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Abstract 

Afterslip inside a coseismic slip patch is rarely observed, though some previous studies suggest that it is driven by 
poroelastic rebound (PER). These studies assume constant frictional strength, whereas time-dependent strengthening 
(healing) of a fault is expected from laboratory experiments, which provide a basis for a rate- and state-dependent 
friction law (RSF). In this study, quasistatic poroelasticity (PE) was implemented in a dynamic earthquake sequence 
simulation using a spectral boundary integral equation method, and the effect of PER on the behavior of a fault 
governed by RSF was examined. Spatio-temporal convolution for PE would significantly affect the resolution of the 
numerical simulation affordable. This problem has been resolved by numerical approximation of the time depend-
ency of Green’s function of PE in the wavenumber domain, definition of memory variables, and reformulation of the 
temporal convolution into ordinary differential equations of them. In the novel method, the additional numerical 
costs due to PE are negligible. A planar fault with a rate-weakening patch embedded in the rate-strengthening region 
was simulated. Because it is the healing of the fault that competes against PER, both the aging law and slip law were 
examined, which have different characteristics in the evolution of the fault strength. The simulation results indicate 
that PER causes postseismic loading to the patch, but the healing efficiently suppresses afterslip not only for the aging 
law, but also for the slip law. When cases with different friction laws are compared, the healing is more significant for 
the aging law, which has log-t  strengthening at a limit of V → 0 . However, the effect of PER on the slip rate is minor 
for the slip law. The slip law yields additional healing if the fault is accelerated by loading owing to PER. The simulation 
results are consistent with the absence of afterslip within the coseismic slip patches in the observations.
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Introduction
Afterslip, which follows a dynamic earthquake rupture 
and can cause aftershocks (Hsu et al. 2006), takes place in 
the vicinity of a coseismic slip patch (e.g., Miyazaki et al. 
2004). The afterslip inside the patch has rarely been con-
firmed. Geodetic inversion sometimes yields an afterslip 
distribution that apparently overlaps with a coseismic slip 
distribution, but the resolution check (e.g., the check-
erboard test) indicates that it may be an artifact (e.g., 
Meneses-Gutierrez et al. 2019). The distribution of small 
repeating earthquakes (e.g., Kato and Igarashi 2012) 
more clearly shows that regions of afterslip and coseismic 
slip are separated. Earthquake sequence simulation for 
a fault governed by the rate- and state-dependent fric-
tion law (RSF) (Dieterich 1979; Ruina 1983) in an elastic 
medium typically yields the invasion of afterslip into the 
patch, but the core of the patch remains locked until the 
next earthquake (e.g., Tse and Rice 1986; Scholz 1998; 
Lapusta et al. 2000).

On the other hand, some previous theoretical and 
numerical studies have suggested the possibility of after-
slip even inside the coseismic slip patch driven by the 
poroelastic effect. Rapid, undrained deformation due to 
earthquake rupture causes heterogeneity in the volumet-
ric strain and pore pressure p in the surrounding poroe-
lastic medium. This causes fluid flow, diffusion of p , and 
associated poroelastic deformation, referred to as poroe-
lastic rebound (PER) (e.g., Peltzer et  al. 1996). For an 
isotropic medium, the undrained and drained responses 
have the same shear modulus µ and different Poisson’s 
ratios νu > νd , where the subscripts u and d indicate the 
undrained and drained conditions, respectively.

Detournay and Cheng (1991) demonstrated that 
instantaneous opening of a drained crack of a fixed 
length (“mode 1” in their paper) is followed by addi-
tional time-dependent opening due to PER. The similar-
ity between an in-plane shear crack and an open crack 
in the static limit suggests an afterslip due to the PER 
(Fig. 1). Coseismic, rapid stress drop �σ causes slip dis-
tribution scaled by the inverse of the stiffness in the und-
rained limit µ′

u . For example, a two-dimensional (2-D) 
linear shear crack of length 2R in an in-plane problem 
hosts a maximum slip of 2R�σ/µ

′

u = 2(1− νu)R�σ/µ . 
In the limit of a sufficiently large time, the stiffness in 
the drained limit µ′

d is important. In the example of the 
2-D crack (Knopoff 1958), the maximum slip is given by 
2R�σ/µ

′

d = 2(1− νd)R�σ/µ . The difference between 
them 2 (νu − νd)R�σ/µ is generated as an afterslip. 
Yamashita (2007) and Yamashita and Suzuki (2009) stud-
ied the case with differences in poroelastic properties 
across the fault, and suggested afterslip even within the 
coseismic slip patch and postseismic crack extension due 
to PER (Table 1).
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Fig. 1  Difference in the undrained and the drained responses for 
uniform stress drop �σ . Afterslip due to PE expected for an inplane 
shear crack with constant frictional strength is indicated in grey
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These models assume a constant interface strength, 
whereas laboratory friction experiments show an increase 
in the fault strength (healing) with the time of stationary 
contact after slip ceases (Dokos 1946; Dieterich 1972), as 
is realized by the RSF (e.g., Marone 1998). In this study, 
quasistatic poroelasticity (PE) was implemented in a 
dynamic earthquake sequence simulation (e.g., Lapusta 
et al. 2000) accounting for elastic wave propagation using 
a spectral boundary integral equation method (SBIEM), 
and its consequences on the fault behavior were inves-
tigated. Note that there are a number of recent studies 
on poroelastic effect on a fault governed by the RSF. Jha 
and Juanes (2014) developed a quasistatic model for RSF 
faults embedded in poroelastic medium with multiphase 
flow. Torberntsson et  al. (2018) carried out quasidy-
namic earthquake sequence simulations for an RSF fault 
in poroelastic medium with a permeable shear zone, and 
demonstrated an earthquake rupture induced by fluid 
injection. A similar finite difference approach was taken 
by Heimisson et  al. (2019) to study aseismic transients 
in a shape of slow slip pulses under the quasidynamic 
assumption. A linearized stability analysis of a RSF fault 
in a poroelastic medium allowing dilatancy and compac-
tion in the fault zone was presented in Heimisson et al. 
(2021). Although PER should operate actively in just after 
earthquakes, postseismic behavior has not been reported 
in detail.

