
noise caused by the movements of a nearby VLBI antenna. From theoretical and experimental approaches, we prove 
that the gravity increase observed by CT #036 at the times of high background noise level cannot be explained by 
instrumental effects, such as the nonlinearity in the vertical component or the coupling between horizontal and verti-
cal components of the gravity sensor. This implies that the observed gravity increases are real gravity signals of natural 
origin.
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Introduction
Understanding the instrumental properties of a super-
conducting gravimeter (SG) is essential for fully mak-
ing use of the high-quality gravity data it produces. The 
SG (CT #036) installed at Ishigakijima (Fig.  1), Japan, 
indicates several kinds of unusual gravity signals which 
are not seen at other SG sites, including Matsushiro, 
Kamioka, and Mizusawa. One of such signals are the sys-
tematic step changes caused by the motion of a nearby 
VLBI antenna  (Honma et  al. 2000). For any strange 
behavior of the instrument, there must be a physical 
cause that accounts for it. Imanishi et al. (2018) investi-
gated this phenomenon from the viewpoint of the static 
and dynamic properties of the gravity sensor based 
on magnetic suspension. In the gravity sensor of the 
SG, there are two main superconducting coils, and the 
sphere is stably levitated near the plane of the upper 
coil (Fig. 2a). The levitation force is generated due to the 
interaction between the magnetic field and the induced 
currents in the superconducting sphere (Goodkind 
1999). At the same time, the sphere is constrained to the 
central axis by the magnetic field, but there is room for 
movement in the horizontal plane. As a result of detailed 
analysis of data from a collocated seismometer, Imanishi 
et  al. (2018) succeeded in giving a quantitative explana-
tion to the observed gravity steps in terms of the coupling 
between the horizontal and vertical components of the 
gravity sensor. It was also shown by theoretical analy-
sis that the mechanical eigenfrequency for horizontal 

translation of the levitating sphere is approximately 3 Hz 
in the case of CT #036. 

Another characteristic feature of the CT #036 at Ishi-
gakijima is that it indicates gravity increase when the 
background noise level is extremely high in stormy 
weather conditions. Due to its geographical location 
(Fig.  1), the Ishigakijima island is often hit by typhoons 
(hurricanes). Figure  3 shows the gravity changes from 
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Fig. 1  Location of Ishigakijima island, Japan, where the 
superconducting gravimeter CT #036 is installed. The track of the 
typhoon “Neoguri” (2014) is also shown
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July through October 2012, as well as atmospheric pres-
sure and the noise level recorded by the SG. The effect 
of atmospheric pressure on gravity has been corrected 
by the usual method with a single admittance. The noise 
level has been calculated by integrating the power of 

gravity signals in the frequency range 0.15–0.25  Hz. 
Note that this is significantly underestimated because 
of the attenuations by the analog anti-aliasing filter 
(GGP1 filter) in this frequency range. The events of low 
atmospheric pressure seen in this interval correspond 
to typhoons or similar meteorological events. We can 
see that when the atmospheric pressure becomes very 
low, the noise level becomes high, certainly because of 
stronger winds and higher oceanic waves. In such events, 
the gravity (Fig.  3b) also appears to be larger, with up 
to a few µGal excursion from the long-term trend (1 
µGal = 10–8  ms−2). For an ideal gravimeter, the DC out-
put of the instrument should be independent of the back-
ground noise level at these frequencies. Because we are 
interested in detecting possible gravity signals associated 
with the long-term slow slip events occurring near Ishi-
gakijima (Heki and Kataoka 2008), whether such gravity 
changes are real signals or not is extremely important 
in interpretation of the gravity recordings. At first, we 
suspected that this was another phenomenon to be 
explained with the coupling between the horizontal and 
vertical components of the gravity sensor as in the case 
of the VLBI antenna studied by Imanishi et  al. (2018). 
However, it has turned out that this effect solely is not 
sufficient to provide the reason for the observed gravity 
changes, as discussed later in this paper.

The purpose of this paper is to examine the effect 
of nonlinearity in the vertical component that may be 
existent in the gravity sensor of the SG in relation to the 
phenomenon mentioned above. Given the geometry 

Fig. 2  The gravity sensor of the superconducting gravimeter. a Superconducting sphere and coils. b Vertical force applied to the levitating sphere 
as a function of vertical position. The vertical force gradient is made weak for a limited interval of the vertical coordinate (z). Ideally, the force should 
be linearly dependent on z. In reality, there exists a small but finite quadratic term, which gives rise to nonlinear responses of the gravimeter
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Fig. 3  Apparent correlation between noise level and gravity. a 
Atmospheric pressure. b Gravity residual. c Power of background 
noise in the frequency range 0.15–0.25 Hz calculated from gravimeter 
records. Notice that gravity changes are partly similar to the noise 
level, especially when the pressure is low
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inside the sensor and the currents in the supercon-
ducting coils, the total upward force depends on the 
position of the sphere as drawn in Fig.  3 of Goodkind 
(1999). By adjusting the ratio of the currents in the 
two coils, the vertical force gradient slightly above the 
plane of the upper coil can be made very weak so that 
the test mass levitated there is highly sensitive to small 
changes of gravity. Ideally, the levitation force around 
the position of balance should be linearly dependent on 
the vertical displacement, guaranteeing linearity of the 
gravity sensor as an acceleration transducer. Figure 2b 
shows schematically the result of our own computa-
tion of the levitation force by a finite element method 
based on the actual parameters for CT #036 (Imanishi 
and Takamori 2021). The overall curve of the levitation 
force is found to be very well approximated by a third-
order polynomial function of the vertical coordinate 
z . For a particular value of z , the second derivative of 
the force equals zero, meaning that the force gradient 
is ideally constant. Below (above) that point, the graph 
of the function is convex downward (upward), and the 
coefficient of the quadratic term is negative (positive), 
as shown by a blue (red) curve. Existence of such quad-
ratic dependence will give rise to a finite shift in the DC 
component in response to sinusoidal signal input, in 
other words, an apparent gravity change. Although this 
effect will be suppressed at lower frequencies thanks to 
the feedback control of the gravimeter, it might show 
up in the higher frequency range (above 0.1 Hz) where 
the feedback control is insufficient. Understanding the 
response of the SG to high-frequency disturbances will 
be necessary also for applying SG data to detection of 
earthquake-induced prompt gravity signals (Vallée 
et al. 2017; Kimura et al. 2019).

