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Abstract 

Magnetotelluric (MT) data are often distorted by near‑surface small‑scale lateral heterogeneities. Inverting distorted 
MT data may produce artifacts or false anomalies, leading to unreliable interpretation. This problem can be avoided 
by inverting the phase tensor (PT), which is known to be free of galvanic distortion. However, PT inversion is known 
to strongly depend on the initial or prior model, because the PT itself does not contain absolute resistivity information. 
To obtain a reliable inversion result from a set of PT data, a proper initial or prior model is crucial. In this study, a one‑
dimensional mean resistivity profile estimated from the average sum‑of‑squared‑elements impedance was chosen 
as an initial model, because it was proven to be less sensitive to galvanic distortion. Examples with synthetic data 
showed that PT inversion using such an initial and prior model is a viable approach for inverting galvanically distorted 
MT data. In addition, the present paper considers a situation, where the distortion is not purely galvanic. A simple 
synthetic study indicated that the PT is affected by inductive distortion, and thus, such inversion results should be 
interpreted with caution.
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Introduction
Magnetotellurics (MT) is a passive electromagnetic 
method for imaging the Earth’s subsurface electrical 
structure. It has been proven to be an efficient tool in 
geophysical studies with a wide range of applications, 
from engineering applications (e.g., Amatyakul et  al. 
2015; Gresse et al. 2021) to deep Earth studies (e.g., Baba 
et  al. 2010; Boonchaisuk et  al. 2013). Hardware, data 
processing methods, and inversion schemes have been 
developed for MT.

Galvanic distortion (Utada and Munekane 2000), a fre-
quency-independent alteration in regional (undistorted) 
data, is a problem in MT data inversion that may result 
in unreliable data interpretation. It is a kind of geologic 
noise (Bahr 1991) caused by charge accumulation at the 
interfaces of near-surface small-scale heterogeneities 
(hereafter called distorters). Käufl et  al. (2018) recently 
demonstrated that variations in surface topography 
also cause distortions. In the present study, we did not 
explicitly treat topographic variation but assumed that 
topographic effects are included in the distortion due to 
the near-surface heterogeneous distribution of resistiv-
ity. Significant distortion is caused by these heteroge-
neities, which lie in a layer that is shallower and thinner 
than the inductive scale length of interest and are smaller 
than the site spacing (spatial aliasing). Hence, distorters 
are deemed to be structures unresolvable by a set of MT 
measurements, and thus, inverting distorted data with-
out appropriate treatment may lead to false results with 
artifacts.

In general, the galvanic distortion problem is math-
ematically under-determined (McNeice and Jones 2001). 
The problem of MT inversion with distorted data cannot 
be solved unless some assumptions or constraints based 
on external information are included (e.g., DeGroot-
Hedlin 1995; Ogawa and Uchida 1996; Sasaki and Meju 
2006). For layered-earth structures, galvanic distor-
tion can be modeled as a simple scalar applied to the 
rotation-invariant impedance of the observation (e.g., 
Berdichevsky et  al. 1989) and solved using a statistical 
approach. There are other approaches, where regional 
(undistorted) impedance can be determined by decom-
posing the observed impedance tensor (e.g., Groom and 
Bailey 1989; McNeice and Jones 2001; Bibby et al. 2005) if 
the regional structure can be assumed to be two-dimen-
sional (2D).

Thus, MT studies dealing with galvanic distortion 
problems were initially limited to one-dimensional (1D) 
or 2D interpretation due not only to theoretical but also 
to data acquisition and computational considerations; 
MT observations in a dense 2D array that cover a wide 

area and improvements in computer performance that 
allow three-dimensional (3D) inversion are required. Sev-
eral studies have recently demonstrated the possibility 
of obtaining a reliable 3D interpretation from distorted 
data. There are three main strategies: (1) removal of gal-
vanic distortion from the data (Utada and Munekane 
2000; Tang et al. 2018; (2) simultaneous inversion of the 
distorted data and the distortion operator (Avdeeva et al. 
2015; Moorkamp et  al. 2020); and (3) inversion of the 
phase tensor (PT) (Caldwell et al. 2004), which is the gal-
vanic distortion-free data (e.g., Koyama 2009; Patro et al. 
2013; Tietze et al. 2015).

In the present study, we focused on inverting the PT, 
which is intrinsically free of galvanic distortion. Although 
PT inversion is accepted and favored in several studies, it 
has been shown to be strongly affected by the choice of 
the initial or prior (also called reference) model, because 
the PT itself does not contain amplitude (electrical resis-
tivity) information. A method for estimating a proper ini-
tial/prior model is thus needed for PT inversion.

There are two ways of estimating initial and/or prior 
models in MT inversion: one is purely based on assump-
tions and the other is based on other information. One 
example of the former is to try inversion with several 
models of a uniform half-space (UHS) of different resis-
tivity values and to select the best one among them. 
Tietze et al. (2015) examined in detail how the choice of 
initial UHS model affects the result of PT inversion. In 
this approach, one must define the “best” inversion result 
among a number of trials. Most of past works select a 
model yielding the smallest misfit to data as the best, but 
other definitions are possible. This brings further com-
plexity to the inverse problem and the selection of the 
best result is necessarily subjective. Thus, the present 
study attempted the latter approach, that is, estimating 
a good initial/prior model based on other information. 
Estimation of the initial/prior model based on geological 
and geophysical studies can be regarded as one example 
of the latter approach. Because such an approach tends 
to be highly subjective, we propose here a more objective 
approach that is based on observed data.

Mathematically, the optimal 1D profile that minimizes 
the lateral contrast of an arbitrary 3D resistivity structure 
is expected to yield a better conditioned system of equa-
tions in 3D EM forward calculation (Avdeev 2005), if it 
is used for the reference model. However, this optimal 
profile is not used for an initial/prior model, because it 
cannot be obtained until the 3D structure is accurately 
estimated. Thus, we propose here to use the regional 
mean 1D profile, which can be directly calculated from 
a set of observed impedances. Among several possible 
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ways to estimate the regional mean 1D profile, we choose 
what is derived from the sum of squared elements (SSQ; 
Szarka and Menvielle 1997) of the observed impedance 
averaged over the observation array, because it is shown 
to be a good approximation of the optimal 1D profile 
(Rung-Arunwan et al. 2017). Thus, the main purpose of 
this paper is to examine how the choice of an initial or 
prior model will affect the PT inversion of distorted MT 
data. By testing, we further examined the performance of 
PT inversion with a proper initial/prior model for a case, 
where distortion is not purely galvanic.

MT data inversion
At each MT observation site, we collect the orthogonal 
components of the natural electric and magnetic field 
fluctuations. From the observation data, the MT imped-
ance tensor Z , which is the transfer function between 
orthogonal horizontal components of the electric field 
E and magnetic field B , is estimated as a function of 
frequency.

where ω denotes the angular frequency and rs is the posi-
tion vector of the sth station.