Linear PE is assumed here for simplicity. Linearity 
allows us to calculate the quasistatic deformation due 
to PE by spatio-temporal convolution of the slip history 
and Green’s function. On the other hand, in the dynamic 
earthquake sequence simulation developed by Rice and 
Ben-Zion (1996) for an elastic medium, dynamic, wave-
mediated stress transfer is calculated by spatio-tempo-
ral convolution of the slip history and Green’s function 
of elastodynamics. The computational costs and stor-
age of history for this calculation are limiting factors 
for the problem size given the restricted computational 
resources. The additional spatiotemporal convolution for 
PE significantly affects the resolution of the fault afford-
able. Miyake and Noda (2019) addressed this problem for 
a Maxwell-viscoelastic medium by defining a memory 
variable and reformulating the temporal convolution into 
an ordinary differential equation (ODE) of the memory 
variable. Note that Ruina (1983) took a similar approach 
in formulating the rate- and state-dependent friction law. 
This method enabled the implementation of quasistatic 
viscoelastic relaxation in a dynamic earthquake sequence 
simulation without significant additional cost. In this 
study, PE was implemented using a similar method by 
introducing 18 memory variables for each discrete wave-
number without conducting a temporal convolution.

A simple fault model with one rate-weakening patch 
embedded in the rate-strengthening region was simulated. 
The postseismic strengthening of the patch is a key process 
that competes against PER. Therefore, both the aging law 
and slip law were tested, which have different characteris-
tics in the state evolution (Marone 1998). A fault within a 
uniform poroelastic medium was considered in this paper. 
The short-time response within a coseismic time scale 
was assumed to be given by the undrained response. Such 
assumption cannot be realistic for a fault between dissimi-
lar materials (e.g., Rudnicki and Rice 2006; Dunham and 
Rice 2008). Note that attenuation and dispersion of elastic 
waves due to wave-induced fluid flow are neglected. Und-
rained cases were first simulated, and then simulations 
with PE with different characteristic diffusion times were 
conducted. Based on the simulation results, the possibility 
of enhancement of afterslip due to PER is discussed.

Methodology
Poroelastic Green’s function in the SBIEM
A planar fault embedded in a linearly poroelastic infi-
nite medium is considered. To concentrate our focus 
on the effect of PER, dilatancy and compaction due to 
deformation of fault gouge (e.g.,, Heimisson et  al. 2021) 
are neglected. Because it is the volumetric strain ǫkk that 
causes the pore pressure change p and the subsequent fluid 

Table 1  Physical properties used in the simulations

* Properties for granite in Wang (2001)

The other poroelastic properties appearing in the main text ( M and κ ) can be 
expressed in terms of the properties listed here. Parameter studies in terms of c  
were conducted

Poroelastic properties

 Shear wave speed cs 3 km/s

 Shear modulus µ 30GPa

 Biot’s stress coefficient α 0.47*

 Undrained Poisson’s ratio νu 0.34*

 Drained Poisson’s ratio νd 0.25*

 Diffusion coefficient c Variable

Frictional properties

 Direct effect parameter A 1MPa

 Evolution effect parameter B 1.5MPa(|x| ≤ R)

0(|x| ≥ 1.1R)

Aging law

State-evolution slip distance L
ag [

0.15π(1− νu)(B − A)2/bµ
]

R

Modified slip law

State-evolution slip distance L
sl 2× 10−6

R

Characteristic time tc L
sl/(1m/s)
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flow, PE is not important in anti-plane problems. There-
fore, the focus of this study was on in-plane problems. The 
new method proposed here can be readily applied to the 
3-D problem of a planar fault, because it the convolution 
kernel for such a problem can be constructed by the com-
bination of those for 2-D in-plane and anti-plane problems 
(Geubelle and Rice 1995; Lapusta and Liu 2009).

In an elastodynamic problem with a fault, shear trac-
tion on a fault τ at location x and time t can be expressed 
as follows (Cochard and Madariaga 1994; Geubelle and 
Rice 1995):

where τ0 is the traction realized at a reference state with-
out any slip on the fault, φ is the wave-mediated stress 
transfer due to previous fault motion, V  is the slip rate, 
µ is the shear modulus, and cs is the shear wave speed. 
The final term in Eq. (1) represents the impedance effect, 
which is sometimes referred to as the radiation damping 
effect (Rice 1993). Rice and Ben-Zion (1996) split φ into 
the following two terms:

where φst is the static traction change, which would be 
achieved if the fault were instantaneously welded up and 
elastic waves radiated out of the system. φdy is simply 
defined as φdy = φ − φst . In the elastic case, φst depends 
only on the current slip distribution, and φdy is calculated 
by the spatiotemporal convolution of V  and Green’s func-
tion with truncation in terms of the delay time. The time 
window for the convolution tw is taken as the time for 
which the shear wave travels several times the system size 
(coseismic timescale). In an in-plane problem, the Fou-
rier transform of φst is expressed as follows:

where µ′ is expressed by µ and the Poisson ratio ν as

and D is the Fourier transform of slip the δ

In this study, it was assumed that the fluid flow was 
negligible in the coseismic timescale; φdy was calculated 
in the same manner as in previous studies for an elastic 
medium (e.g., Lapusta et  al. 2000) with the undrained 

(1)τ(x, t) = τ0(x, t)+ φ −

µ

2cs
V (x, t),

(2)φ = φst + φdy,

(3)�st(k , t) =

∞
∫

−∞

φst(x, t)e
−ikxdx = −

∣

∣k
∣

∣µ
′

2
D(k , t),

(4)µ
′

=

µ

1− ν
,

(5)D(k , t) =

∞
∫

−∞

δ(x, t)e−ikx
dx.

properties. φst is modified to φPE
st  to account for the PE. 