In the following sections, we will present the theory and 
measurement on this vertical nonlinearity. As a result of 
an experiment of artificial signal injection, a small but sig-
nificantly positive estimate of the coefficient of the quad-
ratic term was obtained. Based on this result and the data 
from a collocated seismometer, it will be shown that the 
effect of nonlinearity, if any, is negligibly small in the case 
of CT #036 at Ishigakijima. This implies that the observed 
gravity changes are real signals of natural origin.

Theory
To investigate the vertical nonlinearity of the SG, here we 
take the same theoretical approach as adopted by Imani-
shi et al. (2018). We shall begin with a brief review of the 
theory on the magnetic suspension in the SG. In a Car-
tesian coordinate system, the potential U sensed by the 
superconducting sphere (mass m ) can be expanded up to 
the third order as

where αH , αV  , βH , and βV  are the coefficients of Taylor 
expansion series of the potential. The z is upward posi-
tive, and the origin of the coordinate system coincides 
with the mean position of the sphere. The coefficients of 
the second-order terms, αH and αV  , denote the “spring 
constants” in the horizontal and vertical directions, 
respectively. The coefficients of the third-order terms, 
βH and βV  , denote the deviation from a purely harmonic 
potential. Equations of motion for the sphere subject to 
external and frictional forces as well as the forces due to 
the magnetic field are written as

where Fx , Fy, and Fz are the components of the external 
force exerted on the sphere as viewed from the frame 
fixed to the gravity sensor. ωH and ωV  are the angular 
eigenfrequencies of the sphere in the horizontal and ver-
tical directions, respectively, given by

and 2mhHωH and 2mhVωV  are the coefficients of the 
friction for the horizontal and vertical components, 
respectively. Note that in the equations of motion (2)–
(4) the terms containing αH and αV  are first order of the 
coordinates, whereas the terms containing βH and βV  are 
second order. By defining
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(2)mẍ + 2mhHωH ẋ + αHx + βHxz = Fx,
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and assuming

Equations (2) through (4) are rewritten as

Here we have retained the terms up to the first order in 
the horizontal components and the terms up to the sec-
ond order in the vertical component.

Equations (12)–(14) are the basic equations to be studied 
in our analysis of the gravity sensor. The fifth term (con-
taining β ′

V  ) in the left-hand side of Eq. (14) comes from the 
third-order term of z in the potential. Imanishi et al. (2018) 
neglected this term in analyzing the effect of horizontal 
acceleration on the gravity sensor, because in the absence 
of input vertical acceleration z2 can be regarded as negligi-
bly small compared with x2 , y2 , and z . In the present study, 
we are interested in the effect of large vertical acceleration 
applied to the instrument, and therefore, possible nonlinear 
response of the gravimeter arising from the term containing 
β ′
V  in Eq. (14) is the main subject to be studied. In the fol-

lowing, we derive the formulae that will be used as theoreti-
cal basis for experimentally measuring the coefficient β ′

V  by 
applying artificial vertical acceleration to the superconduct-
ing sphere in the gravity sensor.

Let us consider the case where the applied vertical accel-
eration is a sinusoidal function of time with a single angular 
frequency ω . In a complex notation, the right-hand side of 
Eq. (14), the upward acceleration exerted on the sphere, can 
be written as

where µ and ν are the real constants in the unit of accel-
eration denoting the cosine and sine parts of the complex 
magnitude of the input acceleration, respectively. Taking 
the real part of the right-hand side of Eq.  (15), Eq.  (14) 
can be written as

(10)β ′
V =

βV

m
,

(11)η = hHωH = hVωV ,

(12)ẍ + 2ηẋ + α′
Hx =

Fx

m
,

(13)ÿ+ 2ηẏ+ α′
Hy =

Fy

m
,

(14)
z̈ + 2ηż + α′

V z +
1

2
β ′
H

(

x2 + y2
)

+
1

2
β ′
V z

2 =
Fz

m
.

(15)
Fz

m
= (µ+ iν) exp (iωt),

(16)z̈ + 2ηż + α′
V z +

1

2
β ′
V z

2 = µ cosωt − ν sinωt,

where we have neglected the term containing β ′
H

 . Our 
task here is to find a solution of the differential Eq. (16).