The 2× 2 complex-valued and frequency-dependent 
tensor Z in Eq. (1) is called the observed impedance. 
In the absence of distortion, the observed impedance 
reflects the regional structure of interest. In contrast, 
if the observation data contain galvanic distortion, the 
observed or distorted impedance tensor Z can be math-
ematically written as a product of the distortion tensor C 
and the undistorted impedance tensor ZU:

where the distortion operator C is a 2× 2 real-valued and 
frequency-independent tensor. Note that, for simplicity, 
the dependence on the angular frequency ω and the posi-
tion vector rs in Eq. (2) is implicit hereafter.

MT inversion is a mathematical procedure for finding 
the optimal distribution of model parameters (electrical 
resistivity) that explains the observed MT data by solv-
ing the minimization problem. The MT inversion scheme 
used in the present study is based on WSINV3DMT, a 3D 
MT inversion code (Siripunvaraporn et al. 2005; Siripun-
varaporn and Egbert 2009), which is a data space Occam’s 
inversion algorithm that minimizes the unconstrained 
objective function:

where �d and �m are the data misfit and the model 
constraint, respectively. The Lagrange multiplier � is 

(1)E(rs;ω) = Z(rs;ω)B(rs;ω),

(2)Z(rs;ω) = C(rs)ZU(rs;ω),

(3)
U(m, �) = �

−1�d(d,F [m], e)+�m(m,mp) −−→
m

min,

a parameter for tuning the trade-off between the data 
misfit and the model constraint. In this code, the data 
parameter d is an N-dimensional vector consisting of 
the observed MT responses to be inverted. Each data 
point is inversely weighted with the data uncertainty 
(observation error) e . Note that the dimension N is the 
product of the number of observation sites, the num-
ber of frequencies, and the number of impedance ele-
ments used in the inversion. In this study, we examine 
various definitions of the data vector, as described 
below. F [m] is the forward operator that calculates the 
forward response from the model parameter m cor-
responding to each site location and frequency. The 
model parameter m describes the whole model space 
divided into M cubic cells with constant resistivity ρi , 
where i = 1, ...,M , making m in Eq. (3) an M-dimen-
sional vector. Each element of m , mi , is defined 
as the resistivity measured on a logarithmic scale, 
mi = log10 ρi . The model evolves during the inversion 
process, which consists of a series of iterations, from 
the initial model. The model constraint is applied to 
the model at each iteration relative to the prior model, 
mp (see Siripunvaraporn and Egbert 2000; Siripun-
varaporn et  al. 2005). In theory, the prior model can 
be different from the initial model. The influence of 
the prior model was discussed by Tietze et  al. (2015). 
In the present study, the initial and prior models are 
assumed to be the same except in the last section, 
where we examine their effects independently.

A detailed review of inversion algorithms can be found 
in the report of Siripunvaraporn (2012) and references 
therein. To find the optimal model parameter ms , we need 
to differentiate the objective function with respect to the 
model parameter. This gives us the partial derivative of the 
response with respect to the model parameter, ∂mF [m] , 
called the model sensitivity. The exact derivations for the 
MT responses considered in this study are presented in the 
following two subsections.

Inversion of elements of the MT impedance tensor
In general, most existing inversion schemes invert the MT 
impedance estimated from observed electromagnetic data, 
which can be expressed as

where the subscripts j and k denote the orthogonal direc-
tions x or y. Each element of the observed impedance 
tensor Zjk is a complex number that can be written either 
as the sum of real Rjk and imaginary Ijk parts

(4)Z = {Zjk},

(5)Zjk = Rjk + iIjk ,
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or as a polar form using the magnitude |Zjk | and the phase 
φjk,

where the magnitude |Zjk | =
√

R2
jk + I2jk  , phase 

φjk = arctan(Ijk/Rjk) , and i denotes the imaginary unit.
In the present study, we invert the impedance tensor 

using logarithmic scaling, because this is consistent with 
the conventional representation of the frequency depend-
ence of the apparent resistivity and phase. We consider 
the inversion of the elements of the impedance tensor, 
and thus the forward solution F  consists of the elements 
of the calculated impedance tensor measured on a loga-
rithmic scale. From Eq. 6, the logarithmically scaled ZC

jk is

where the superscript C denotes the data derived from 
the forward calculation. The sensitivity of ZC

jk with 
respect to the model parameter m , which is the logarith-
mically scaled resistivity, can be formally given in com-
plex form as

and the sensitivity of log Zjk is

where the sensitivities of log |Zjk | and φjk can be written 
as

and

Details of the derivation are given in Appendix A.
In addition, one may choose to invert either all ele-

ments of the MT impedance tensor or only the off-diag-
onal elements, Zxy and Zyx (e.g., Siripunvaraporn et  al. 
2005; Tietze and Ritter 2013; Kiyan et  al. 2013). Invert-
ing all elements of the MT impedance tensor has been 
recommended, because it allows for the best recov-
ery of the underlying structure (Campanya et  al. 2016). 
However, this result was obtained in the case without 
distortion. Indeed, a reasonable inversion of impedance 
elements naturally converges to an accurate solution if 
the effect of distortion (expressed by C ) is negligible or 
weak, specifically, Z ≈ ZU . The main concern in the pre-
sent paper is how to obtain an accurate solution of the 

(6)Zjk = |Zjk |eiφjk ,

(7)log ZC
jk = log |ZC

jk | + iφC
jk ,

(8)∂mZ
C
jk = ∂m(R

C
jk + iICjk) = ∂mR

C
jk + i∂mI

C
jk ,

(9)∂m log ZC
jk = ∂m log |ZC

jk | + i∂mφ
C
jk ,

(10)∂m log |ZC
jk | =

1

|ZC
jk |2

(

RC
jk ∂mR

C
jk + ICjk ∂mI

C
jk

)

(11)∂mφ
C
jk =

1

|ZC
jk |2

(

RC
jk ∂mI

C
jk − ICjk ∂mR

C
jk

)

.

MT inversion when the observed impedances are signifi-
cantly distorted.

Phase tensor inversion in arctangent scaling
The phase tensor of any MT impedance can be read as

where

where Rjk and Ijk are the real and imaginary parts of the 
impedance tensor. See Caldwell et  al. (2004) for more 
details of the PT definition. Here, we propose inverting 
the PT with arctangent scaling, as expressed below, to 
be consistent with a conventional plot of the impedance 
phase as

Mathematically, the arctangent of any values bounded to 
[−∞,+∞] is bounded to 

[

−
π

2
,+

π

2

]

 . The arctangent scal-
ing is thought to help avoid the singularity of ψjk and its 
derivatives near the numerical bounds. In general, the 
impedance phase is defined as arg(Zjk) = arctan(Ijk/Rjk) 
in MT practice, which is simply because the impedance is 
relevant to logarithmic scaling (Eq. 6). Here, we applied 
the same functional form to each of the PT elements. 
Hereafter, we denote the PT with arctangent scaling as 
the PTATAN. The sensitivity of the PTATAN with 
respect to the model parameters m is simply written as

where the sensitivity of the PT, ∂mψjk , is available from 
Patro et al. (2013) or Tietze et al. (2015).