The constitutive law of linear poroelasticity is as follows:

Equations  (6) and (7) are the stress–strain relations 
accounting for the changes in p and in the fluid content 
ζ , where σij is the stress, ǫij is the strain, Cijkl is the drained 
elastic modulus, αij is the Biot stress coefficient, and M 
is the Biot modulus. Equation  (8) is Darcy’s law, where 
qi is volumetric flux of the fluid, κij is the mobility of the 
fluid given by the permeability of the medium divided 
by the viscosity of the fluid kij/η . Equation  (9) is the 
mass conservation law for the pore fluid. For simplicity, 
the medium is assumed to be isotropic. In this case, the 
degrees of freedom of the tensorial rock properties are 
significantly reduced, such that Cijkl is expressed in terms 
of the shear modulus µ and the drained Poisson ratio νd , 
αij = α , and κij = κ = k/η.

Cheng and Detournay (1998) presented a spatiotempo-
ral stress change due to a sudden, spatially concentrated 
slip δ(x, t) = δD(x)H(t) (Appendix D.11 in their paper). 
δD is the Dirac’s delta function, and H is the Heaviside 
function. Evaluating the corresponding shear traction on 
the fault, we obtain Green’s traction function for a con-
centrated slip τG as follows:

where µ′

u and �µ′ are the effective on-fault rigidity under 
undrained conditions and the difference between the 
drained and undrained conditions, respectively, and are 
given by

where νu is the undrained Poisson ratio

where c is the diffusion coefficient of p given by

(6)σij = Cijklǫij − αijp,

(7)p = M
(

ζ − αijǫij
)

,

(8)qi = −κijp,j ,

(9)
∂ζ

∂t
+ qi,i = 0.

(10)

τG(x, t) = H(t)
2πx2

{

µ
′

u +�µ
′

[

31−e−x2/4ct

x2/4ct
− 2e−x2/4ct

]}

.

(11)µ
′

d =

µ

1− νd
,µ

′

u =

µ

1− νu
,�µ

′

= µ
′

d − µ
′

s,

(12)νu =

1

2

(

1−
µ(1− 2νd)

Mα2(1− 2νd)+ µ

)

,

(13)c =
2κµ(νu − νd)(1− νd)

α2(1− νu)(1− 2νd)
2
.



Page 5 of 15Noda ﻿Earth, Planets and Space           (2022) 74:89 	

Using Green’s function τG , the static part of the trac-
tion change accounting for PE φPE

st  can be expressed as 
follows:

Fourier transformation leads to

where a dot represents time derivative, and TG is the Fou-
rier transform of τG

Note that H(t) was eliminated, because TG(k , t) only in 
t > 0 is important. F  is a universal function that is inde-
pendent of the material properties:

Song and Rudnicki (2017) derived a Green’s function 
for a dislocation in a poroelastic medium with “leaky” 
fault plane, which has a resistance (fluid flux per pore 
pressure gap across the fault plane). It is a generalization 
of the solution by Cheng and Detournay (1998), and may 

(14)

φPE
st (x, t) =





∞
�

−∞

dx
′

t
�

−∞

dt
′



V
�

x
′

, t
′

�

τG
�

x − x
′

, t − t
′

�

.

(15)

�PE
st (k , t) =

∞
�

−∞

φPE
st (x, t)e

−ikx
dx

=





t
�

−∞

dt
′



Ḋ

�

k , t
′

�

T
G
�

k , t − t
′

�

,

(16)

T
G(k , t) =

∞
∫

−∞

τG(x, t)e−ikx
dx

= −

∣

∣k
∣

∣µ
′

u

2

[

1+
�µ

′

µ
′

u

(

1− F

(

ctk
2
))

]

.

(17)F(s) = (1+ 2s)erfc
(√

s
)

−

2
√

π

√

se−s.

substitute the Green’s function used here to study the 
effect of impermeable, caly-rich fault.

Implementation using memory variables
A direct evaluation of Eq. (15) requires storage of the slip 
rate history in the past, which requires significant addi-
tional computational resources. Miyake and Noda (2019) 
resolved this problem by reformulating the temporal con-
volution into an ODE of a memory variable, the Fourier-
transformed effective slip Deff . In this study, the effective 
slip was defined based on the undrained mechanical 
response as follows:

From Eqs. (15), (16), and (18), Deff is expressed as follows:

For Maxwell viscoelasticity in antiplane problems, 
Miyake and Noda (2019) found a simple ODE of Deff . A 
similar formulation is possible for Maxwell viscoelasticity 
in in-plane problems (under preparation) and most likely 
for many other linear rheologies. For poroelasticity, an 
ODE equivalent to Eq. (19) could not be found so that a 
numerical approximation was developed.

Figure 2a, b shows F(s) in linear and logarithmic vertical 
scales, respectively. Note that F(s) represents the transition 
between the undrained ( F(0) = 1 ) and drained ( F(∞) = 0 ) 
responses. F(s) is a monotonically decaying function and 
becomes smaller than 10−6 by the non-dimensional time 
s = 10 . If it can be approximated as follows:

Equation (19) then becomes

(18)�PE
st (k , t) = −

|k|µ
′

u
2 Deff(k , t).