Before we seek for a general solution to Eq. (16), let us con-
sider the special case where β ′

V = 0 . In this case, Eq.  (16) 
reduces to a linear differential equation which can be solved 
exactly. We assume a solution of the form:

where a1 and b1 are real constants in the unit of displace-
ment. Substituting Eq. (17) to Eq. (16), we obtain a set of 
equations:

or in a matrix form as

Solving this, we have

This solution for z is the well-known linear response of 
a damped harmonic oscillator to an external sinusoidal 
force with a single frequency. The squared sum of a1 and 
b1 is given by

We go on to the general case where β ′
V  is finite. Because 

there is a z2 term in the left-hand side of Eq. (16), it is no 
longer a linear differential equation, and z as the response 
to the external force would involve higher harmonics of ω . 
Let us assume an approximate solution of the form:

where a0 , a1 , b1 , a2 , and b2 are real constants in the unit 
of displacement. Substituting Eq.  (22) into Eq.  (16), and 
equating the coefficients for 1 (constant term), cosωt , 
sinωt , cos 2ωt , and sin 2ωt for the left-hand and right-
hand sides, we have the following five equations:

(17)z = a1 cosωt − b1 sinωt,

(18)
{

−ω2a1 − 2ηωb1 + α′
V a1 = +µ

+ω2b1 − 2ηωa1 − α′
V b1 = −ν

(19)
[

α′
V − ω2 −2ηω

+2ηω α′
V − ω2

][

a1
b1

]

=

[

µ

ν

]

.

(20)

[

a1
b1

]

=
1

(

α′
V − ω2

)2
+ 4η2ω2

[ (
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(
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(
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(

µ2 + ν2
)

.

(22)
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(23)
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2
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2
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2
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2
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2
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(25)+ω2b1 − 2ηωa1 − α′
V b1 − β ′

V a0b1 = −ν,
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Regarding µ and ν as first-order quantities, Eqs.  (24) 
and (25) indicate that a1 and b1 are first-order quanti-
ties, whereas Eqs. (23), (26), and (27) indicate that a0 , a2 , 
and b2 are second-order quantities. Therefore, retaining 
up to first-order quantities, Eqs.  (24) and (25) reduce to 
Eq. (18). The solutions for a1 and b1 are the same as those 
in Eq. (20), which are reproduced below:

Substituting these solutions for a1 and b1 into Eq.  (23), 
retaining up to the second-order quantities, we obtain

Similarly, Eqs.  (26) and (27) are solved, again up to the 
second-order, in a matrix form as

The solutions for a2 and b2 are given by

where a1 and b1 are given by Eq. (28).
The squared sum of a2 and b2 is given by

With Eq. (21), this reduces to

(26)
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1

2
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1

2
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2
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1

2
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)2
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(
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)

ν

]

.
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V
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V

1
(
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)2
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)

.
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[
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]

=

[

− 1
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(
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)
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2β
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]

.

(31)

[
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]

= −
β ′
V

4

1
(

α′
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)2
+ 16η2ω2

[ (

α′
V − 4ω2

)(

a2
1
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1

)

+ 8ηωa1b1
−4ηω
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a2
1
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1

)

+
(
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)
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]

,

(32)

a22 + b22 =

(

β ′
V

4

)2
1

(

α′
V − 4ω2

)2
+ 16η2ω2

(

a21 + b21

)

.
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(
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4
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1

(
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(
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.

Equations  (28), (29), and (31) give the approximate 
solutions for the coefficients a0 , a1 , b1 , a2 , and b2 in equa-
tion (22). It is readily seen from Eqs. (29) and (31) that a0 , 
a2 , and b2 vanish when β ′

V = 0 . For small but finite β ′
V  , the 

response of the system slightly deviates from the purely 
harmonic solution, with the DC offset given by Eq. (29) and 
the second harmonics given by Eq. (31).

From Eqs.  (21) and (33), the amplitude ratio between 
the ω and 2ω terms is given by

This quantity is larger for lower frequencies. This means 
that the unknown parameters for the 2ω terms will be 
better determined using lower frequencies when we 
measure the response of the gravity sensor to injected 
artificial signals.

Measurements
The mechanical response of the gravimeter can be meas-
ured by applying artificial force to the superconduct-
ing sphere (Imanishi et al. 1996; GWR Instruments 1997; 
Van Camp et  al. 2000). The method of measurement is 
very simple; one applies an external signal (in voltage) Vin 
through the feedback circuit of the gravimeter with the 
normal feedback control disabled, and records a resultant 
signal Vout in the error output of the gravimeter (the chan-
nel called Gravity Balance) as well as the input signal Vin . 
Depending on the purpose of the measurement, the input 
signal Vin can be an arbitrary function of time, including a 
step or a sinusoid.

Our experiment of measuring the instrumental 
response of CT #036 took place on June 7, 2018. We used 
an Agilent 33210A function generator to generate arti-
ficial signals and a Hakusan DATAMARK LS-8800 data 
logger to record both input and output signals. The sam-
pling frequency was 200  Hz. Sinusoidal functions with 
0.5 V amplitude at eight discrete frequencies from 0.001 
to 0.2 Hz were applied (Table 1).

Figure  4 shows the recorded time series of the input 
and output signals. For each frequency, more than six 
cycles of oscillations were recorded. As shown in Fig. 4b, 

(34)

√

a22 + b22
a21 + b21

=

∣

∣

∣

∣

β ′
V

4

∣

∣

∣

∣

1
√

(

α′
V − 4ω2

)2
+ 16η2ω2

.
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the output signal is affected by natural gravity changes, 
mostly the earth tides. We noticed that the power-line-
cycle (60  Hz) noise became large in the output signal 
from the Gravity Balance when it exceeded ± 3  V. The 
cause of this noise is unknown.