Data error calculation
The impedance is statistically estimated from the observed 
time series of the electromagnetic fields (e.g., Chave and 
Thomson 2003) with observation error. For a fair compari-
son of data misfit in which the observation error is used as 
a weight (see Eq. 3), we calculate the synthetic observation 
error for each data type from the synthetic error of the 

(12)�(Z) =
[

ψxx ψxy

ψyx ψyy

]

,

(13)

ψxx =
1

det(R)
(RyyIxx − RxyIyx),

ψxy =
1

det(R)
(RyyIxy − RxyIyy),

ψyx =
1

det(R)
(RxxIyx − RyxIxx),

ψyy =
1

det(R)
(RxxIyy − RyxIxy),

(14)τjk = arctan ψjk .

(15)∂mτjk =
1

1+ ψjk
2
∂mψjk ,
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impedance by error propagation. Here, we assume a con-
stant percent error, from which the synthetic error is calcu-
lated using the Frobenius norm of the impedance 
( ||Z||f =

√

|Zxx|2 + |Zxy|2 + |Zyx|2 + |Zyy|2 , Szarka and 
Menvielle 1997) as

where SPE is the synthetic percent error. The error on a 
logarithmic scale is calculated following the error propa-
gation rule (Ch. 3 of Taylor 1997):

The error for each element of the PT, δψjk , is calculated 
following the appropriate propagation rule given by Patro 
et  al. (2013). The error for the PTATAN can be simply 
derived as

Numerical experiments
Synthetic model
For the synthetic study, we used a model with 3D anomalies 
embedded in a layered earth, similar to that presented in 
the study of Campanya et al. (2016), as illustrated in Fig. 1. 
A comprehensive study was conducted by Campanya et al. 
(2016) using this synthetic model, but the effect of galvanic 
distortion was not examined. The model background con-
sists of four layers: (1) from the surface to a depth of 234 m, 
(2) between 234 and 1441 m, (3) between 1441 and 2041 
m, and (4) below 2041 m, with resistivity values of 100, 400, 
10, and 200 �m , respectively. Two conductive anomalies, 
namely, L1 and L2, with a resistivity of 3 �m are embed-
ded in resistive layer 2 (400 �m ) at a depth range between 
572 and 994 m. Resistive anomaly H1 with a resistivity of 
400 �m is embedded in conductive layer 3. The horizon-
tal mesh resolutions for the forward problem and inversion 
are 200 and 400 m, respectively.

An array of 40 non-uniformly distributed MT stations 
with a mean site spacing of 1.6 km (each station represents 
an area of 1.6 km × 1.6 km), covering an area of 8.0 km × 
12.8 km in the x and y directions, was used. The location 
of the sth station (xs, ys) is given by (Rung-Arunwan et al. 
2017)

where xc,s and yc,s are the coordinates of the center of 
each mesh area that the sth site represents, xr,s and yr,s 

(16)δZSPE = SPE× ||Z||f /
√
2,

(17)δ log |Zjk | = δφjk =
δZSPE

|Zjk |
.

(18)δτjk =
1

1+ ψ2
jk

δψjk .

(19)
xs = xc,s + sx × xr,s,

ys = yc,s + sy × yr,s,

are uniform random numbers in the range (− 0.5,+ 0.5), 
and sx and sy are the typical site spacing values in the x 
and y directions, respectively, both of which are taken to 
be 1.6 km in the present study (Fig. 1).

The synthetic MT responses for this setting were calcu-
lated using WSINV3DMT (Siripunvaraporn et  al. 2005; 
Siripunvaraporn and Egbert 2009). Examples of the MT 
impedance and the PTATAN for the station syn-0403 
over conductive anomaly L1 are shown in Figs. 2 and 3 , 
respectively.

Galvanic distortion of the MT impedance tensor
In the present study, we use the parameterization pro-
posed by Groom and Bailey (1989) to simulate the gal-
vanic distortion, in which the distortion operator C is 
defined in a manner analogous to deformation theory as

where the scalar g is the site gain and the operators T    
S   and A are, respectively, the twist, shear, and splitting 
operators, expressed as

in which t , e , and s are the twist, shear, and splitting 
parameters, respectively, which are real-valued. Each 
operator is normalized so that the norm is unity. As a 
consequence, the definitions of scaling (change in mag-
nitude) and geometric distortion (change in impedance 
dimensionality) are clearly separated. An alternative to 
the GB model is the perturbed identity matrix (PIM) 
model (e.g., Tietze et  al. 2015). The difference between 
the PIM and GB models of galvanic distortion is dis-
cussed in the study of Rung-Arunwan et al. (2017).

The (g, t, e, s) cohorts are randomly generated following 
the normal distribution. Here, we test cases with three 
standard deviation (SD) values of the normal distribu-
tion, namely, 0.1, 0.3, and 0.5 (Fig. 4), to represent cases 
of weak, moderate, and strong distortion, respectively, 
according to Rung-Arunwan et al. (2017). Note that these 
sets of GB parameters for different distortion levels are 
generated independently. An example of MT impedance 
elements distorted with (g , t, e, s) cohorts for different 
SD values (0.1, 0.3, and 0.5) is shown in Fig. 5. The aver-
age local distortion indicators (LDIs) (Rung-Arunwan 
et al. 2017) are calculated from the distorted data set, as 
shown in Fig. 6. A data set with stronger distortion shows 
larger and more scattered average LDIs. The error bar of 

(20)C = gTSA,

(21)

T =
1

√
1+ t2

[

1 − t
t 1

]

,

S =
1

√
1+ e2

[

1 e
e 1

]

,

A =
1

√
1+ s2

[

1+ s 0
0 1− s

]

,
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the average LDI is the standard deviation of the LDI as a 
function of frequency at each station.

Results
In this section, we compare the inversion results obtained 
using the PTATAN and full and off-diagonal elements of 
MT impedances (called ZLOGA and ZLOGO, respec-
tively) calculated from the synthetic model (Fig. 1) with 
and without galvanic distortion.

The 3D MT inversion software WSINV3DMT (Siri-
punvaraporn et  al. 2005; Siripunvaraporn and Egbert 

2009) was modified to invert PTATAN, ZLOGA, and 
ZLOGO data types using the formulation described in 
“MT data inversion” section.

In this study, an SPE of 5% was applied to the synthetic 
noise-free data and the errors were calculated by follow-
ing the derivation in “Data error calculation” section.

We ran 10 iterations of synthetic inversion for each 
data type (PTATAN, ZLOGA, and ZLOGO). We show 
the inverted models derived from the iteration that 
provided the minimum data root-mean-square misfit 
(dRMS), which is defined as

Fig. 1 Synthetic model used in this study
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where Fi[m] is the calculated response corresponding to 
each observation di and error ei.