(19)

Deff =

t
∫

−∞

Ḋ
(

k , t
′

)

[

1+
�µ

′

µ
′

u

(

1− F
(

c
(

t − t
′

)

k2
))

]

dt
′

.

(20)F(s) ≈

n
∑

i=1

aiexp

(

−

s

si

)

,

s0 8642 10

1

0.8
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0
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lo
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0(F
(s
))
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Fig. 2  Plots of a F(s) and b log10(F(s)) , which represent transition between undrained to drained responses



Page 6 of 15Noda ﻿Earth, Planets and Space           (2022) 74:89 

where Di represents additional memory variables defined 
as follows:

Equation (22) can be reformulated into an ODE for each 
i as follows:

This can be easily integrated every time step.
Each memory variable Di has its weight of contribu-

tion −ai�µ
′

/µ
′

u to the Fourier-transformed effective 
slip Deff and its non-dimensional characteristic decay 
time si . ai and si for i = 1, 2, . . . , n are determined by 
least-squares fitting of Eq.  (20) to discretely sampled 
data {F(0.01), F(0.02), . . . , F(10)} under the constraint 
∑n

i=1ai = 1 . The residual decreases as n increases (Fig. 3), 
and the absolute approximation error becomes less than 
10−6 with n = 18 , which is adopted in the applications 
described later in this paper.

There were 18 memory variables for each wavenumber, 
and the number of collocation points in the wavenumber 
domain was approximately the same as the number of 
spatial grid points. The uniform mode does not contrib-
ute to the shear stress and need not be considered. Noda 
and Lapusta (2010) used approximately 120 memory 
or state variables for each point on the fault to express 
the frictional heating and thermal pressurization of the 
pore fluid. The time integration of these variables does 

(21)
Deff ≈

t
∫

−∞

Ḋ

(

k , t
′

)

[

1+ �µ
′

µ
′

u

(

1−
∑

n

i=1aiexp

(

−

c

(

t−t
′
)

k
2

si

))]

dt
′

=

(

1+ �µ
′

µ
′

u

)

D

(

k , t
′

)

−
�µ

′

µ
′

u

∑

n

i=1aiDi(k , t),

(22)

Di(k , t) =

t
�

−∞

Ḋ

�

k , t
′

�

exp



−

c

�

t − t
′

�

k
2

si



dt
′

.

(23)Ḋi(k , t) = Ḋ(k , t)−
ck2

si
Di(k , t).

not result in a significant additional computational cost. 
Indeed, in the examples shown later, the computational 
time for a sequence of 20 earthquakes may be shorter 
in cases with PE relative to the undrained case. This is 
because PER decreases the recurrence interval. The pro-
posed method was found to be quite efficient.

The time integrations of slip δ , its Fourier transform D 
and a state variable in a rate- and state-dependent fric-
tion law in the dynamic earthquake sequence simulation 
by Noda and Lapusta (2010) are based on the assumption 
of piecewise constant V  over time. Here, the time inte-
gration of memory variables Di is performed exactly in 
the same manner, with an unconditionally stable second-
order accurate predictor–corrector method based on 
an exponential time differencing method. Note that the 
characteristic decay time si/k2c is so small for high-wave-
number components that explicit time integration based 
on a constant time derivative is unrealistic in the simu-
lation of interseismic periods. For details, please refer to 
Noda and Lapusta (2010), in which a similar technique 
was adopted to simulate the diffusion of temperature and 
pore pressure normal to the fault.

Problem setting of example problems
System geometry
Let us select length, speed, and stress as the three inde-
pendent dimensions and consider appropriate scales 
relevant to natural earthquakes. Earthquakes occur in a 
vastly wide range of length scales, as recognized by the 
Gutenberg–Richter law. In addition, the permeabil-
ity κ has the dimension of squared length and is known 
to vary for orders of magnitude depending on the rock 
type. Therefore, the length scale of the problem shall 
not be specified at this point. The variation in the elastic 
property of rock is minor compared to them. Therefore, 
the scales of speed and stress are specified in the exam-
ple problems described below by setting cs = 3 km/s 
and µ = 30 GPa . Biot’s stress coefficient α , undrained 
and drained Poisson’s ratios νu and νd were set α = 0.47 , 
νu = 0.34 , νd = 0.25 , respectively, based on the values 
for granite in Wang (2001).  The parameters used in the 
example simulations are listed in Table 1.

The effect of PER was investigated for a simple problem 
setting: a planar fault governed by RSF (Dieterich 1979; 
Ruina 1983) with a rate-weakening patch. The frictional 
resistance at steady state is as follows:

0
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lo
g 10

(F
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))
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nd
 lo

g 10
(|R

es
id

ua
l|)

s
0 8642 10

F(s)
n = 3

n = 18

n = 15
n = 12

n = 9
n = 6

Fig. 3  F(s) and the residual of the numerical approximation of F(s) 
(Eq. (20)). The absolute error was less than 10−6 with n = 18
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where τ∗ is the steady-state frictional resistance at the 
reference V = V∗ , and A− B represents the steady-state 
rate dependency. Note that the value of τ∗ is insignificant, 
as a linear poroelastic material is considered; spatial vari-
ation in τ∗ is absorbed by definition of the initial or refer-
ence state from which the slip δ is measured. A and B are 
the amounts of direct and evolution effects, respectively. 
The rate-weakening patch is expressed using a smoothed 
boxcar function (The SCEC/USGS Spontaneous Rupture 
Code Verification Project, TPV105; Noda and Lapusta 
2010):

as (Fig. 4)

These values are consistent with effective normal stress 
about 100 MPa.