The output signal from the Gravity Balance channel is 
filtered by a built-in analog lowpass filter with its corner 
frequency of 0.2  Hz. In order to extract the response of 
the gravimeter, amplitude and phase of the wave elements 
recorded on the Gravity Balance channel must be corrected 
for the response of this filter. We made an experiment to 
calibrate the response of the Gravity Balance lowpass fil-
ter for the CT #036. The calibrated response was found to 

be slightly different from that theoretically calculated with 
the nominal constants given in the circuit diagram (GWR 
Instruments, 1997). In the analysis below, we use the cali-
brated response to correct for the Gravity Balance filter. 
See Additional file 1 for more details on the calibration of 
the filter response.

We will divide the analysis of the measurement results 
into two stages. In the first stage, we adopt the linear 
model, corresponding to Eqs. (17, 18, 19, 20, 21), to inter-
pret the response of the gravimeter. The purpose of this 
treatment is to obtain an internally consistent set of param-
eters for CT #036, which will be needed to combine meas-
ured voltage with physical quantities. Then, in the second 
stage, we adopt the model in which nonlinearity is taken 
into account, corresponding to Eqs. (22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32, 33).

Case 1: linear response
In this subsection, we treat the linear case ( β ′

V = 0 ). In this 
case, the input and output time-domain signals, Vin and 
Vout , are linearly connected through an impulse response. 
In the frequency domain, this is described as

where Ṽin and Ṽout are the Fourier transforms of Vin and 
Vout , respectively. φ1 , φ2 , and φ3 are three stages of trans-
fer functions as explained below.

(35)Ṽout = φ3φ2φ1Ṽin,

Table 1  Measurement results for the left-hand side of Eqs.  (46) 
and (47) for eight different frequencies

Frequency (Hz) Equation (46) Equation (47)

0.001 2.086494 ± 0.000063 – 0.207119 ± 0.000058

0.002 2.025367 ± 0.000073 – 0.402342 ± 0.000074

0.005 1.691002 ± 0.000135 – 0.841026 ± 0.000139

0.01 1.059860 ± 0.000178 – 1.060019 ± 0.000175

0.02 0.412834 ± 0.000237 – 0.856908 ± 0.000233

0.05 0.071902 ± 0.000215 – 0.411178 ± 0.000215

0.1 0.006963 ± 0.000241 – 0.210730 ± 0.000241

0.2 –0.003391 ± 0.000203 – 0.109354 ± 0.000203

Fig. 4  Time series data acquired in the signal injection experiment. a input signal. b output signal
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First, φ1 , in the unit of ms−2V−1 , translates voltage into 
acceleration. A signal (in voltage) of unit magnitude input 
to the feedback circuit of the gravimeter generates an 
acceleration applied to the superconducting sphere, whose 
magnitude is equal to φ1 . Therefore, φ1 stands for the DC 
sensitivity of the gravimeter, and is often called a scale fac-
tor. Calibration of the scale factor is usually made through 
parallel registration with an absolute gravimeter (e.g., 
Imanishi et al., 2002; Crossley et al., 2018). Absolute grav-
ity measurements at Ishigakijima was performed in January 
2015 (Miyakawa et  al., 2020) for the purpose of calibrat-
ing instrumental drift as well as the sensitivity of CT #036. 
The resultant scale factor (for the normal 100 kΩ feedback 
resistor) was

which falls within the typical range (i.e., 
(50− 100)× 10−8 ms−2V−1 ) of sensitivity for an SG. In 
this study, we treat φ1 as a known quantity.

Next, φ2 is the mechanical response of the superconduct-
ing sphere against applied acceleration of unit magnitude. 
Neglecting higher-order terms in Eq. (14), φ2 as the linear 
response of a damped harmonic oscillator is derived for 
angular frequency ω as

This transfer function translates acceleration into a dis-
placement of the sphere. The unit of φ2 is s2. Note that 
among the three transfer functions φ2 is the only fre-
quency-dependent part. Note also that when ω = 0 , φ2 is 
equal to 1/ω2

V .
Finally, φ3 converts a displacement of the superconduct-

ing sphere of unit magnitude into voltage through the posi-
tion detector. This has a unit of Vm−1 . In this paper, we do 
not take possible nonlinearity of the position detector into 
account, and assume that φ3 is invariant within the range 
of displacement of the sphere in our experiment. As far as 
we are aware, this factor has gathered much less attention 
than the scale factor of the gravimeter among the users of 
SG. One of the purpose here is to calibrate φ3 which will be 
used later to convert measured voltage into displacement 
of the sphere.

Putting together the three stages, the total transfer func-
tion is given by

where

(36)φ1 = (58.0± 0.1)× 10−8 ms−2V−1,

(37)φ2 =
1

−ω2 + 2ηiω + ω2
V

.

(38)
Ṽout

Ṽin

=
γ

−ω2 + 2ηiω + ω2
V

,

(39)γ = φ3φ1

is a new variable in the unit of s−2 . ωV  , η , and γ in the 
right-hand side of Eq. (38) are the parameters to be meas-
ured by our experiment.

For each frequency f  , the input signal Vin is fit to the 
model function:

where ω = 2π f  , and Ain
0  , Ain

1  , and Bin
1  are the free param-

eters (in the unit of V) to be adjusted. If multiplied by φ1 , 
the right-hand side of Eq. (40) corresponds to the right-
hand side of Eq. (16). In other words,

The term Ain
0  in the right-hand side of Eq. (40) is included 

to account for a small offset of the DC component that 
may exist in actual experiments.