To select the optimal initial model, we compare the 
inversion results obtained using various initial mod-
els, namely, UHS models with resistivity values of 10, 
100, and 1000 �m , denoted as UHS10, UHS100, and 
UHS1000, respectively (Fig. 7), and the regional mean 1D 
resistivity profile estimated from the average ssq imped-
ance, denoted as SSQ1D (Fig.  7). Note that the prior 
model is assumed to be the same as the initial model in 
each case.

SSQ1D is estimated by following Rung-Arunwan et al. 
(2016) and Rung-Arunwan et al. (2017). We first calculate 
the average ssq impedance from the given MT array:

(22)dRMS =

√

√

√

√

1

N

N
∑

i=1

∣

∣

∣

∣

di − F i[m]
ei

∣

∣

∣

∣

2

,

where S is the total number of MT stations in the array, 
which is 40 in the present case. The average ssq imped-
ance is then inverted to estimate a 1D profile using 
Occam’s inversion (Constable et  al. 1987), in which the 
first-order roughness is penalized. The result from the 
undistorted data converged within a dRMS value of unity 
(Fig. 7), which means that model responses agree with the 
observed ones within the observation error. As shown in 
Fig. 7, the SSQ1D can be regarded as a smoothed version 
of the optimal mean 1D profile.

The SSQ1D models from the distorted data set were 
also calculated. They were essentially the same as those 
obtained from the undistorted data, which is consistent 
with the study of Rung-Arunwan et al. (2017).

To quantify the extent to which the inversion recovers 
the synthetic 3D model, here we define the model recov-
ery factor using the normalized cross-correlation (NCC) 
proposed by Lewis (1995). The NCC is used to meas-
ure image similarity in template matching (Penney et al. 
1998, for comparison, see). Here, we modify the origi-
nal 2D NCC definition to suit the present problem. We 
define the model recovery factor as

(23)Z̄ssq(ω) =

[

S
∏

s=1

Zssq(rs;ω)

]1/S

,

-4 -3 -2 -1 0 1 2 3 4 
log(Period [s])

-1
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Fig. 2 Synthesized MT impedance elements at station syn‑0403
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Fig. 3 Synthesized PT elements in arctangent scaling corresponding 
to MT impedance elements at station syn‑0403 (Fig. 2)

Fig. 4 Distribution of GB distortion parameters (g, t , e, s) for SD values 
of 0.1, 0.3, and 0.5. Each distribution is compared with the probability 
density function of the theoretical normal distribution for the given 
SD (dashed curves)
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where m̄syn,i and m̄ are the mean values of the synthetic 
and inverted model parameters, respectively.

When distortion is not included, inverting the 
impedance data, either ZLOGA or ZLOGO, using the 
UHS100 model as the initial model results in reason-
able convergence (dRMS < 1) with the inverted mod-
els closer to the synthetic model (Fig.  8) than those 
obtained using other UHS initial models (Campanya 
et al. 2016). Inversion using SSQ1D as the initial model 
exhibits similarly good or slightly better performance.

Next, we consider the effect of distortion. The syn-
thetic MT responses were distorted with three sets of 
(g , t, e, s) cohorts, which were derived from the normal 
random numbers with SD values of 0.1, 0.3, and 0.5. 
They were inverted in the same manner as that for the 
undistorted data.

We found that the inversion results of distorted data 
show a number of artifacts depending on the degree of 
distortion (Figs. 9 and 10).

As clearly indicated by the model recovery factors 
(Fig.  11), inverting ZLOGO may produce less spuri-
ous artifacts and a more accurate model than invert-
ing ZLOGA, because the effect of phase mixing (Jones 
2011) is stronger for on-diagonal elements.

As shown in Fig.  11, the dRMS values for inverting 
ZLOGO and ZLOGA are 0.504 (2.130 and 4.232) and 
3.096 (8.513 and 12.73) using SSQ1D as the initial 

(24)

rm =
∑M

i=1

[

msyn,i − m̄syn

]

[mi − m̄]
√

∑M
i=1

[

msyn,i − m̄syn

]2∑M
i=1 [mi − m̄]2

,
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Fig. 5 Examples of synthetic MT responses at station syn‑0403 distorted with SD values of a 0.1, b 0.3, and c 0.5
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model, respectively, when the SD of (g , t, e, s) is 0.1 (0.3 
and 0.5).

A reasonable solution (dRMS  <  1) is obtained from 
the inversion of ZLOGO if distortion is weak (SD = 0.1). 
However, it becomes more difficult for the inversion to 
converge and resolve main features of the given structure 
when distortion is more intense. The selection of a good 
initial model (UHS100 or SSQ1D in this case) is essential 
for good inversion results. If we employ a less accurate 
initial model (UHS10 or UHS1000), the results are unre-
liable, producing a large dRMS and a small model recov-
ery factor.

Next, we inverted PTATAN data, which are free from 
galvanic distortion. As expected, we obtain inversion 
results comparable to those obtained by inverting undis-
torted impedances if a good initial model (UHS100 or 
SSQ1D) is employed. However, as has previously been 
pointed out (Patro et al. 2013; Tietze et al. 2015), invert-
ing PTATAN data strongly depends on the choice of ini-
tial model.

In contrast to inverting the impedance element data, 
inverting the PTATAN data barely recovers the given 
structure if the initial model is too conductive (UHS10) 
or, especially, too resistive (UHS1000), as shown in Fig. 8.

Similar to the case of inverting the impedance data, 
inverting the PTATAN data using UHS100 or SSQ1D 

as the initial model easily converges to a solution that 
is close to the synthetic model. Quantitatively speak-
ing, using UHS100 and SSQ1D as initial models gives 
comparable model recovery factors (Fig. 12) for all data 
types, although the data misfit from using SSQ1D tends 
to be slightly smaller. The only difference is that SSQ1D 
can be directly estimated from the data, while the mean 
value of resistivity must be assumed for UHS models. The 
UHS100 has no vertical variation in the resistivity, but 
the value is close to the vertically averaged resistivity of 
the synthetic model (see “Selection of initial model” sec-
tion for more details). This suggests that the lack of resis-
tivity information of the PT can be compensated for by 
giving an appropriate initial/prior model (see also Tietze 
et al. 2015). In addition, the investigation of using SSQ1D 
in the case, where the regional structure is not clearly 1D, 
as shown by Samrock et al. (2018), would be of interest. 
One may need to try both SSQ1D and a UHS model in 
such cases.

Generally speaking, the inversion of either the PT or 
impedance element data is affected by the choice of ini-
tial/prior model regardless of the presence of galvanic 
distortion.