The fault is driven by prescribing a long-term constant 
slip rate Vpl = 10−9m/s in |x| > 2R . Vpl constrains the 
long-term slip rate of the fault and was adopted as the 
reference, V∗ = Vpl . Noda (2021) developed a dynamic 
earthquake sequence simulation using an SBIEM without 
a periodic boundary condition based on the method of 
Cochard and Rice (1997). This method is only applicable 
if the source of the traction change is supported within 
a certain region. Here, the effective elastostatic source 
is the inverse Fourier transform of Deff , which may not 
be constrained within |x| < 2R . Therefore, removal of 
the periodic boundary condition may be difficult. In the 
example problems, periodic boundaries are assumed 
every 16R , four times the length of the segment governed 
by the RSF law. This is sufficiently long such that the 
effect of the periodic boundary is modest (Lapusta et al. 

(24)τss = τ∗ + (A− B)ln
(

V
V∗

)

,

(25)sbox(x;W ,w) =











1 (|x| ≤ W )
1
2

�

1+ tanh
�

w
|x|−W−w +

w
|x|−W

��

(W ≤ |x| ≤ W + w)

0 (|x| ≥ W + w)

,

(26)A = 1MPa,B = 1.5sbox(x;R, 0.1R)MPa.

2000; Noda 2021). The time window tw for the calculation 
φdy was set to 12R/cs.

Friction law
Both the aging law and the slip law are examined as 
follows:

and

where L is the characteristic slip of the state evolution, θ 
is the state variable in the aging law representing recent 
nondimensional slowness, and � is the state variable in 
the slip law representing the frictional strength relative to 
the reference ( τ − τ∗ at V = V∗ ). The aging law provides 
more efficient healing of the fault than the slip law as fol-
lows (Marone 1998):

At the rupture front, the aging law results in an almost 
linear slip weakening of the slope −dτ/dδ ≈ B/L , while 
the slip law causes exponential slip weakening towards 
the residual frictional strength (Ampuero and Rubin 
2008), which causes a much larger −dτ/dδ . In prelimi-
nary simulations with constant L (not shown in this 
paper), the dynamic earthquake sequence simulation 
with the slip law requires large computational resources 
and produces a series of supershear ruptures, which 
may not be realistic. To produce comparable earthquake 
sequences of sub-Rayleigh ruptures between the aging 
law and slip law, and to enable parameter study in terms 
of the fluid mobility κ for affordable computational costs, 
L is increased at the coseismic slip rate for the slip law, 
while it is kept constant for the aging law as follows:

This modification leads to a time-weakening model at 
high enough slip rate V ≫ Lsl/tc for the slip law with the 

(27)
τ = τ∗ + Aln

(

V
V∗

)

+ Bln(θ)

θ̇ =
V
L

(

V∗

V − θ

)

(

aging law
)

,

(28)
τ = τ∗ + Aln

(

V
V∗

)

+�

�̇ =
V
L (τss − τ )

(slip law).

(29)lim
V→0

θ̇ =

V∗

L
, lim
V→0

�̇ = 0.

(30)L =

{

Lag
(

Aging law
)

Lsl + Vtc (Slip law)
.
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characteristic time tc.The fracture energy increases as the 
peak slip rate increases, and the length of the process 
zone is kept finite even after a rupture grows extensively. 
Andrews (2004) used a time-weakening friction in simu-
lation of dynamic rupture to account for increasing frac-
ture energy with rupture size. Note that this modification 
is not meant to make the simulation “realistic” regarding 
complex physical and chemical effects activated at coseis-
mic slip rates (e.g., Di Toro et al. 2011). The healing of the 
fault after an earthquake rupture may rule out afterslip 
driven by the PER. Thus, a comparison of the effect of 
PER is important between a fault governed by the aging 
law and that governed by the slip law at a low quasistatic 
slip rate.
Lag is selected such that the nucleation radius Rc (Rubin 

and Ampuero 2005) at the undrained condition becomes 
as follows:

This yields Lag = 1.73× 10−6R . This is small enough for 
the rate-weakening patch to accommodate nucleation, so 
that a compact region of acceleration appears prior to an 
earthquake rupture (e.g., Chen and Lapusta 2009; Noda 
and Hori 2014). The length scale of the process zone 
(Lapusta and Liu 2009) is as follows:

To resolve the process zone of the rupture front, 
the interval of the grid points �xag is selected 
as �xag = 4R/512 = 7.81× 10−3R such that 
�

ag
0 /�xag = 5.93 . The interval between the periodic 

boundaries, 16R is discretized by 2,048 grid points.
In example problems with the slip law, Lsl is selected as 

Lsl = 2× 10−6R . The characteristic time tc is selected as 
follows:

The Rayleigh wave speed for the undrained Poisson’s 
ratio νu = 0.34 is approximately as follows:

For a rupture of this terminal speed, the corresponding 
length scale of the process zone is as follows:

Ampuero and Rubin (2008) showed that a length scale 
inversely proportional to B plays an important role in 

(31)Rc =
1

π

B

(B− A)2
µ

1− νu
Lag = 0.15R.

(32)�
ag
0 =

9π

32

µ

1− νu

Lag

B
= 4.63× 10−2R.

(33)tc =
Lsl

1m/s
.

(34)cR = 9.34 × 10−1cs.

