
Yabe et al. Earth, Planets and Space           (2022) 74:93  
https://doi.org/10.1186/s40623-022-01651-0

FULL PAPER

Quantitative logging data clustering 
with hidden Markov model to assist log unit 
classification
Suguru Yabe1*   , Yohei Hamada2, Rina Fukuchi3, Shunichi Nomura4, Norio Shigematsu1, Tsutomu Kiguchi1 and 
Kenta Ueki5 

Abstract 

Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually 
acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill 
core samples, are used to distinguish geological units. Clustering is useful for interpreting logging data and making 
log unit classification and is usually performed by manual inspection of the data. However, the validity of clustering 
results with such subjective criteria may be questionable. This study proposed the application of a statistical clustering 
method, the hidden Markov model, to conduct unsupervised clustering of logging data. As logging data are aligned 
along the drilled hole, they and the geological structure hidden behind such sequential datasets can be regarded 
as observables and hidden states in the hidden Markov model. When log unit classification is manually conducted, 
depth dependency of logging data is usually focused. Therefore, we included depth information as observables to 
explicitly represent depth dependency of logging data. The model was applied to the following geological settings: 
the accretionary prism at the Nankai Trough, the onshore fault zone at the Kii Peninsula (southwest Japan), and the 
forearc basin at the Japan Trench. The optimum number of clusters were searched using a quantitative index. The 
clustering results using the hidden Markov model were consistent with previously reported classifications or lithologi‑
cal descriptions; however, our method allowed a more detailed division of logging data, which is useful to interpret 
geological structures, such as a fault or a fault zone. Therefore, the use of the hidden Markov model enabled us to 
clarify assumptions quantitatively and conduct clustering consistently for the entire depth range, even for different 
geological sites. The proposed method is expected to have wider applicability and extensibility for other types of data, 
including geochemical and structural geological data.
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Main Text
Introduction
Revealing subsurface structures is a fundamental task 
in various geophysical and geological studies. For exam-
ple, examining stratigraphy and fault distributions helps 
geologists interpret the temporal evolution of geologi-
cal formations (Tanaka et  al. 2001; Strasser et  al. 2009). 
Exploring the spatial variation in physical properties 
along major faults can lead to an improved understand-
ing of the seismic behavior of faults (Moore and Saffer 
2001; Saffer 2007; Kimura et al. 2007; Lockner et al. 2011; 
Sutherland et al. 2017). In the petroleum industry, iden-
tification of antiform structures is crucial to detect pos-
sible oil reservoirs (Harding 1974). Geological surveys 
on the surface, geophysical exploration, and drilling for 
the recovery of drill core samples and logging data are 
the main strategies used to estimate subsurface struc-
tures. Each method has different types of data and res-
olutions, which are complementary to each other. For 
efficient interpretations, combination of various kinds of 
data from different strategies, known as “core-log-seismic 
integration, has been suggested (Cerchiari et  al. 2018). 
An appropriate statistical framework is required to com-
bine various datasets with different units and qualities, 
although such an approach has not been established.

During scientific drilling, such as the International 
Ocean Discovery Program (IODP), acquired logging data 
are often used to classify logs into log units as basic infor-
mation for interpreting the geological structure at the 
site. In the case of IODP, the standard criteria for log unit 
classification are based on qualitative and quantitative 
analyses (Expedition 314 Scientists 2009a). Qualitative 

analyses include “identification of the boundaries sepa-
rating sections of different log responses and concomi-
tant rock properties” (Expedition 314 Scientists 2009a), 
which have been conducted subjectively based on discus-
sions among onboard scientists. Although quantitative 
analyses have been performed to validate the qualitative 
analyses, they only include “investigating the percen-
tile ranges and distribution of absolute values within the 
visually defined logging units” (Expedition 314 Scientists 
2009a), which does not rely on any statistical models. 
Although log unit classifications are usually reasonable, 
their quantitative validity should be justified by some 
statistical methods. Based on a statistical method, auto-
mated clustering provides a team of scientists with quan-
titative basis to discuss geological interpretations of the 
obtained data.

Townend et  al. (2013) conducted a principal compo-
nent analysis for wire-line logging data to characterize the 
detailed structure of the hanging wall of the Alpine Fault, 
New Zealand. They used seven types of logging data 
[natural gamma ray (NGR), borehole diameter, neutron 
porosity, compensated density, P-wave velocity, electri-
cal resistivity, and spontaneous potential] as inputs. Their 
results showed that seven-dimensional logging data are 
well represented by the first, second, and third principal 
components, which represent the electric, acoustic, and 
NGR characteristics, respectively. However, their unit 
classification depended on the lithological units from the 
core descriptions. Logging data for each lithological unit 
overlapped in the principal component domain, resulting 
in imperfect reconstruction of the lithology of the cored 
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section. A similar approach was performed by Townend 
et al. (2017).

Another statistical clustering method with the Markov 
chain assumption has been applied to lithology classifi-
cation using geophysical exploration data (e.g., Eidsvik 
et al. 2004; Larsen et al. 2006; Hammer et al. 2012; Lind-
berg and Omre 2014; Feng et al. 2018). A hidden Markov 
model (HMM) is a relatively simple and useful approach 
among this line of studies (Schumann 2002; Jeong et al. 
2014; Tian et  al. 2021). HMM is often used as a super-
vised machine-learning technique to predict unknown 
lithology after training the model with datasets of known 
lithology. However, logging data clustering for log unit 
classification, which is the main focus of this study, can-
not be accomplished with such supervised HMM.