Similarly, the output signal Vout is fit to the function:

where Aout
0  , Aout

1  , and Bout
1  are the free parameters (in the 

unit of V) to be adjusted. If divided by φ3 , the right-hand 
side of Eq.  (42) corresponds to the right-hand side of 
Eq. (17), in other words,

Aout
1  and Bout

1  must be corrected for the response of the 
analog lowpass filter for the Gravity Balance channel at 
the angular frequency ω.

In a real experiment, special care must be taken in esti-
mating Aout

0  , Aout
1  , and Bout

1  , because the gravimeter is 
subject to the gravity changes of natural origin as well as 
the injected artificial signal during the experiment. Then, 
instead of Eq. (42), the formula to be used is

where gcalc(t) is the known gravity signals in the unit of 
acceleration. Here we take into account the theoretical 
tides and the effect of atmospheric pressure as known 
natural signals. We assume that these are long periodic 
enough, so that there is no need to take the frequency-
dependent response of the gravity sensor into account. 
We also assume that there are no other agents of natural 
gravity signals affecting the measurements. The parame-
ter C in the right-hand side of Eq. (44) is the DC sensitiv-
ity (in other words, the “scale factor”) of the gravimeter 
operated without feedback. It is given by

(40)Vin = Ain
0 + Ain

1 cosωt − Bin
1 sinωt,

(41)
{

µ = φ1A
in
1

ν = φ1B
in
1

.

(42)Vout = Aout
0 + Aout

1 cosωt − Bout
1 sinωt,

(43)







a1 =
Aout
1
φ3

b1 =
Bout1
φ3

.

(44)

Vout = Aout
0 + Aout

1 cosωt − Bout
1 sinωt −

1

C
gcalc(t),
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where we have used Eqs.  (37) and (39). Because C is 
dependent on ωV  and γ , determination of C as well as ωV  , 
η , and γ must be done in an iterative way as follows. First, 
a provisional value of C , say C0 , is assumed to correct for 
the known natural signals in Eq. (44). Once the unknown 
parameters in the right-hand sides of Eqs.  (42) and (44) 
are adjusted, ωV  , η , and γ in Eq.  (38) can be estimated. 
This is actually done in terms of the cosine and sine parts 
of the both sides of Eq. (38) for angular frequency ω as

and

Then, we can calculate C based on Eq. (45), which must 
reproduce the initial value C0 so that the solution is inter-
nally consistent. After some trials, we found that the 
estimates of ωV  , η , and γ , and therefore of C , are highly 
invariant for a plausible range of the choice of C0 . Fig-
ure 5 shows the estimated value of C for different initial 
values of C0 . As a result, C = 27.65× 10−8 m s−2V−1 was 
found to be the most appropriate value of C . Comparing 
this value with the usual scale factor given in Eq. (36), we 
can say that the gravimeter without feedback control is 
approximately twice as sensitive as that under feedback 
control in the case of CT #036.

Table  1 lists the left-hand sides of Eqs.  (46) and (47) 
calculated from the estimates of Ain

1  , Bin
1  , Aout

1  , and Bout
1  

obtained for the eight frequencies. These results are then 
used to estimate ωV  , η , and γ based on Eqs. (46) and (47). 
Applying a weighted least squares method, we obtain

From Eqs. (6), (8), and (48) we have

Also, from Eqs. (36), (39), and (50), we obtain

(45)C =
1

φ3φ2|ω=0

=
ω2
V

φ3
=

ω2
V

γ
φ1,

(46)
Ain
1 A

out
1 + Bin

1 B
out
1

(

Ain
1

)2
+

(

Bin
1

)2
= Re

{

γ

−ω2 + 2ηiω + ω2
V

}

(47)

Ain
1 B

out
1 − Bin

1 A
out
1

(

Ain
1

)2
+

(

Bin
1

)2
= Im

{

γ

−ω2 + 2ηiω + ω2
V

}

.

(48)ωV = (0.825± 0.004)s−1,

(49)η = (6.52± 0.03)s−1,

(50)γ = (1.43± 0.01)s−2.

(51)α′
V = ω2

V = 0.68s−2.

Figure 6 shows the magnitude and phase of the trans-
fer function given by Eq.  (38). The dots are the values 
for discrete frequencies measured in our experiment, 
and the curves are the values theoretically calculated 
using the results of Eqs.  (48) through (50). The meas-
ured values are very well approximated by the model 
function. Note that the magnetic suspension of the SG 
as a mechanical pendulum system is overdamped as 
seen from Fig. 6(a) (Imanishi et al., 1996).

It will be useful now to verify the physical mag-
nitude of the applied acceleration and the result-
ant displacement of the sphere. We take the 
case of frequency = 0.001  Hz. For the input sig-
nal, Ain

1 = −0.0268V and Bin
1 = −0.4984V (note 

that 
(

Ain
1

)2
+

(

Bin
1

)2 ∼= (0.5)2 ). Therefore, from 
Eqs.  (36) and (41), we have µ = −0.16× 10−7ms−2 
and ν = −2.89× 10−7ms−2 . For the output signal, 
Aout
1 = −0.1592V and Bout

1 = −1.0344V (after cor-
rection for the response of the Gravity Balance 
lowpass filter). From Eqs.  (43) and (52), we have 
a1 = −0.64 × 10−7m and b1 = −4.19× 10−7m . On 
the other hand, the theoretically derived Eq.  (20), 
with the present estimates of α′

V  , η , µ , and ν , predicts 
a1 = −0.73× 10−7m and b1 = −4.16× 10−7m . The 
close agreement between the theory and the measure-
ment indicates that the present model describes well 
the dynamics of the magnetic suspension of the SG.