(35)�R = cRtc = 5.60× 10−3R.

nucleation with the slip law. With the present parameter 
selection, it becomes as follows:

If a point on the fault is in a steady state at Vpl and accel-
erates owing to stress concentration up to Vdy , then 
Eqs.  (28) and (30) yield the maximum slope of the slip 
weakening as follows:

The corresponding on-fault length scale of the process 
zone is as follows:

This has the minimum value achieved at 
Vdy = 5.92× 10−2 m/s , generating:

Compared to Eq.  (35), modification of L (Eq.  (30)), 
and the selection of the present frictional param-
eters makes the resolution of the propagating rupture 
front easier than the nucleation of the earthquake rup-
tures. The interval of the grid points �xsl is selected as 
�xsl = 4R/4,096 = 9.77× 10−4R so that �sl

0 /�x = 3.25 . 
The interval between the periodic boundaries, 16R is dis-
cretized by 16,384 grid points.

Fluid transport property
Among the physical parameters, the permeability of the 
medium k is the most poorly constrained, thus the mobil-
ity of the fluid κ or the diffusion coefficient c are difficult 
to constrain. k varies by several orders of magnitude 
depending on many factors, such as rock type, conditions 
of consolidation, and degree of fracturing or damage. It 
is most likely heterogeneous and is known to show scale 
dependency (Schulze-Makuch et  al. 1999). Accounting 
for these complexities is beyond the scope of this study. 
Here, κ was assumed to be uniform in the medium, and a 
parameter study was conducted.

First, the undrained limit ( κ = 0 ) was simulated for 
reference purposes. A sequence of 20 earthquakes was 
calculated, and the intervals of the 19th and 20th earth-
quakes were selected as the characteristic timescales of 
the seismic cycle Tu . Simulations with different κ values 
were conducted to see the effects of PER. The timescale 
of PER, TPE is given by an appropriate length scale to 

(36)Lb =

µ

1− νu

Lsl

B
= 6.06× 10−2R.

(37)

−
dτ
dδ

= ln
(

Vdy

Vpl

)

B
Lsl+Vdytc

= ln
(

Vdy

Vpl

)(

1+
Vdy

1m/s

)

−1
B
Lsl
.

(38)�sl
0 =

9π

32
Lb

(

ln

(

Vdy

Vpl

))

−1(

1+
Vdy

1m/s

)

.

(39)�sl
0 ≥ 5.23× 10−2Lb = 3.17× 10−3R.
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the second power divided by the diffusion coefficient c . 
Adopting R as the length scale as follows:

Simulations with TPE/Tu from 10−7 to 101 were con-
ducted in the parameter study.

Initial conditions
The distribution of the initial loading on fault τ0 was 
selected consistently with a steady-state solution at 
V = V∗ = Vpl and τ = τ∗ as follows:

Initial perturbations in the state variables are given as 
follows:

(40)TPE =

R2

c
=

1

2

R2

κµ

α2(1− νu)(1− 2νd)
2

(νu − νd)(1− νd)
.

(41)τ∗ = τ0 −
µ

2cs
Vpl.

(42)θ(x, 0) = 10
(

1+ 0.1
x

R

)

(

aging law
)

,

(43)�(x, 0) = A
(

1+ 0.1
x

R

)

(slip law).

The fault was initially stronger than in the steady-state 
solution to generate the first events shortly after the start 
of the simulation. Mirror symmetry at x = 0 was broken 
in the initial state to avoid perfectly symmetric solutions 
that are unstable. If numerical error including inevitable 
round-off error is controlled perfectly symmetric, then a 
numerical solution for a symmetric problem is symmet-
ric. However, if numerical error is not symmetric, then 
the anti-symmetric component may grow and a numeri-
cal solution deviates from the symmetric solution unless 
it is stable. Because we are interested in a stable solution 
(attractor), there is no point simulating the growth of the 
numerical error from a very small amplitude.

Results
For presentation purposes, the length scale was set 
as R = 1 km in visualizing the results, which yielded 
Lag = 1.73mm and Lsl = 2.00mm . If a reader is inter-
ested in a longer/shorter fault by a factor, the conversion 
is easily achieved by multiplying by the same factor the 
values having dimension of length (e.g., fault length and 
slip) and time, that is, the length times the speed (e.g., 
event intervals).
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Aging law, undrained case
Figure 5 shows the simulation results for the undrained 
case. Seismic events are defined by a threshold of 0.1m/s 
in the spatially maximum slip rate. Coseismic slip dis-
tributions are indicated by red lines in Fig. 5a, and there 
was almost no gap between earthquakes in the central 
part of the rate-weakening patch. In the core of the seis-
mogenic patch, the seismic coupling was almost one, and 
significant afterslip did not occur. Although the location 
of earthquake nucleation alternated between the positive 
and negative x sides of the patch, the recurrence inter-
val decays to a stable value of Tu = 5.13× 108 s . The 
elastodynamic time window tw = 4 s corresponds to 
7.80× 10−9 Tu.

Figure 5b shows the interseismic shear stress and fault 
strength relative to the reference τu − τ∗ and Bln(θu) at 
the center ( x = 0.5�x ) as a function of time after the 
19th earthquake tpos . The subscript u indicates the solu-
tion in the undrained case, and tpos = 0 is defined by a 
threshold at the spatially maximum slip rate of 0.1m/s . 
Equation (27) indicates that ln(V ) is proportional to the 
stress minus strength, (τu − τ∗)− Bln(θu) (Fig. 5c). Thus, 
the comparison of τu − τ∗ and Bln(θu) helps us to under-
stand the mechanism of acceleration and deceleration of 

the fault (Fig. 5c). After the 19th earthquake, Vu was still 
sufficiently large, even below the threshold, to decrease 
τu in the patch until approximately tpos = 10−9Tu . Then, 
τu at the center increased due of aseismic slip outside 
the locked patch and penetration of creep fronts into it, 
significantly after about tpos = 10−1Tu . Bln(θu) shows a 
log-t increase with the slope of Bln(10) , which is charac-
teristic of the aging law in the limit of zero slip rate after 
the cut-off time due to initially non-zero θu . During the 
interseismic period, Vu varied by more than 10 orders 
of magnitude. The change in ln(Vu) was first domi-
nated by the change in strength before tpos/Tu becomes 
a good fraction of 1 , and then by a change in stress. The 
increase in Bln(θu) leads to the deceleration of the fault, 
and Vu becomes smaller than the long-term slip rate 
Vpl = 10−9 m/s at tpos = 2.86× 10−6Tu.