This study proposed the application of a statistical clus-
tering method with an unsupervised HMM for logging 
data clustering. Unsupervised clustering methods usu-
ally require analysts to subjectively determine various 
criteria, such as the number of clusters to be divided. A 
statistical approach enables us to represent the assumed 
clustering criteria quantitatively and provides a quantita-
tive basis and validity for log unit clustering, assisting in 
making geological interpretations and determining log 
unit classification.

In the next section, we provide a formulation of the 
clustering method using HMM. Thereafter, the results for 
the three applications at different geological settings are 
presented. Finally, we discuss the stability of the cluster-
ing results and the applicability and extensibility of the 

proposed method. The proposed data-driven method 
could be used to determine the appropriate number of 
clusters. The obtained clusters were not only consist-
ent with previously reported log units, but also provided 
interpretations for finer structures.

Hidden Markov model
HMM is a statistical approach that estimates a sequence 
of unobservable (hidden) states. It is widely used for 
analyzing sequential data and has applications in voice 
recognition (Jelinek 1997) and bioinformatics (Baldi 
et  al. 2001). At every sequential step, the hidden state 
may remain in the same state or change to other states 
according to transition probabilities, which depend on 
the current state (i.e., Markov process). Although we can-
not observe hidden states directly, they are estimated 
from observable quantities recorded at every sequential 
step. These observables are generated according to a gen-
eration probability distribution, which depends on the 
hidden state. The HMM is suitable for estimating geo-
logical structures (e.g., Schumann, 2002; Eidsvik et  al. 
2004). The geological structures to be estimated cannot 
be directly measured (i.e., hidden states); instead, they 
must be interpreted based on various measurements of 
rocks (i.e., observables). In our problem setting of log-
ging data, the hidden states and observables correspond 
to log units and logging data, respectively (Fig.  1). This 
study proposes the application of HMM to logging data 
and inverting a sequence of log units.

For simplicity, this study considered logging data with a 
constant sampling interval: all types of logging data used 
in the analysis were acquired at the same depth. Addi-
tionally, we did not consider missing data. Although the 
methodology can be extended to such incomplete data 
sets, in this study, if the original datasets were incom-
plete, we created complete data sets by interpolation. The 
types of logging data are expected to be quantities that 
represent the physical properties of geological formation, 
such as electrical resistivity, natural gamma ray (NGR), 
velocity, and porosity. In addition, we used depth infor-
mation as observables in the HMM. As was observed in 
the applications of the model, logging data sometimes 
showed significant depth dependency. In such cases, the 
values of the logging data had different meanings accord-
ing to their depth. Therefore, in this study, we added 
depth data to observables in the HMM-based clustering 
to represent depth dependency.

The HMM is formulated as follows (e.g., Bishop 2006). 
We used D-dimensional vectors of logging data xi for 
i = 1, . . . ,N  , where N is the total number of sequential 
data. The number of hidden states (log units) is assumed 
to be K. K-dimensional vectors zifori = 1, . . . ,N  repre-
sent the hidden state at the i-th sequential step such that 

Fig. 1  Schematic concept of Hidden Markov model for logging data 
clustering
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they have 1 for the k-th component ( zi,k ) and 0 for others 
when the i-th sequential step is at the k-th hidden state 
( k = 1, . . . ,K  ). The probability of choosing the hidden 
state in the first sequential step can be written with a dis-
crete distribution as follows:

where π is a K-dimensional vector that represents the 
probability of the k-th hidden state to be the hidden 
state in the first sequential step. The prior distribution 
for Eq. (1) can be written with a Dirichlet distribution as 
follows:

where C(α0) represents normalizing coefficients and can 
be rewritten as

Similarly, the transition probability of the hidden state 

at each sequential step and its prior distribution are writ-
ten with discrete and Dirichlet distributions as follows:

where A is a K × K matrix, whose jk component repre-
sents the transition probability from the j-th hidden state 
to the k-th hidden state.

We assumed normal distribution for the generation 
probability of observables as follows:

(1)P(z1|π) =

K
∏

k=1

π
z1,k
k ,

(2)P(π) = C(α0)

K
∏

k=1

π
α0,k−1

k ,
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k=1 α0,k)
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.

(4)P(zn|zn−1,A) =

K
∏

j=1

K
∏

k=1

A
zn−1,j zn,k
jk ,

(5)P(A) =

K
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(

αj
)

K
∏

k=1

A
αjk−1

jk ,

where G represents the normal distribution, and µk and 
�k are the mean vector and precision matrix of the gen-
eration probability for the k-th hidden state, respectively. 
Its prior probability was assumed to be a Gaussian–
Wishart distribution, which is a conjugate prior distribu-
tion for the normal distribution as follows:

where β0 and υ0 are scalar hyperparameters, and m0 and 
w0 are the vector and matrix hyperparameters, respec-
tively. The function W represents Wishart distributions 
that can be represented as below:

where B is a normalizing factor, and Tr(•) is trace of a 
matrix. Although we assumed the normal distribution as 
the generation probability of observables and the Gauss–
Wishart distribution as its prior distribution in this study, 
other probability distributions can be used according to 
the characteristics of the logging data used.