(52)φ3 =
γ

φ1
= 2.5× 106Vm−1.

Fig. 5  Determination of the parameter C (see Eq. (45)) by an iterative 
estimation process
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Case 2: nonlinear response
Now we move on to the more general case where the 
third-order term of the potential is treated as finite. In 
this case, the linear transfer function φ2 , and therefore 
the relation (38), does not apply. The purpose here is to 
directly estimate the magnitude of the second harmonics 
of the sphere excited by a sinusoidal input. Knowledge of 
φ3 is necessary to convert observed amplitude in voltage 
to physical quantities in terms of displacement.

Following Eq. (26), the function to be fit to the output 
signal Vout is

where Aout
0  , Aout

1  , Bout
1  , Aout

2  , and Bout
2  are the free param-

eters to be adjusted. The parameter C is treated as known 
from the analysis of the linear case. Once these parame-
ters are estimated, they are divided by the known param-
eter φ3 to obtain a0 , a1 , b1 , a2 , and b2 in the right-hand 

(53)
Vout = Aout

0 + Aout
1 cosωt − Bout

1 sinωt

+Aout
2 cos 2ωt − Bout

2 sin 2ωt −
1

C
gcalc(t),

side of Eq. (22). In particular, the coefficients for the sec-
ond harmonics are given by

The coefficients Aout
2  and Bout

2  must be corrected for 
the response of the analog lowpass filter for the Gravity 
Balance channel at the angular frequency 2ω.

It can be seen from Eqs. (29) and (31) that the param-
eters a0 , a2 , and b2 (in other words, Aout

0  , Aout
2  , and 

Bout
2  ) contain information on the desired coefficient 

β ′
V  . However, estimating β ′

V  based on the measured 
value of a0 is not practical, because it may be seriously 
affected by possible DC offsets in the measurement of 
both input and output signals as well as contamination 
of tidal and other long-periodic geophysical signals. 
Instead, one can determine a2 and b2 in a more robust 
way, from which β ′

V  can be estimated.
Let a2 ±�a2 and b2 ±�b2 be the estimates thus 

obtained ( �a2 and �b2 are the uncertainties). The theo-
retical predictions of a2 and b2 , given by Eq. (31), can be 
rewritten as

and

where

and

Both A and B can be calculated from the parameters 
already obtained in the linear case. Therefore, we could 
estimate β ′

V  in two ways by

for the cosine part and

(54)







a2 =
Aout
2
φ3

b2 =
Bout2
φ3

.

(55)a2 = β ′
VA

(56)b2 = β ′
V B,

(57)

A = −
1

4

1
(

α′
V − 4ω2

)2
+ 16η2ω2

[(

α′
V − 4ω2

)(

a21 − b21

)

+ 8ηωa1b1

]

(58)

B = −
1

4

1
(

α′
V − 4ω2

)2
+ 16η2ω2

[

−4ηω

(

a21 − b21

)

+

(

α′
V − 4ω2

)

2a1b1

]

.

(59)β ′
V =

a2

A

(60)β ′
V =

b2

B

Fig. 6  Transfer function (the right-hand side of Eq. (38)) of the SG 
CT #036 as a function of frequency, measured by the signal injection 
experiment. Dots are the measured values. Curves are theoretically 
calculated using the estimated parameters. a Magnitude. b Phase
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for the sine part. Considering that the relative estimation 
errors of a2 and b2 are much larger than those of the other 
parameters, the estimation error of β ′

V  , �β ′
V  , for Eqs. (59) 

and (60) may be obtained by

and

respectively. However, estimation by Eqs.  (59) and (60) 
can be unstable because a2 and b2 depends on the initial 
phase of the applied oscillations. So, a more robust esti-
mate of β ′

V  can be obtained by taking a weighted mean of 
the two results as

with its uncertainty given by

Table 2 summarizes the results of fitting for frequencies 
f  = 0.001, 0.002, 0.005, and 0.01  Hz. Note that for each 
frequency the magnitude of the 2f  terms ( Aout

2  and Bout
2  ) 

is smaller than those of the f  terms ( Aout
1  and Bout

1  ) by 
three to four orders of magnitude. Here, AIC1 and AIC2 
are the Akaike Information Criterion (AIC; Akaike 1972) 
for the models based on Eqs. (44) and (53), respectively. 
For frequencies f  = 0.001 and 0.002 Hz, AIC2 is smaller 
than AIC1 , meaning that existence of the second har-
monics in the measured data is statistically significant 
from the viewpoint of AIC. We shall exclude the frequen-
cies f  = 0.005 and 0.01 Hz from the following discussion, 
because AIC2 is larger than AIC1 for these frequencies.

For f  = 0.001 and 0.002  Hz, we have obtained the esti-
mates of β ′

V  for the cosine and sine parts based on Eqs. (59) 
and (60), as listed in Table 2. Note that all the four estimates 

(61)�β ′
V =

�a2

A

(62)�β ′
V =

�b2

B
,

(63)β ′
V =

A

(�a2)
2 a2 +

B

(�b2)
2 b2

(

A
�a2

)2
+

(

B
�b2

)2

(64)�β ′
V =

√

√

√

√

1
(

A
�a2

)2
+

(

B
�b2

)2
.

of β ′
V  are positive. Also, for each frequency, the estimates of 

β ′
V  from the cosine and sine parts are marginally consistent 

with each other within the estimation error. Using Eqs. (63) 
and (64), our final estimate is

for f  = 0.001 Hz and

for f  = 0.002 Hz. These results from the two frequencies 
are also consistent with each other within the estimation 
error. Thus, we have obtained statistically significant results 
indicating that β ′

V  is positive and its magnitude is around 
2× 103 in the case of CT #036.