Aging law, effect of PER
The recurrence interval of the undrained 
case Tu = 5.13× 108 s and Eq.  (40) yielded 
κ = k/η =1.75× 10−14(TPE/Tu)

−1m2/Pas . For 
a typical value of water viscosity η = 10−4 Pas , 
k = 1.75× 10−18(TPE/Tu)

−1m2 . The investigated range 
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of TPE/Tu from 10−7 to 101 corresponds to the range of k 
from 1.75× 10−11m2 to 1.75× 10−19m−2.

An example of the simulation result with PER 
( TPE = 10−6Tu ) is shown in Fig. 6. It is apparent from the 
plot of cumulative slip (Fig. 6a) that there was no signifi-
cant afterslip in the middle of the rate-weakening patch. 
This was the instance for all simulations conducted.

The evolution of the fault strength Bln(θ) almost traces 
that in the undrained case, while τ − τ∗ increased at 
approximately tpos = 10−7Tu = 0.1TPE by approximately 
1MPa . The PER loaded the fault in the post-seismic 
period, but the amplitude was not sufficient to enhance 
the afterslip significantly. Because A = 1MPa , the addi-
tional loading due to PER increased V  by a factor of 3 
(Fig.  6c), and this effect persisted until the next earth-
quake. Despite an increase in V  , the time-dependent 

strengthening without slip increment (the first term in 
Eq. (27)) dominated, such that PER did not affect θ.

Cases with different TPE are compared in Fig.  7. The 
stress buildup due to PER occurred at approximately 
tpos = 0.1TPE , and its amplitude was smaller for a larger 
TPE (Fig.  7a). With TPE = 101Tu , PER required a longer 
time than the recurrence interval of the earthquake, and 
its effect was hardly recognized. The effect of PER on the 
fault strength Bln(θ) is not clear (Fig.  7b), and thus the 
effect on the slip rate (Fig. 7c) is explained by that in τ.

Slip law, undrained case
The undrained case with the slip law is shown in Fig. 7. 
Although L at a low slip rate was longer than in the aging 
law, the nucleation size was much smaller (Ampuero and 
Rubin 2008). Similar to the case with the aging law, the 
afterslip was difficult to recognize in Fig. 8a. The recur-
rence interval was Tu = 4.71× 108 s . The elastodynamic 
time window tw = 4 s corresponds to 8.49× 10−9 Tu.

The evolution of the stress relative to the reference 
τu − τ∗ (Fig.  8b) is similar to that in the case with the 
aging law (Fig.  5b): τu − τ∗ decreased until approxi-
mately tpos = 10−9Tu , and then increased significantly 
after approximately tpos = 10−1Tu . The fault strength �u 
showed a log-t increase, even though it was not predicted 
in the limit of V → 0 (Eq.  (28)). The evolution of �u 
requires a slip increment for the slip law. The strength-
ening rate was smaller than Bln(10) , as mentioned by 
Marone (1998) in the context of a slide-hold-slide friction 
experiment. Vu decreased with time more slowly than in 
the case of the aging law and became smaller than Vpl at 
tpos = 4.81× 10−4Tu . It continued to decrease until tpos 
became a good fraction of Tu , and increased thereafter 
(Fig. 8c). �u also increased sharply during this accelera-
tion period.

Slip law, effect of PER
The recurrence interval Tu = 4.71× 108 s , Eq.  (40), and 
η = 10−4 Pas yield k = 1.91× 10−18(TPE/Tu)

−1m2 . 
The investigated range of TPE/Tu from 10−7 to 101 cor-
responds to the range of k from 1.91× 10−11m2 to 
1.91× 10−19m−2.

An example case with the slip law and PER 
( TPE = 10−6Tu ) is shown in Fig.  9, on the same verti-
cal scale as that with the aging law (Fig. 6). Again, after-
slip was hardly visible in the plot of the cumulative slip 
(Fig.  9a). This was the instance for all simulations con-
ducted. Therefore, the present simulations do not sup-
port significant afterslip in the core of the seismogenic 
patch due to PER for the slip law or for the aging law.
τ − τ∗ increased due to PER by approximately 1 MPa 

at approximately tpos = 0.1TPE , and � also increased 
relative to the undrained case almost at the same time 
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(Fig.  9b). PER increased V  (Fig.  9c), but this effect was 
minor compared to the case with the aging law (Fig. 6c) 
owing to the increase in �.

Cases with different TPE are compared in Fig. 10. Load-
ing due to PER increased τ at approximately tpos = 0.1TPE  
(Fig. 10a). When TPE = 101Tu , PER did not affect τ signif-
icantly. � also increased at approximately tpos = 0.1TPE 
by a smaller but comparable amount (Fig.  10b). Conse-
quently, the increase in V  relative to the undrained case 
was only modest (Fig. 10c).