The joint probability can be written using Eqs. (1), (2), 
and (4), (5), (6), (7) as follows:

The model was optimized by monitoring the evidence 
value P(x), which is the marginal probability with respect 
to the model parameters Z = (z,π ,A,µ,�) . As the evi-
dence is difficult to maximize directly, it can be rewritten 
using variational approximation as follows (Jordan et al. 
1998; Jaakkola 2001):

where KL is the Kullback–Leibler divergence, which 
measures a distance from a probability distribution P to 
another one q.

Here, q is the posterior distribution of Z given x.
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−
1
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,

(9)P(x, z,π ,A,µ,�) = P(z1|π)P(π)
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(10)LnP(x) = L(q)+ KL(q �P),

(11)KL(q �P) = −

∫

q(Z)ln

(

P(Z|x)

q(Z)

)

dZ.
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As KL(q ‖P) is non-negative, L(q) represents the infi-
mum of lnP(x) . Assuming,

L(q) can be maximized using the iterative E–M algo-
rithm (Dempster et  al. 1977; McLachlan and Krishnan 
1997). We used the forward–backward algorithm (Baum 
1972; Rabiner 1989) in the E step of the E–M algorithm to 
calculate the expectations of the model parameters. Opti-
mization is regarded to converge when the increase in 
L(q) is less than 10–4. As the solutions obtained through 
the E–M algorithm depend on the initial assumptions on 

(12)L(q) =

∫

q(Z)ln
P(x,Z)

q(Z)
dZ.

(13)q(z,π ,A,µ,�) = q(z)q(π ,A,µ,�)

µk and �k , we prepared 100 sets of initial average vec-
tors µk stochastically using the K-means+ + method 
(Arthur and Vassilvitskii 2007). The initial �k was set to 
w0 . We adopted the best model among them based on 
the approximated evidence values L(q) . After the optimi-
zation, the most possible sequence of hidden states was 
estimated using the Viterbi algorithm (Viterbi 1967). The 
depth ranges of the clusters were characterized by 5th 
and 95th percentiles.

The HMM described above contains six hyperpa-
rameters ( K ,α,β0, υ0,m0 and w0 ). The hyperparameter 
α in Eqs.  (2) and (5) controls how often hidden states 
(in other words, log unit) change to another state at 
each sequential step. In this study, all components 
of the vector αj(j = 0, . . . ,K ) were set to one, which 

Fig. 2  Geological settings and data summary at Site C0001. a Regional map off the Kii Peninsula, Japan, showing the location of Site C0001. b 
Local seismic reflection image after Expedition 314 Scientists (2009b). c Logging data and previously reported log- and litho-units (Expedition 314 
Scientists 2009b; Expedition 315 Scientists 2009)
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represented a uniform distribution of the Dirichlet 
distribution, i.e., prior does not have any information 
on how to change hidden states. The hyperparameters 
β0, υ0,m0 and w0 in Eq. (7) control generation probabil-
ity of observables (i.e., logging data and depth). In par-
ticular, the hyperparameters m0 and w0 are related to 
expectations of mean value and precision matrix of the 
prior distribution. We assumed those values based on 
input data such that m0 was set as a median vector of 
the input data and w0 as a precision matrix of the input 
data. The hyperparameter β0 has a positive value, while 
the hyperparameter υ0 has a value ≥ D. These values are 
considered as weight for the prior distribution. Larger 
values result in a posterior distribution closer to the 
assumed prior distribution. We empirically assumed 
that β0 is 1 and υ0 is D. We conducted grid searches to 
determine K between 2 and 25. Although model selec-
tions for K are possible with the evidence value L(q) , we 
used different criteria to determine K. As shown in the 
following sections, the evidence value shows a broad 
peak at a large K. As geological interpretations become 
difficult when clustering results have too many clusters, 
we used a different index to determine K as follows:

(14)

X =

K
∑

k=1

∑

i∈{i;zi,k=1}

(xi − µk)βk�k(xi − µk)

+

K
∑

k1=1

K
∑

k2=k1+1

(

µk1
− µk2

)βk1�k1
+ βk2�k2

2

(

µk1
− µk2

)

,

where, βk = β0 +
∑N

i=1 E
(

zi,k
)

 and E(·) represents 
expectation.

In summary, clustering of logging data using HMM 
has the following explicit and quantitative assump-
tions: (A) a Markov process for log unit transition, 
(B) a normal distribution for logging data are gen-
eration probability, (C) variational approximation 
(Eq.  13), (D) assumed values of five hyper parameters 
( α,β0, υ0,m0,w0 ), and (E) the model selection criteria 
(Eq. 14). Based on these assumptions, HMM clustering 
was conducted using data from different geological set-
tings, as described in the next section. Statistical clus-
tering with quantitative criteria can avoid biases due to 
different interpreters for different datasets and different 
subjective criteria due to different visuals of data from 
different geological settings.