Discussion
Based on the estimate of the coefficient β ′

V  , we derive the 
expected offset in the DC component in gravity signal 
for general vertical acceleration input. Let Z be the verti-
cal displacement of the ground with respect to the inertial 
frame. In the equation of motion (14) in the vertical com-
ponent, the right-hand side is the applied acceleration and 
may be identified as −Z̈ . Therefore, the equation of motion 
becomes

where we have neglected the term containing β ′
H as 

before. This differential equation is nonlinear with 
respect to z . Based on the potential given by Eq. (1), here 
we may assume that β ′

V  is sufficiently small, so that a 
condition

holds for a possible range of displacement of the sphere. 
Under this condition, we can expand the solution for z 
into a power series of β ′

V  as

This is substituted into Eq.  (67). For the zeroth order of 
β ′
V  , we have

(65)β ′
V = 2124 ± 386

(66)β ′
V = 1902± 526

(67)z̈ + 2ηż + α′
V z +

1

2
β ′
V z

2 = −Z̈,

(68)
∣

∣α′
V

∣

∣ ≫
∣

∣β ′
V z

∣

∣

(69)z = ζ0 +
(

β ′
V

)1
ζ1 +

(

β ′
V

)2
ζ2 + · · ·

Table 2  Measurement results for the four lowest frequencies

f (Hz) AIC1 AIC2 A
out

1
B
out

1
A
out

2
B
out

2
β ′

V

Equation (59)
β ′

V

Equation (60)

0.001 – 2,862,099.7 – 2,862,128.1 – 0.159234 ± 0.000060 – 1.034528 ± 0.000065 0.000325 ± 0.000061 – 0.000115 ± 0.000061 2473 ± 463 1327 ± 699

0.002 – 2,118,572.1 – 2,118,581.4 0.019691 ± 0.000074 1.030543 ± 0.000073 0.000237 ± 0.000074 – 0.000124 ± 0.000074 2010 ± 625 1639 ± 978

0.005 – 622,784.2 – 622,782.2 – 0.669290 ± 0.000135 0.663900 ± 0.000140 0.000166 ± 0.000137 – 0.000105 ± 0.000138

0.01 – 357,834.4 – 357,833.6 0.529555 ± 0.000178 – 0.528527 ± 0.000175 0.000095 ± 0.000177 – 0.000300 ± 0.000176
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The solution to this, ζ0 , is the usual linear response in the 
vertical direction, expressed in the frequency domain as

where ζ̃0 and Z̃ are the Fourier transforms of ζ0 and Z , 
respectively. For the first order of β ′

V  , we have

Since we are interested in the DC component of ζ1 , we 
adopt approximations �ζ̇1� = 0 and �ζ̈1� = 0 , where 〈 〉 
denotes temporal average. Then, taking temporal aver-
ages of Eq. (72), we obtain

This means that, to the first order of β ′
V  , the apparent 

gravity change due to this effect is approximated as

(70)ζ̈0 + 2ηζ̇0 + α′
V ζ0 = −Z̈.

(71)
ζ̃0

Z̃
=

ω2

−ω2 + 2iηω + ω2
V

,

(72)ζ̈1 + 2ηζ̇1 + α′
V ζ1 +

1

2
ζ 20 = 0.

(73)ζ1 = −
1

2α′
V

ζ 20 .

Equation  (74) indicates that a gravity increase is pre-
dicted if β ′

V > 0 . As was done in Imanishi et  al. (2018), 
we can estimate 〈ζ 20 〉 using the data of a 1.0-Hz veloc-
ity transducer which is collocated with the gravimeter 
(Ohtaki and Nawa, 2013). First, the raw data in the ver-
tical component of the seismometer are converted into 
ground displacements by deconvolving the transfer 
function of the sensor. Second, the spectrum of vertical 
ground displacements is converted to that of sphere’s ver-
tical motion with the transfer function given by Eq. (71). 
Finally, the power spectrum is integrated with respect to 
frequency to give the total power, i.e., 〈ζ 20 〉.

Here we use the data acquired when the typhoon 
“Neoguri” (https://​en.​wikip​edia.​org/​wiki/​Typho​on_​
Neogu​ri_​(2014)) approached Ishigakijima on July 8th, 
2014. The track of this typhoon is shown in Fig.  1. Fig-
ure  7 shows the data of atmospheric pressure, sealevel, 
and gravity during the six-day period from July 5th till 

(74)�g = −α′
V β

′
V ζ1 =

1

2
β ′
V �ζ
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Fig. 7  Time series data recorded during the period when the typhoon Neoguri approached Ishigakijima island. a Atmospheric pressure. b Sealevel. 
c Gravity