The results of the present synthetic inversion indicate 
that SSQ1D is a practical choice of initial model that can 
be estimated from only observation data by assuming 
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Fig. 7 a Regional mean 1D resistivity profile estimated from the average ssq impedance (SSQ1D, solid black line). The SSQ1D model is compared 
with the optimal mean 1D profile obtained by an areal average of the synthetic 3D model (red solid line), UHS10 (dashed‑dotted line), UHS 100 
(dotted line), and UHS1000 (dashed line). b Synthetic data and inversion responses corresponding to those for the SSQ1D model



Page 10 of 24Rung‑Arunwan et al. Earth, Planets and Space  (2022) 74:51

that the distortion is a random phenomenon (Berdi-
chevsky et al. 1980).

Our numerical results show that it is difficult to recover 
the given structure by inverting distorted impedance 
element data, and inverting distortion-free responses, 
such as the PT, with a proper initial/prior model is more 
promising.

Discussion
Selection of initial model
From the results of synthetic inversion presented in 
the previous section, the 100 �m half-space (UHS100) 
model and the SSQ1D model are regarded as appropriate 
for the initial/prior model to provide acceptable results.

We can simply calculate the vertical average resistivity 
on a base 10 logarithmic scale of the SSQ1D model as

where Mz is the number of model parameters in the ver-
tical direction and σiz and diz are, respectively, the resis-
tivity and thickness of the izth layer. Using Eq. (25), the 

(25)log σ0 =
1

∑Mz
iz=1 diz

Mz
∑

iz=1

log σizdiz ,

Fig. 8 North–south (NS) cross sections at the easting of 200 m of the models inverted from the undistorted data using (a, d, g, j) PTATAN, (b, e, h, k) 
ZLOGA, and (c, f, i, l) ZLOGO with different initial models. The geometry of anomalies in the input model (Fig. 1) is represented by the gray solid line

Fig. 9 Data RMS misfits and the model recovery factors 
of the inverted models shown in Fig. 8 obtained by inverting PTATAN 
(black), ZLOGA (red), and ZLOGO (blue)
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vertically averaged resistivity of the SSQ1D and the opti-
mal 1D profiles (Fig. 7) can be estimated as 2.16 and 2.25 
on a base 10 logarithmic scale, respectively. The resistiv-
ity value of UHS100 model differs only by about 8.0% and 
12.5% , respectively, from these values. This is the reason 
why the UHS100 model outperforms the UHS10 and 
UHS1000 models.

This result suggests that using a UHS model with an 
arbitrary resistivity as the initial model is viable if the 
chosen resistivity value is close to the vertically aver-
aged resistivity of the optimal 1D profile. However, 
knowing the optimal mean 1D resistivity profile before-
hand is impossible in practice, and therefore, the initial 
guess of a 100 �m UHS may not always be applicable. 
When the resistivity structure is unknown, one must 
try various initial resistivity values, depending on the 
area of study. In contrast, the SSQ1D profile is obtained 
unambiguously from observational data, and hence a 
trial-and-error process with various UHS models is not 
necessary to determine the best inversion model.

Model and data direction vectors
So far, the inversion performance has been examined 
in terms of the dRMS. For example, the convergence of 
inverting PTATAN data using SSQ1D as the initial model 
is confirmed by the dRMS having its minimum value in the 
third iteration (Fig. 14c). In the synthetic study, the model 
recovery factor is also regarded as a measure of inversion 
performance. Both the dRMS data misfit and the model 
recovery factor measure the distance between multidimen-
sional vectors: the former between the vectors of observed 
and calculated responses and the latter between the vectors 
of estimated and synthetic model parameters. Here, we 
propose parameters that describe the direction angles of 
the model and data vectors.

First, we define the model correction vector angle 
(MCVA) αk at iteration k as

(26)αk = arccos
δmk · δmk ,syn

|δmk ||δmk ,syn|
,

Fig. 10 NS cross‑sections at the easting of 200 m of the models inverted from all elements of the distorted MT impedance tensor (ZLOGA) using 
different initial models
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where the model correction vectors are given by

where mk is the vector of model parameters (resistivity 
on a base 10 logarithmic scale in this case) at the kth iter-
ation and msyn is the vector of model parameters derived 
from the given synthetic model. As illustrated in Fig. 13, 
αk is the angle between the model correction vector at the 
kth iteration ( δmk ) and the model vector from a model of 
the kth iteration to the synthetic model (δmk ,syn).

The 2D illustration in Fig.  13a suggests that the 
parameter after correction will be closer to the syn-
thetic parameter than the parameter before correc-
tion, if the MCVA is smaller than 90°. As the inversion 
evolves and approaches conversion, the dRMS is 
expected to reach a minimum. If the initial guess is very 
good, there is little room for improving the parameters 
and thus the dRMS might only slightly decrease from 
the beginning. In such a case, the inversion takes only 

(27)δmk = mk+1 −mk ,

(28)δmk ,syn =msyn −mk ,

Fig. 11 NS cross‑sections at the easting of 200 m of the models inverted from the off‑diagonal elements (ZLOGO) of the distorted MT impedance 
tensor using differential initial models

Fig. 12 Data RMS misfits and the model recovery factors for different 
initial (prior) models obtained from inverting (a) all elements 
(ZLOGA) and (b) off‑diagonal elements (ZLOGO) of the distorted MT 
impedance tensor. Orange, red, and blue curves correspond to three 
different levels of distortion, as represented by SD = 0.1, 0.3, and 0.5, 
respectively
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a few iterations to converge (e.g., in the case of invert-
ing the PTATAN with SSQ1D as the initial model in 
Fig.  14c). After the minimum dRMS is reached, the 
model vector fluctuates around the synthetic model 
vector due to the presence of observation error. Conse-
quently, the MCVA fluctuates around 90° (see Fig. 14b 
and c, for example), which can be used as an indication 
of convergence.

The MCVA can thus indicate inversion performance. 
However, the MCVA depends on the true 3D resistiv-
ity structure, which is available only in a synthetic study. 
We, therefore, define the data correction vector angle 
(DCVA) βk at iteration k in a form similar to that of the 
MCVA:

where

and

where dk is the vector of the calculated data at the kth 
iteration and dobs is the vector of the observed data, 
which in this case is synthetic data. The physical meaning 
of the DCVA is similar to that of the MCVA. In the fol-
lowing paragraphs, the performance of inversion results 
described in the previous section is discussed in terms of 
dRMS and the MCVAs and DCVAs.

In PTATAN inversion (Fig.  14), the dRMS gradually 
decreases and reaches a minimum if an appropriate initial 
model (UHS100 or SSQ1D) is chosen. The MCVAs and 
DCVAs start from small values and approach 90°. When 
an inappropriate initial model (UHS10 or UHS1000) is 
chosen, the dRMS fluctuates from the beginning, making 
it difficult to recognize the minimum. This behavior may 
suggest that the inversion becomes stagnant at a certain 
local minimum.