Application results
In this section, we provide three examples of applications 
using the proposed method. HMM clustering was applied 
to logging data from different geological settings: a young 
accretionary prism at the Nankai Trough, onshore fault 
zones at the Kii Peninsula, Japan, and offshore coal bed 
in the forearc basin of the Japan Trench. The appropri-
ate number of clusters was searched for different geologi-
cal settings based on the index X (Eq. 14). The obtained 
results showed that HMM clustering divides logging data 
into the appropriate numbers of clusters, and that every 
cluster has a geological and/or geophysical meaning.

Fig. 3  Grid search results of Evidence L(q) and index X for the number of clusters (K) at Site C0001
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Fig. 4  Clustering results at C0001 and previously reported log units (Expedition 314 Scientists 2009b). Ellipses represent covariance of each cluster. 
a The entire section, and b the close-up figure of a where noted by a black arrow on the left
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Young accretionary prism at the Nankai Trough
Geological settings and  data with  previous interpreta-
tions  The Nankai Trough is located off the coast of 
southwest Japan, where megathrust earthquakes have 
repeatedly occurred (Ando 1975). It is a typical subduc-
tion zone where an accretionary prism developed at its 
toe (e.g., Moore et  al. 1990). Here, the Philippine Sea 
Plate (PSP) subducts at a rate of  ~ 6 cm/year (Miyazaki 
and Heki 2001; DeMets et al. 2010; Kimura et al. 2018), 
and thick sediments on PSP have been accreted. Many 
scientific drillings have been conducted at this margin to 
understand the seismogenesis and evolutionary processes 
of the subduction zone (Tobin et al. 2020).

This study focused on Site C0001 (Fig.  2), which 
is located on the hanging wall of the major out-of-
sequence thrust called “megasplay.” This site was logged 
by IODP Expedition 314 (Expedition 314 Scientists 
2009b) and cored by IODP Expedition 315 (Expedi-
tion 315 Scientists 2009). Although logs were obtained 
down to ~ 976 m below the sea floor (mbsf ), coring was 
conducted down to  ~ 456  mbsf. We used the electri-
cal resistivity log, NGR log, and P-wave velocity log for 
the analysis. The sampling interval of logging data was 
15 cm.

Expedition reports (Expedition 314 Scientists 2009b) 
classified logging data into three units, which were fur-
ther divided into eight subunits (Expedition 314 Sci-
entists 2009b). Based on the logging data and seismic 
reflection images, unit 1 (0–198.9 mbsf ) was interpreted 
to be the slope apron facies and divided into two subu-
nits (Unit 1a and 1b at 0–190.5 and 190.5–198.9  mbsf, 
respectively) with four decametric cycles (0–54, 54–100, 
100–156, and 156–191 mbsf ). Unit 1b was characterized 
by alternating beds of conductive and resistive sediments 
with a negative peak of NGR at its bottom. Both Units 2 

(198.9–529.1 mbsf ) and 3 (529.1–976 mbsf ) represented 
accreted sediments. Differences in the depth dependency 
of the electrical resistivity log divided the two units. Unit 
2 was divided into three subunits (Unit 2a, 2b, and 2c at 
198.9–344.0, 344.0–434.7, and 434.7–529.1 mbsf, respec-
tively). Unit 2a had features similar to those of unit 1a. 
Units 2b and 2c had similar resistivity, although they had 
different NGR and velocity values. Unit 3 was divided 
into three subunits (Unit 3a, 3b, and 3c at 529.1–628.6, 
628.6–904.9, and 904.9–976 mbsf, respectively). Unit 3a 
had transitional features from Unit 2 to Unit 3, which 
was interpreted as a mass transport deposit or fault zone. 
Faults and fractures were also reported at 650, 800, 835, 
and 860 mbsf based on resistivity image logs.

Expedition reports also classified the lithological 
descriptions of drill core samples into two units (Expedi-
tion 315 Scientists 2009). They were interpreted as slope 
aprons (Unit I) and accreted sediments (Unit II), with a 
boundary at 207  mbsf. Unit I was further divided into 
three subunits (Unit Ia, Ib, and Ic at 0–168.35, 168.35–
196.76, and 196.76–207.17  mbsf, respectively). Unit Ia 
was composed of hemipelagic mud with volcanic ash; 
unit Ib, hemipelagic mud with silt turbidites; and unit 
Ic, sand and hemipelagic mud. In contrast, Unit II was a 
single unit without any subunits comprising hemipelagic 
mud. Although the overall unit classifications of logging 
units and lithological units were similar, there were dif-
ferences in subunit classifications.