Discussion
The series of simulations conducted in this study indi-
cate that PER causes postseismic loading to the patch 
of coseismic slip, but the enhancement of afterslip 
due to PER is negligible. In the idealized case of uni-
form stress drop and constant frictional strength 
(Fig.  1), the afterslip normalized by the coseismic slip 
is µ

′

u/µ
′

d − 1 = (1− νd)/(1− νu)− 1 = 1.36× 10−1 . 
Compared to this, Figs.  6a and 8a clearly show that the 
postseismic healing of a fault efficiently suppresses the 
afterslip at the center of the rate-weakening patch. This is 

the case not only in cases with the aging law but also with 
the slip law. The simulation results were consistent with 
the absence of afterslip inside the coseismic slip patches 
in observation.

Marone et al. (1995) inferred a very long cut-off heal-
ing time of approximately 100days ≈ 107 s based on the 
observation of small repeating earthquakes. The long 
cut-off time delays healing and may produce afterslip due 
to PER. However, by what means to realize such a long 
cut-off time in RSF is an open question. In the aging law, 
the cut-off time is given by L divided by the coseismic 
slip rate well behind the rupture front. Stress drop �σ 
of 3MPa and the impedance of µ/cs of 10MPa(m/s)−1 
yields coseismic slip rate of the order of 0.1m/s in self-
similar dynamic rupture (Broberg 1978). For a cut-off 
time of 107 s , L must be on the order of 106 m . Evidently, 
the nucleation size (Eq. (31)) is too large to model a real-
istic earthquake.

The intrinsic cut-off time of the state evolution tcx 
(Nakatani and Scholz 2006) may also produce a long cut-
off time. If it is implemented in the aging law, the friction 
law becomes as follows:

x, km
–2 10–1 2

9

8

7

C
um

ul
at

iv
e 

sl
ip

, m
Slip law, undrained case

20

19

18

17

16

15

(a)

lo
g 10

(V
u),

 m
/s

Time after the 19th event log10(tpos / Tu) 
–12 –2–4–6–8–10 0

–2

–4

–6

–8

–10

–12

–14

–16

Slip rate
(c)

(b)

τ u –
 τ * a

nd
 Θ

u, 
M

Pa

10

–25

5

0

–5

–10

–15

–20

Shear stress

Strength

Undrained case, x = 0.5∆xsl

Undrained case, x = 0.5∆xsl

Slope: B
 ln

(10)

Fig. 8  Simulation result in the undrained case with the slip law. For presentational purposes, the length scale is selected as R = 1 km . a Cumulative 
slip distribution, blue: every 108 s , red: every 0.02 s during earthquakes. Integers indicate ordinal numbers of earthquakes in the simulated sequence. 
b Shear stress (red) and strength (bule) of the fault relative to the reference at x = 0.5�x

sl
= R/2048 as a function of time after the 19th earthquake. 

c Slip rate near the center, x = 0.5�x
sl as a function of time after the 19th earthquake



Page 13 of 15Noda ﻿Earth, Planets and Space           (2022) 74:89 	

The steady-state shear strength is given as follows:

and the rate dependency, as follows:

Therefore, the friction law becomes rate strengthening 
at V > (B/A+ 1)L/tcx ≡ Vc . Laboratory-measured val-
ues of L < 1mm (e.g., Blanpied et al. 1998) and the large 
cutoff time tcx ≈ 108 s yield Vc < 10−11 m/s , which is too 
small for frictional instability to occur at typical long-
term slip rate. The reconciliation of the long cut-off time 
and seismogenic fault behavior deserves future study.

(44)
τ = τ∗ + Aln

(

V
V∗

)

+ Bln(θ + 1)

θ̇ =
V
L

(

V∗

V − θ

)

V∗ = L/tcx

.

(45)τss = τ∗ + Aln

(

Vtcx

L

)

+ Bln

(

L

Vtcx
+ 1

)

,

(46)dτss
dln(V )

= A−
B

1+Vtcx/L
.

Conclusions
Quasistatic poroelasticity (PE) was successfully imple-
mented in a dynamic earthquake sequence simulation for 
a fault governed by a rate- and state-dependent friction 
law (RSF) using a spectral boundary integral equation 
method. In this method, the numerical approximation 
of the time dependency of Green’s function in the wave-
number domain and the definition of memory vari-
ables are the keys to avoid temporal convolution for PE. 
The additional computational cost relative to the elastic 
simulation was negligible. A simple model of a planar 
fault with a rate-weakening patch embedded in a rate-
strengthening region was simulated to investigate the 
effects of poroelastic rebound (PER). As for the RSF, 
not only the aging law, but also the slip law is investi-
gated with modifications to increase the characteristic 
state-evolution slip distance at coseismic slip rates for 
tractability of the numerical simulation. The simulation 
results indicate that PER causes postseismic loading to 
the region of stress drop of approximately 0.1R2/c after 
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an earthquake, where R is the half length of the coseismic 
slip patch and c is the diffusivity of the pore fluid pres-
sure. For both the aging law and slip law, however, the 
healing of a fault efficiently suppresses afterslip inside 
a coseismic slip patch, while it was suggested by previ-
ous theoretical studies for a crack of constant strength. 
The simulation results are consistent with the absence of 
afterslip within the coseismic slip patches in the observa-
tions. When the cases with the two different friction laws 
are compared, healing is more significant in the cases 
with the aging law, but the effect of PER on the slip rate V  
is minor in the cases with the slip law. In the interseismic 
period, the log-t healing term is dominant for the aging 
law. Therefore, the change in V  hardly affects the evolu-
tion of the fault strength. On the other hand, for the slip 
law, healing is driven by the slip increment, and thus the 

increase in V  results in additional strengthening, which 
works as a negative feedback.
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