(29)βk = arccos
δdk · δdk ,obs

|δdk ||δdk ,obs|
,

(30)δdk = dk+1 − dk

(31)δdk ,obs = dobs − dk ,

m0

m1

m2

δm0
δm1

δm1,syn

msyn

δm0,syn

α0

α1

(a) (b)

dsyn

d1d2

d0

δd0

δd0,syn

δd1,syn

β0

β1

δd1

Fig. 13 Schematic 2D illustration showing the concepts of a model 
and b data vectors. The vectors msyn , m0 , and mk (k = 1, 2, . . .) 
represent the synthetic model, the initial model, and the model 
at the kth iteration, respectively. The vectors dsyn and dk 
(k = 0, 1, 2, . . .) represent the synthetic data and the responses 
calculated from the model at the kth iteration, respectively. δmk 
and δdk are the model and data correction vectors, respectively. The 
MCVAs and DCVAs are indicated by αk and βk , respectively, for each 
iteration step. The dashed circle in (b) represents the assumed 
observation error
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Fig. 14 dRMS (top, black solid curves with symbols) and the MCVA (bottom, black) and DCVA (bottom, blue) at each iteration step obtained 
from inverting PTATAN using a UHS10, b UHS100, c SSQ1D, and d UHS1000 as the initial model. The dashed line in each of the dRMS plots indicates 
the iteration step, where the dRMS is minimized
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Figure 15 shows a 2D representation of the model and 
data vectors derived from inverting PTATAN data using 
SSQ1D as the initial model. Note that these vectors are 
not the correction vectors illustrated in Fig. 13. Here, the 
norms and angles of the model/data vectors are meas-
ured relative to the synthetic model/data vectors. From 
the initial model/data vectors, the inversion optimizes 

the objective function so that the model/data vectors 
move toward the synthetic ones (blue arrows). After the 
inversion reaches convergence (indicated by red arrows), 
the solutions slightly diverge.

As shown in the previous section, if distortion is neg-
ligible, inverting PTATAN and impedance data gives 
comparable results (Fig.  8); that is, the behaviors of the 
MCVAs and DCVAs of ZLOGA and ZLOGO inver-
sion  (Figs.  16 and 17) are similar to those of PTATAN 
inversion. When distortion is significant, however, the 
dRMS for ZLOGA and ZLOGO inversion decreases rap-
idly in the first few iterations but then stagnates at a high 
level (Figs. 18 and 19), particularly in cases of moderate 
(SD = 0.3) and strong (SD = 0.5) distortion.

Overall, reasonable convergence occurs if the MCVAs 
start from small values (much smaller than 90°). In 
other words, this condition guarantees that the model 
(and data) correction vector δmk (and δdk ) points in the 
direction that reduces the data misfit (approaching the 
solution).

If the initial MCVAs are large (but still less than 90°), 
the initial models may be very close to the solution. Only 
slight improvement is required by the inversion (e.g., 
Fig. 14c). Conversely, rapid and stable convergence is not 
expected if the initial MCVAs are obtuse.

Phase tensor inversion under inductive distortion
The present study with synthetic data showed that PTA-
TAN inversion with a proper initial/prior model is a reli-
able approach if the distortion is purely galvanic. In this 
section, we demonstrate the limitation of PTATAN inver-
sion using a model with near-surface small-scale hetero-
geneities (Fig.  20), in which inductive distortion might 

PT: SSQ1D
Model vector

Data vector

Model vector

Data vector

syn
i00
i01
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(a)

(b)

(c)

(d)

Fig. 15 2D representation of the a model and b data vectors derived 
from inverting synthetic PTATAN using SSQ1D as the initial model. 
They are enlarged in (c) and (d) to demonstrate how the model 
and data vectors evolve. The blue and brown arrows are the synthetic 
and initial model/data vectors, respectively. The red arrows are 
vectors from the iteration with the minimum dRMS. The gray grid 
shows the norm of 0.5 and the dashed circle represents the assumed 
observation error
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Fig. 16 dRMS (top, black solid curve with symbols) and the MCVA (bottom, black) and DCVA (bottom, blue) at each iteration step obtained 
from inverting ZLOGO of undistorted impedances using a UHS10, b UHS100, c SSQ1D, and d UHS1000 as the initial model. Dashed lines 
in the dRMS plots indicate the iteration step, where the dRMS is minimized
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take place. Here, oblongs with a typical scale length of 
1000 m are used to represent distorters. The details of the 
oblong distorter model construction are given in Appen-
dix  B. The distorter locations are randomly distributed 
over the area of interest. The resistivity of each distorter 
ρi is generated from a Gaussian random number follow-
ing the normal distribution with an SD of 0.8, N (0, 0.82) , 
as

(32)ρi = ρm × 10N (0,0.82),

where ρm is the mean value (100 �m in the present case). 
This heterogeneous layer is placed in the synthetic model 
(Fig. 1) from the surface to a depth of 234 m, where the 
resistivity is originally 100 �m (see Appendix  B). The 
inductive scale length of mean resistivity of 100 �m is 
estimated as about 50 m with a period of 10−4 s, which 
is much smaller than the typical scale of distorters given 
in the model. Thus, the distortion due to the oblong 
distorter model is expected to be inductive at shorter 
periods.
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Fig. 17 dRMS (top, black solid curve with symbols) and the MCVA (bottom, black) and DCVA (bottom, blue) at each iteration step obtained 
from inverting ZLOGA of undistorted impedances using a UHS10, b UHS100, c SSQ1D, and d UHS1000 as the initial model. Dashed lines 
in the dRMS plots indicate the iteration step, where the dRMS is minimized
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Fig. 18 dRMS (top, black solid curve with symbols) and the MCVA (bottom, black) and DCVA (bottom, blue) at each iteration step obtained 
from inverting ZLOGO distorted with SD values of a 0.1, b 0.3, and c 0.5 using SSQ1D as the initial model. Dashed lines in the dRMS plots indicate 
the iteration step, where the dRMS is minimized
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Synthetic impedances were calculated from the 
oblong model. The strength of distortion at each station 
is indicated by the average LDI (Rung-Arunwan et  al. 
2017) in Fig. 21. The average LDI suggests that station 
syn-0505 is strongly distorted. This may be due to the 
station being located near a distorter with a strong 
resistivity contrast (Fig. 20). At this station, the PT ele-
ments in arctangent scaling deviate from those of the 
undistorted case for a period of up to approximately 
100 s (Fig.  22). The corresponding LDI as a function 
of period from this station is shown in Fig. 23. The fre-
quency-dependent feature and the large phase angles 
of the LDI derived from the distorted data suggest the 
presence of induction effects from the distorters.
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The distortion due to the near-surface heterogeneity 
cannot always be expressed by GB parameterization, 
which expresses the effect by a real-valued distortion 
tensor, C . It is applicable only if the distortion is gal-
vanic. Galvanic distortion is realized when the induc-
tion scale length of the electromagnetic field variation 
is sufficiently larger than the actual scale (1000 m in 
this case) of the distorters (Utada and Munekane 2000). 
In other words, the distortion may be inductive if this 
condition is violated. In such a case, the distortion 
must be expressed by a complex-valued tensor, and, 
therefore, the condition that makes the PT distortion-
free no longer holds. In other words, the PT with dis-
torted impedance is no longer the same as the PT 
with undistorted impedance. The significant induc-
tive distortion in the present synthetic data set also 
affects the accuracy of the estimation of the mean 1D 
profile from SSQ1D (Fig.  24). As a result, the SSQ1D 
model calculated from the present synthetic data set is 
slightly different from that without distortion (Fig. 7) at 
a depth range of approximately 30–700 m. This differ-
ence can be ascribed to the presence of inductive dis-
tortion. In the following discussion, we invert the data 
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set with inductive distortion in a manner similar to that 
described in “Results” section.