Results  We conducted a grid search for the number of 
clusters to obtain the optimized model. Figure 3 shows 
the results of grid search. The approximated evidence 
value was high and flat at a large K range, whereas the 
index X showed a minimum at K = 13. The sequence of 
the estimated hidden states is shown in Fig. 4. The clus-
tering results are summarized in Table 1. Boundaries of 
clusters were set at depths where step changes of log-
ging values were observed or where depth dependencies 
of logging values were changed. For example, NGR log 
showed a small step decrease at the boundary between 
clusters A and B. Depth dependency of resistivity log 
also changed at this depth, showing a slight increase 
in cluster A and constant in cluster B. Cluster C was a 
thin layer including spiky signals in NGR and resistiv-
ity. Clusters D and E were differentiated by the depth 
dependency of the NGR log. It showed a slight increase 
in cluster D, whereas it became constant in cluster E. 
Clusters E and F somewhat overlapped but have dif-
ferent features in velocity log, such that cluster F had 
a slower velocity than cluster E at the same depth. The 
boundary between clusters F and G was determined by 
the changes in the velocity log. The increasing trend 
with depth in cluster F changed to constant values in 

Table 1  Clustering results for Site C0001

Clusters Depth (mbsf) Previously 
reported log 
units

Previously 
reported 
lithological units

A 5–99 Unit 1
0–198.9

Unit I
0–207B 105–171

C 175–198

D 204–299 Unit 2
198.9–529.1

Unit II
207–456E 288–371

F 352–430

G 435–521

H 507–621 Unit 3
529.1–976

Not cored

I 614–675

J 678–721

K 725–810

L 799–897

M 878–963
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cluster G. Cluster H was characterized by dropping val-
ues for all logs. Cluster J was characterized by slower 
velocity than the surrounding clusters I and K. Cluster L 
was characterized by dropping values in all logs, which 
was similar to cluster H. Clusters L and M were differen-

tiated by higher resistivity and velocity values for cluster 
M.

The clustering results obtained by HMM were in 
good agreement with the log unit classification of expe-
dition scientists. The top three clusters (A–C) roughly 

Fig. 5  Geological map and data summary at Site ITA. a Regional map of the Kii Peninsula showing the location of Site ITA based on Shigematsu 
et al. (2012). b Interpreted cross-section image around Site ITA after Shigematsu et al. (2012). c Logging data and core description previously 
reported by Shigematsu et al. (2012)
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corresponded to Unit 1 (0–198.9  mbsf ). Another 
four clusters (D–G) corresponded to Unit 2 (198.9–
529.1 mbsf ). The top depth of cluster F agreed with the 
boundary between the log units 2a and 2b. The bound-
ary between clusters F and G also agreed with the 
boundary between log units 2b and 2c. Unit 3 (529.1–
976 mbsf ) consisted of six clusters (H–M). The bottom 
depths of clusters H and L corresponded to the bound-
ary between log units 3a and 3b and between log units 
3b and 3c, respectively.

HMM clustering divided log unit 1a into two clusters 
(A and B) at  ~ 100  mbsf. These two clusters were fur-
ther divided based on differences in the depth depend-
ency of resistivity and the negative step of NGR at the 
boundary. The depth of the boundary corresponded to 
one of the boundaries of the decametric cycles in log 
unit 1A documented in the expedition report (Expedi-
tion 314 Scientists 2009b).

Cluster C was thicker than the corresponding log unit 
(1b). The top of cluster C was defined by a step increase 
in P-wave velocity. Above this step increase, the veloc-
ity log was unreliable because of the very low formation 
velocity close to the drilling fluid velocity (Expedition 
314 Scientists 2009b). Therefore, the top depth of clus-
ter C was considered to be artificial. The bottom depth of 
cluster C was defined as the depth at which the steps are 
observed in three logs.

HMM clustering divided log unit 3b into four clus-
ters (I–L) at  ~ 675,  ~ 725, and  ~ 800  mbsf. Cluster L 
was characterized by a significant drop in resistivity and 
velocity logs. Cluster J was characterized by a drop in 
the velocity log. This feature was similar to log unit 3a, 
which was interpreted to be a fault zone or mass trans-
port deposit (Expedition 314 Scientists 2009b).

As explained above, clustering results by HMM were in 
good agreement with the log unit classification of expe-
dition scientists. In addition, HMM clustering further 
suggested a finer structure in log units 1a, 2a, and 3b. On 
the other hand, lithological unit classification of expedi-
tion scientists did not suggest such fine structures in the 
accretionary prism. Hence, the different characteristics of 
each log unit could be mainly attributed to differences in 
physical properties due to the different deformation his-
tories of each geological formation.

Onshore fault zone at Kii Peninsula, Japan

Geological settings and data with previous interpretations
The Geological Survey of Japan, National Institute of 
Advanced Industrial Science and Technology con-
structed several integrated groundwater observatories 
to monitor plate-boundary motion along the Nankai 
Trough subduction zone in southwestern Japan, includ-
ing the Kii Peninsula (Itaba et  al. 2010). At one of the 
observatories, ITA (Fig. 5), a borehole (ITA-1) penetrated 
the Median Tectonic Line (MTL) (Shigematsu et  al. 
2012). This study focused on borehole ITA-1, which is 
located on the hanging wall and 300 m north of the MTL. 
The MTL divides the low-P/high-T Ryoke metamorphic 
terrain in the north from the high-P/low-T Sanbagawa 
terrain in the south and is the longest onshore fault in the 
Japan arc (Wallis and Okudaira 2016). The rocks around 
the observatory ITA are variably affected by the faultings 
along the MTL (Shigematsu et al. 2012, 2017; Mori et al. 
2015; Katori et al. 2021).