https://en.wikipedia.org/wiki/Typhoon_Neoguri_(2014
https://en.wikipedia.org/wiki/Typhoon_Neoguri_(2014
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July 10th. The atmospheric pressure data were recorded 
at the SG site, whereas the sealevel data were taken at 
the tide gauge station at the Ishigaki port, southern 
part of the island. Figure 7a and b clearly shows that the 
sealevel rose by about 40 cm due to the drop of atmos-
pheric pressure by about 27  hPa. The gravity data have 
been corrected for the earth and oceanic tides as well as 
the atmospheric effect. For the latter correction, a single 
admittance (–0.338 µGal/hPa) has been used. After these 
corrections, an event of gravity increase of approximately 
2 µGal around July 8th becomes evident in the residual 
(Fig. 7c). We can conclude that this gravity change is not 
explained solely by the loading effect of the atmosphere 
or the ocean, for the following reasons. First, a simple 
calculation shows that a uniform rise in the sealevel by 
1 cm around Ishigakijima (100 km × 100 km area) causes 
a gravity increase of 0.0015 µGal at the SG station by the 
Newtonian effect. Therefore, the maximal rise in the sea-
level of 40 cm in that area should have caused a gravity 
increase of about 0.06 µGal, and slightly larger when the 
deflection of the ground is taken into account. However, 
this is much smaller than the observed gravity change. 
Next, it will be worth considering the possibility that 
the effective atmospheric admittance was different from 
usual when the typhoon approached the island, because 
it can be variable with temporal and spatial scales of 
atmospheric disturbances (Hinderer et  al. 2014). Given 
the magnitude of the drop of the atmospheric pressure 
as well as the gravity increase, an atmospheric admit-
tance as large (in the absolute sense) as –0.43 µGal/hPa 
would be required so that the gravity change associated 
with the typhoon would almost vanish after atmospheric 
correction. This large admittance is close to that derived 
for a simplistic Bouguer plate model (Zürn and Wielandt 
2007), and is unlikely to be the case, even if we consider 
that the typhoon Neoguri was a huge one spanning about 
a few hundreds of kilometers. The fact that the gravity 
change is lagged behind the changes in the atmospheric 
pressure and the sealevel by a few hours, as shown in 
Fig. 7, provides another evidence that the residual gravity 
change is not explained solely by the loading effect.

Figure  8a shows the spectrum of vertical displace-
ments of the sphere obtained by converting the seis-
mometer data. Numerical integration of this spectrum 
gives �ζ 20 � = 1.82× 10−13m2 . Then, taking the estimate 
of β ′

V  obtained for f  = 0.001 Hz, we obtain from Eq. (74) 
�g ∼ 1.8× 10−10ms−2 , in other words, about 0.02 µGal. 
This is roughly two orders of magnitude smaller than 
the recorded gravity change. Therefore, we can conclude 
that the effect of the second-order term in the equa-
tion of motion (in other words, the third-order term in 

the potential) cannot account for the gravity increase 
observed in stormy weather.

To confirm our conclusion further, we examine addi-
tionally whether or not the coupling between horizon-
tal and vertical components of the SG (Imanishi et  al. 
2018) is responsible for the observed gravity increase. In 
contrast to the noise from the VLBI antenna as investi-
gated in Imanishi et al. (2018), the background noise has 
continuous spectra with a peak around 0.2 Hz. In order 
to estimate the gravity effect according to the model of 
Imanishi et  al. (2018), we need to calculate the mean 
squared horizontal displacements of the sphere in the 
right-hand side of Eq.  (36) of Imanishi et  al. (2018). To 
do so, we use the transfer function (34) of Imanishi et al. 
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Fig. 8  Power spectra for the displacements of the superconducting 
sphere. These have been derived by convolving theoretical responses 
of horizontal and vertical components with the ground motions 
recorded by a seismometer. a Up-down component. b North–south 
component. c East–west component
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(2018) to convert the spectrum of ground displacements 
into the spectrum of sphere’s displacements, and then 
integrate the resultant spectrum with respect to fre-
quency to obtain the estimate of total power. Figure  8b 
and c shows the spectra of the horizontal displacements 
of the sphere converted from the seismometer records 
using the parameters estimated in the previous section. 
Because the horizontal eigenfrequency of the sphere 
is about 3  Hz, the spectral power at 0.2  Hz is dimin-
ished in this spectrum, compared with the power at 
4–5  Hz. By integrating these spectra in the frequency 
range 0–20  Hz, we obtain �x2� = 6.11× 10−15m2 and 
�y2� = 3.68× 10−14m2 , where x and y correspond to 
east–west and north–south components, respectively. 
Substituting these values into Eq.  (36) of Imanishi et  al. 
(2018) and using the revised estimate of β ′

H (Additional 
file 2), an apparent gravity change would be

This is negligibly small compared with the observed grav-
ity change. Note that this is of the same order of mag-
nitude as, but larger than, the effect of the higher-order 
term estimated above.

As discussed in Introduction, the sign and magnitude 
of β ′

V  depend on the exact position of the levitating 
sphere as well as the currents in the superconducting 
coils (Imanishi and Takamori 2021). It should be noted 
that our results obtained here apply only to CT #036 at 
Ishigakijima, and various installations of other SGs may 
indicate different characteristics regarding the response 
to a high level of background noise.

Conclusion
We have investigated the gravity increase which the SG 
CT #036 at Ishigakijima indicates at the times of high 
background noise level. From theoretical and experi-
mental analyses, we have proved that this phenomenon 
cannot be explained by instrumental effects, such as the 
nonlinearity in the vertical component or the coupling 
between horizontal and vertical components of the grav-
ity sensor. So we have concluded that those events of 
gravity increase are real gravity signals of natural origin.

Now that we have reached this conclusion, the next 
challenge will be to investigate the geophysical cause of 
the observed gravity signal. Possible origins of the sig-
nal include the oceanic loading effects on the shelf of 
the island (Fratepietro et al. 2006; Mouyen et al. 2017) 
and the effects of underground water. These subjects 
will be investigated in future.

(75)�g =
1

2
β ′
H

[

�x2� + �y2�
]

= 3.80× 10−10ms−2.
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