The inversion results obtained from PTATAN, 
ZLOGA, and ZLOGO are shown in Fig.  25, and the 
inversion performance is summarized in Table 1. Com-
pared with the case of using the GB parameterization 
model, inverting the PTATAN from the model with 
distorters gives more near-surface artifacts (Fig.  26). 
This is due to the inductive effect generated from the 
distorters, which may also alter the induction effects 
from deep structures by mutual coupling. Regarding 
the inversion of impedance data, the result of inverting 
ZLOGO is qualitatively better than that for ZLOGA. 

Overall, inverting the PTATAN data provides inversion 
results that are both qualitatively and quantitatively 
better than those obtained by inverting the impedance 
data (ZLOGA and ZLOGO), and the process takes only 
a few iterations to converge. The dRMS, MCVA and 
DCVA from inverting the distorter model are shown 
in Fig.  27.The behavior of MCVAs and DCVAs from 
ZLOGA and ZLOGO inversion are similar to the case 
of parametric distortion (Figs. 18, 19). Those from PTA-
TAN inversion are similar to MCVA and DCVA shown 
in Fig.  14c, which shows reliable convergence.The 
results of inverting PT with a linear scale are given in 
Appendix C for comparison.
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Fig. 25 NS cross sections at the easting of 200 m of the models inverted from the synthetic model (Fig. 1) with near‑surface distorters (Fig. 20) 
using different data types in the inversion, a PTATAN, b ZLOGO, and c ZLOGA, and using SSQ1D as the initial model (Fig. 24)
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In the absence of distortion, inverting all elements of 
the MT impedance tensor has the greatest capacity to 
recover all features of the underlying structure (Cam-
panya et al. 2016). If galvanic distortion exists, however, 
inverting only the off-diagonal elements is preferable 
as long as the distortion is relatively weak. The results 
obtained in this paper suggest that inverting the PTA-
TAN with an appropriate initial model is quite reliable 
when distortion is purely galvanic. However, this condi-
tion cannot always be expected in practice. In general, 
near-surface distorters (of specific scales and contrasts) 
generate both inductive and galvanic effects. We demon-
strated that the inductive effect weakens with increasing 

period but may still cause considerable inductive distor-
tion. Unlike the galvanic effect, the inductive effect is fre-
quency-dependent and exists in the magnetic field as well 
(e.g., Chave and Smith 1994; Nolasco et al. 1998). Induc-
tive distortion in MT data is more problematic than gal-
vanic distortion and, therefore, has rarely been dealt with, 
particularly for on-land observations. Careful interpreta-
tion of PT inversion results is recommended, because 
the inversion of a data set with inductive distortion may 
cause some artifacts and alteration of the regional model. 
Checking the LDI before performing inversion is impor-
tant in practice, as it diagnoses the presence of galvanic 
or inductive distortion at each observation site, at least to 
some extent.

Importance of the prior model for phase tensor inversion
In general, the initial and prior models are identical in 
the inversion ( mp in Eq. 3), unless some a priori informa-
tion, such as data from geological or previous studies, is 
known. In this paper, we showed that the SSQ1D model 
could be a proper estimation of the initial/prior model 
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Fig. 27 dRMS (top) and the MCVA and DCVA (bottom) at each iteration step obtained from inverting a PTATAN, b ZLOGA, and c ZLOGO derived 
from the synthetic model with near‑surface distorters using SSQ1D as the initial model. The dashed line in the dRMS plots indicates the iteration 
step, where the dRMS is minimized

Table 1 Inversion performance for near‑surface heterogeneity 
model (Fig. 25)

Data type No. of iteration Data misfit Model 
recovery 
factor

PTATAN 2 0.7634 0.5173

ZLOGA 10 3.1676 0.4245

ZLOGO 9 1.0568 0.5520
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for the PT-based inversion. In some inversion codes, 
such as WSINV3DMT, the initial and prior models can 
be treated as independent. Therefore, in this section, we 
examine how the initial or prior model affects the inver-
sion performance separately, using a PTATAN data set 
from a synthetic model (Fig. 1).

First, SSQ1D was chosen as the initial model, and 
the prior models UHS10, UHS100, and UHS1000 were 
tested to simulate the situation (denoted, respectively, 
as SSQ1D/UHS10, SSQ1D/UHS100, and SSQ1D/
UHS1000), where the prior model is less proper than the 
initial model. As a result, the inversion did not converge 
in the case of SSQ1D/UHS10. In the cases of SSQ1D/
UHS100 and SSQ1D/UHS1000, the inversion did con-
verge and recover the main features of the input model 
(Fig. 28) comparable to the case using SSQ1D as the ini-
tial and prior model (Fig.  25a) qualitatively. However, 
these tests yielded larger dRMS misfits and smaller model 
recovery factors than those from the SSQ1D/SSQ1D case 
(Table 2) quantitatively.

Second, we kept the prior model fixed to the SSQ1D 
model, while UHS10, UHS100, and UHS1000 were 

chosen as the initial model to examine the case of using 
the proper prior model. The results showed that the 
inversion converged reasonably well qualitatively (Fig. 29) 
and quantitatively (Table  2). From these two tests, we 
may conclude that the choice of a good prior model is 
more crucial. However, this possibly depends on the 
inversion algorithm. In this study, the difference between 
the inverted model and the prior model was minimized 
(see Eq. 3). It might be interesting to examine the effect of 
the prior model on other inversion algorithms in which 
the prior model constraints are involved as a different 
form or not involved, which is out of the scope of the pre-
sent paper.