Wireline logging data are acquired during the drilling 
process (Kiguchi et  al. 2014). The drilling of ITA-1 was 

Fig. 6  Grid search results of Evidence L(q) and index X for the number of clusters (K) at Site ITA
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conducted in two steps. The borehole was first drilled 
with a diameter of 96 mm to acquire drill core samples. 
Resistivity and NGR logs were acquired for this initial 
borehole. Then, the borehole was widened to a diam-
eter of 10–5/8 inches. P- and S-wave velocity logs were 
recorded for a widened borehole. We used four logs 
(electrical resistivity, NGR, and P- and S-wave velocity 
logs) for the analysis (Fig. 5). Although the borehole was 
drilled down to  ~ 600  m below the land surface (mbls), 
complete sets of logging data with good quality were 
obtained until  ~ 490 mbls owing to the unstable borehole 
wall below 473.9 mbls. The sampling interval of logging 
data was 10 cm.

Although log unit classification has not been pub-
lished for logging data, lithologies and structures have 
been described for drill core samples (Shigematsu et  al. 
2012, 2014; Mori et al. 2015) (Fig. 5). The borehole ITA-1 
penetrated the MTL at 473.9 mbls with significant litho-
logical changes from the Ryoke granitoids to the Sanba-
gawa metamorphic rocks, resulting in the large drop in 
resistivity log. Below the MTL, the rocks were intensively 

fractured at 473.9–495.0 and 520–555 mbls. In the hang-
ing wall of the MTL, three mylonite zones were recog-
nized at 140–286, 330–370, and 450–473.9 mbls; in this 
study, we referred to them as the top, middle, and bottom 
mylonite zones, respectively. Shallow dipping faults were 
also identified at 135, 170, 260, 350, 380, and 410  mbls 
(Shigematsu et al. 2012).

Results  We conducted a grid search for the number of 
clusters to obtain the optimized model. Figure  6 shows 
the results of the grid search. The approximated evidence 
value was high and flat at a large K range, whereas the 
index X showed a minimum at K = 14. The sequence of 
the estimated hidden states is shown in Fig. 7. The clus-
tering results are summarized in Table 2. Similar to the 
previous example, the boundaries of clusters were set 
at depths where step changes of logging values were 
observed or where depth dependencies of logging val-
ues were changed. At depths shallower than  ~ 140 mbsf, 
four clusters (A–D) overlapped. Clusters E–M had simi-

Fig. 7  Clustering results at ITA and core descriptions (Shigematsu et al. 2012). Ellipses represent covariance of each cluster
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lar velocities, although they had different sets of resistiv-
ity and NGR values. Cluster N, which appears at depths 
below 473.9 m, was characterized by clear drops in P- and 
S-wave velocity logs and resistivity logs.

We observed a good correlation between the cluster-
ing results and the three mylonite zones. Above the top 
mylonite zone, four clusters were identified (A–D). The 
top mylonite zone could be compared with four clusters 
(E–H). Cluster I covered the depth range between the 
top and middle mylonite zones. Cluster J could be com-
pared to the middle mylonite zone. Cluster K covered the 
depth range between the middle and bottom mylonite 
zones. Two spikes of the NGR log at 360–410 mbls were 
categorized into cluster L. The bottom mylonite zone 
corresponded to cluster M. The footwall of the MTL cor-
responded to cluster N.

The shallowest part in cluster D was considered to rep-
resent the effect of the surface because the velocity logs 
showed steep increases. Clusters A, B, and C had similar 
P- and S-wave velocities but different NGR and resistiv-
ity values. Cluster A was characterized by low NGR log 
values, whereas cluster B had high NGR log values corre-
sponding to mafic rocks that often appear in surrounding 
Ryoke granitoids (Hayama et  al. 1982; Shigematsu et  al. 
2012). Cluster C had lower resistivity log values than 
clusters A and B.

The top mylonite zone corresponded to four clusters 
(E–H). The bottom cluster H was characterized by a low 
NGR. Clusters E and F had similar NGR, although they 
had low and high resistivities, respectively. Fault brec-
cias of shallow dipping faults have been documented in 

the depth range corresponding to cluster E, including 
the fault located at the screened depth of ITA-2 (Mat-
sumoto and Shigematsu 2018), which is interpreted to 
represent faults. Large differences in NGR logs for clus-
ters F (191–219  mbls) and G (221–255  mbsf ) implied 
that there are lithological differences between the two 
clusters. X-ray diffraction (XRD) analyses by Tanaka 
et al. (2012) suggest that the formation at 169–222 mbls 
is K-feldspar originating from granite, whereas the for-
mation at 222–275  mbls is chlorite originating from 
tonalite.

Clusters J and K may reflect differences in the alteration 
minerals. XRD analyses by Tanaka et al. (2012) reported 
the presence of laumontite at 275–408 mbls, which is a 
hydrothermal alteration mineral, while it is not abundant 
below 408  mbls. The bottom of cluster J was defined at 
400 mbls, which may correspond to such lithological dif-
ferences. Such differences could be attributed to the dif-
ferences in the CO2 partial pressure of the fluid causing 
hydrothermal alternation. The fluid electrical conduc-
tivity log for drilling mud suggests that there is a fluid 
pathway at approximately 408 mbls (Kiguchi and Kuwa-
hara 2020). Fault breccias have also been documented at 
410 mbls (Shigematsu et al. 2012). Inflow of fluid at this 
depth may change the characteristics of the fluid respon-
sible for hydrothermal alternation.

In this example, the clustering results showed a good 
correlation with the lithological description. This is 
because onshore geological formations were well lithi-
fied, and the depth dependence of elastic properties was 
small. For example, the P- and S-wave velocity logs were 
almost constant in Station ITA, except for the top of the 
hole. Therefore, lithological differences could be the main 
factor in clustering logging data. On the other hand, in 
the previous example, logging data showed strong depth 
dependency due to differences in consolidation state (i.e., 
physical properties), resulting in less contribution of lith-
ological differences in clustering.

Coal bed at forearc basin of the Japan Trench
Geological settings and  data with  previous interpreta-
tions  IODP Expedition 337 conducted scientific drill-
ing at Site C0020 (Fig. 8) located in the forearc basin of 
the Japan Trench, where a deep coal bed was confirmed 
at  ~ 2000 mbsf (Expedition 337 Scientists 2013a, 2013b). 
As this drilling used the riser drilling technique (Expedi-
tion 337 Scientists 2013a), cutting samples were acquired 
through 636.5–2466 mbsf. Coring was skipped for the top 
half of the hole and was conducted for 1256.5–2466 mbsf. 
Logging data were acquired using wire-line logging. Only 
the NGR log was acquired for the shallow hole. The full 
dataset is available below 1256.5 mbs.

Table 2  Clustering results for site ITA

Clusters Depth (mbls) Previously 
reported core 
description

A 20–128 Not described–  ~ 65

B 30–88

C 15–134

D 9–139

E 142–187 Mylonite zone
140–286F 191–219

G 221–255

H 258–277

I 281–334

J 331–400 Mylonite zone
330–370

K 378–448

L 226–405

M 451–472 Mylonite zone
450–473.9

N 474–488 Footwall of MTL
473.9
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Logging data were classified into four units (Expedition 
337 Scientists 2013b). Unit 1 was at 647–1256.5  mbsf, 
where only the NGR log was available. This unit was not 
included in our analysis because of the lack of complete 
datasets. Unit 2 was at 1256.5–1825.5 mbsf and was inter-
preted to have alternated relatively thick massive sand-
stones and siltstones. It was further divided into three 
subunits: unit 2a was located at 1256.5–1429.1  mbsf, 
which consisted of sandstone and siltstone of 60–70  m 
thickness; unit 2b at 1429.1–1617.4  mbsf was a highly 
permeable sandy sequence with several thick conglom-
erate layers at its base (1592.5–1617.4  mbsf ); unit 2c at 
1617.4–1825.5  mbsf gradually changed from silty layers 
at the top to sandy layers at the bottom. Unit 3 at 1825.5–
2055.0  mbsf was characterized by frequent coal layers 
and was further divided into two subunits at 1916.2 mbsf. 
The shallow Unit 3a was silty with frequent sandy layers, 

whereas the deeper Unit 3b was sandier. Lastly, unit 4 at 
2055.0–2466  mbsf was also divided into two subunits, 
with the shallow Unit 4a (2055.0–2255.0  mbsf ) as thick 
massive shale and the deeper Unit 4b as an alternation of 
sandstone and shale.

According to a previous report (Expedition 337 Scien-
tists 2013b), lithological units are also divided into four 
units, although subunit classification is different from 
log units. Unit I at 647–1256.5 mbsf primarily consists of 
diatom-bearing silty clay. Unit II at 1256.5–1826.5 mbsf 
mostly consists of silty shale. A rapid decrease in sand 
content characterized the boundary between Units I and 
II. Unit II was further divided into two subunits, with 
unit IIb having more abundant organic materials in shale 
than in unit IIa. The boundary between units IIa and 
IIb was documented at 1506.5 mbsf. Unit III at 1826.5–
2046.5 mbsf is characterized by coal layers. The thick coal 

Fig. 8  Geological settings and data summary at Site C0020. a Regional map at the Japan Trench showing the location of Site C0020, after 
Expedition 337 Scientists (2013a). b Local seismic reflection image after Expedition 337 Scientists (2013a). c Logging data and previously reported 
log- and litho-units (Expedition 337 Scientists 2013b)
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layers disappeared in Unit IV at 2046.5–2466 mbsf. Unit 
IV was further divided into two subunits (IVa and IVb). 
Unit IVa mainly comprises shale and sandstone, whereas 
Unit IVb comprises clay and silt. The boundary between 
the two subunits was documented at 2426.5 mbsf.

Here, we used five types of logging data (electrical 
resistivity, NGR, P- and S-wave velocity, and porosity) 
for HMM clustering (Fig.  8). The sampling interval for 
NGR and porosity log was 2.5  cm; resistivity log, 5  cm; 

and P- and S-wave velocity, 15 cm. To align the logging 
data, we set the depth grid at every 20 cm and calculated 
the average values of the logging data within 20 cm from 
each grid. As the data dimension increased, the average 
density in the data space decreased, and the calculation 
cost increased. However, data are expected to be distrib-
uted in some subspaces in the data space because logging 
data are constrained by the physical properties of geolog-
ical formations. Hence, dimensionality reduction helped 

Fig. 9  Principal component analysis results at Site C0020. a Depth profiles of logging data converted into principal component domain. b 
Cumulative variance ratio of principal components. c Loadings of principal components

Fig. 10  Grid search results of Evidence L(q) and index X for the number of clusters (K) at Site C0020
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in reducing the calculation cost and in conducting clus-
tering more efficiently. We used the principal component 
analysis to reduce dimensionality (Fig.  9). As the resis-
tivity varied significantly in this example, we converted 
the resistivity log to a logarithmic scale. The cumulative 
variance ratio for the first to third principal components 
exceeded 0.95. We then conducted HMM clustering with 
the first to third principal components.