For the case of SSQ1D/UHS10, the inversion did not 
converge even if the initial DCVA was approximately 
67° (< 90°), while the initial MCVA in this case exceeded 
90°. Thus, the MCVA is more diagnostic, but it cannot be 
used in real data inversion, as discussed in “Model and 
data direction vectors” section. In practice we can say 
that the assumed prior model is not appropriate, and the 
inversion may hardly converge, when the initial DCVA is 
relatively large. However, all these results were obtained 

Fig. 28 NS cross sections at the easting of 200 m of the models inverted from the synthetic model (Fig. 1) with near‑surface distorters (Fig. 20). All 
used SSQ1D as the initial model, but the prior models, a UHS100 and b UHS1000, were examined. The result of SSQ1D/UHS10 is not shown, as its 
inversion did not converge

Fig. 29 NS cross sections at the easting of 200 m of the models inverted from the synthetic model (Fig. 1) with near‑surface distorters (Fig. 20). All 
used SSQ1D as a prior model, but the initial models, a UHS10, b UHS100, and c UHS1000, were examined
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only for WSINV3DMT code with a data-space Occam’s 
inversion algorithm. The behavior and diagnostic power 
of the MCVA and DCVA on other inversion algo-
rithms, e.g., conjugate gradient based or Gauss–Newton 
approaches is an interesting topic that should be thor-
oughly investigated in the future.

Conclusions
Galvanic distortion is geological noise and a kind of spa-
tial aliasing in MT observation caused by near-surface 
small-scale heterogeneities and topographic variations. 
If distortion effects in MT data are not treated prop-
erly, the inversion of such data may produce artifacts or 
false anomalies. One approach for dealing with distorted 
MT data is to invert the PT, which is free of galvanic 
distortion.

However, estimation of appropriate initial and prior 
models is crucial for reliable PT inversion, because the 
PT does not contain any information on the absolute 
value of Earth’s resistivity.

In the present study, we demonstrated that the use of 
the regional mean 1D profile estimated from the average 
ssq impedance (SSQ1D) is a promising solution to this 
problem. We conducted several tests with synthetic data 
to quantitatively show that PT inversion using SSQ1D 
as the initial/prior model gives reliable results provided 
that the distortion is galvanic. Most importantly, we con-
firmed that the SSQ1D model and the PT are obtained 
from only the observation data, and thus no other a pri-
ori information is required.

However, PT inversion results should still be interpreted 
with caution when a real MT data set, which may include 
inductive distortion, is used. Using a synthetic model with 
near-surface distorters, we showed that the PT responses 
may be altered, particularly at high frequencies, due to 
inductive distortion and that the inversion of such a data 
set may produce artifacts. Nevertheless, the inversion 
performance is still better than the cases of inverting MT 
impedance elements. We conclude that PT inversion with 

SSQ1D as the initial/prior model is a viable choice for deal-
ing with distorted MT data when distortion is purely gal-
vanic or weakly inductive. More work is needed to solve 
the problem of severely inductive distortion.

Appendix A. Sensitivity of MT impedance 
in logarithmic scale
The sensitivity of log ZC

jk (Eq. 9) consists of the sensitivity of 
the impedance magnitude and phase. From the definition 
of the MT impedance magnitude in terms of its real and 
imaginary parts,

from which we can write the sensitivity of log |ZC
jk | as 

follows:

From the definition of the MT impedance phase in terms 
of its real and imaginary parts:

the sensitivity of the impedance phase can be written as
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jk | =

√

RC
jk

2 + ICjk
2
,

(A.2)

∂m log |ZC
jk | =

1

|ZC
jk |

∂m|ZC
jk |

=
1

2 |ZC
jk |2

(

∂mR
C
jk

2 + ∂mI
C
jk

2
)

=
1

|ZC
jk |2

(

RC
jk ∂mR

C
jk + ICjk ∂mI

C
jk

)

.

(A.3)φC
jk = arg(ZC

jk) = arctan

(

ICjk

RC
jk

)

,

Table 2 Inversion performance for examining the initial/prior models

Initial/prior model Initial Minimum data misfit Model 
recovery 
factorData misfit DCVA MCVA

SSQ1D/SSQ1D 1.4029 38.8 75.2 0.7634 0.5173

SSQ1D/UHS10 1.4029 67.8 109.0 Not converged.

SSQ1D/UHS100 1.4029 43.2 70.7 0.7604 0.4939

SSQ1D/UHS1000 1.4029 50.3 54.6 1.0547 0.4921

UHS10/SSQ1D 2.5763 43.1 27.8 0.7542 0.5301

UHS100/SSQ1D 2.1554 37.7 67.3 0.7660 0.5283

UHS1000/SSQ1D 2.1581 45.5 32.8 0.7889 0.5226
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Appendix B. Near‑surface heterogeneities 
by the oblong distorter model
In general, near-surface distorters can have any shape 
and size. Here, oblong-shaped heterogeneity was chosen, 
which allowed us to control the typical scale and shape of 
the distorters in a simple fashion.

Given that the model space has lengths (in meters) of 
Lx and Ly in the horizontal directions x and y, respec-
tively, and is divided into Nx Ny cubic cells, as shown 
in Fig.  1, the distorters are embedded in the near-sur-
face layer with a thickness of d and a uniform back-
ground resistivity of ρ0 . The total number of distorters 
was K = LxLy/MxMy , where Mx and My are the typi-
cal dimensions of the oblongs in the orthogonal direc-
tions. The typical size M of the distorters was defined as 
M =

√

MxMy.
The distorters were distributed uniformly over the 

space. The shape of each distorter was assumed to be 
anisotropic. The controlling parameters were the azi-
muth θk and the aspect ratio (or flatness) µk . Both were 
assumed to be uniformly distributed, over [0, 360) and 
(0, 1], respectively. The resistivity of each distorter ρk was 
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∂mφ
C
jk =

1

1+
ICjk

2

RCjk
2

∂m
ICjk

RC
jk

=
RC
jk

2

ICjk
2 + RC

jk

2





RC
jk ∂mI

C
jk − ICjk ∂mR

C
jk

RC
jk

2





=
1

|ZC
jk |2

�

RC
jk ∂mI

C
jk − ICjk ∂mR

C
jk

�

.

generated from a Gaussian random number following the 
normal distribution with the given SD [see Eq. (32)].

In this paper, the typical size of oblongs M was assumed 
to be 1000 m (smaller than the average site spacing of 
1600 m). The area of each oblong was approximately 
1000× 1000 m2 . The ratios between the width and length 
of each oblong were uniformly distributed over [0.2, 1.8]. 
The parameters used to generate the oblong distorter 
model (shown in Fig. 20) are summarized in Table 3.

Appendix C. Example of inverting the PT 
with a linear scale
We show the results of inverting the PT with a linear 
scale (Fig.  30) from the synthetic model with and with-
out near-surface distorters. The inversion metrics, data 
misfit, and model recovery factors are given in Table  4 
in comparison with PTATAN. Overall, the performance 
of linear PT inversion is comparable to that of PTATAN 
inversion. This is probably because phase values in the 
present synthetic tests are in the moderate range (< 60°) 
to avoid the singularity problem.

Table 3 Parameters for the oblong distorter model used in this 
paper

Parameters Given value

Lx and Ly 128,000 m and 8000 m

Nx and Ny 64 and 40

d 234 m

ρ0 100 �m

SD for ρk 0.8

M 1000 m
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