Results  We conducted a grid search for the number of 
clusters to obtain the optimized model. Figure 10 shows 
the results of the grid search. The approximated evidence 
value continued to increase at a large K range, whereas 
the index X showed the minimum at K = 14. The sequence 

of the estimated hidden states in the principal compo-
nent domain and the original data domain are shown in 
Figs.  11 and 12, respectively. The clustering results are 
summarized in Table 3. Similar to the previous examples, 
the boundaries of clusters were set at depths where step 
changes of logging values are observed or where depth 
dependencies of logging values are changed. In addition, 
spiky data points were assigned to different clusters in 
this example. Clusters A and B were separated by a step 
increase in resistivity and NGR logs. Although several 
data points were classified as cluster A at  ~ 1400  mbsf, 
the main body of cluster A was located above cluster B. 
Clusters B and C were separated by a step decrease in 
NGR log and step increase in P- and S-wave velocity logs. 

Fig. 11  Clustering results at C0020 in principal component domain and previously reported log units (Expedition 337 Scientists 2013b). Ellipses 
represent covariance of each cluster
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Clusters C and D were separated by a step decrease in P- 
and S-wave velocity logs. The boundary between clusters 
D and E was marked by a step decrease in the porosity 
logs. Cluster F had the highest NGR log values among 
all clusters. Characterized by the lowest NGR log values 
among all clusters, Cluster L was composed of two parts: 
one was sandwiched between clusters G and H, and the 
other was at the bottom of the hole. Clusters H and I 
were differentiated using P- and S-wave velocity logs. The 
boundary between clusters I and J was characterized by a 
step increase in the electrical resistivity and porosity logs. 
Cluster K corresponded to spiky data points with high 

P- and S-wave velocities and electrical resistivity logs and 
low NGR and porosity logs. Cluster M had characteris-
tics similar to cluster K, although it was more dominant 
at shallow depths. Cluster N corresponded to spiky data 
points with high electrical resistivity and porosity logs 
and low P- and S-wave velocities and NGR logs.

We observed a good correlation between clustering 
results and log units described by the expedition report 
(Expedition 337 Scientists 2013b), whereas subunits 
of lithological units did not correlate well with cluster-
ing results. Unit 2a was divided into two clusters (A 
and B). Unit 2b was mainly composed of cluster C. The 

Fig. 12  Clustering results at C0020 in original logging data domain and previously reported log units (Expedition 337 Scientists 2013b). a The entire 
section, and b the close-up figure of a where noted by a black arrow on the left
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bottom depth of cluster C was consistent with the top 
depth of the thick conglomerate layer in unit 2b. The 
bottom of unit 2b, where the thick conglomerate layer 

was observed, and Unit 2c was composed of two clus-
ters (clusters D and E). Units 3a and 3b corresponded 
to clusters F and G, respectively. Unit 4a was composed 
of two clusters (clusters M and N). Unit 4b was mainly 
composed of cluster J with spiky data points classified as 
cluster K.

Unit 2b was documented as a thick sandy layer with at 
least three coal layers and frequent cemented resistive 
zones (Expedition 337 Scientists 2013b). Hence, cluster C 
corresponded to a thick sandy layer. Cluster M showed 
high resistivity with low porosity and high velocity. These 
characteristics of cluster M were consistent with those 
of cemented sandstone layers (Expedition 337 Scientists 
2013b).

Unit 3 was the main target of the drilling site. A total 
of 13 coal layers thicker than 30 cm and a number of thin 
coal layers were observed in Unit 3. Depths of coal lay-
ers documented in the expedition report (Expedition 337 
Scientists 2013b) showed an excellent match with the 
data points in Cluster N (Table 4). Hence, cluster N cor-
responded to coal layers. This was also the case for Units 
2b and 4b. The characteristics of cluster N (high resistiv-
ity and low NGR) were consistent with those of the coal 
layers in logging data (Expedition 337 Scientists 2013b). 
Cluster F was a major component of unit 3a, whereas 
cluster G was a major component of 3b. An expedition 
report (Expedition 337 Scientists 2013b) described that 
Unit 3a was silty with sand interbeds, whereas Unit 3b 
was sandier. Hence, clusters F and G represented silty 
and sandy layers, respectively.

The clustering results in this example showed less cor-
relation with lithological descriptions, as in the first 
example. This could be attributed to the slight depth 
dependency of the datasets, which was also observed 
in the first example. However, our method could clas-
sify lithological characteristics observed as peaky data 
points, such as coal bed layers and cemented layers, 
into individual clusters (clusters M and N, respectively). 
These results demonstrated that the proposed method is 
applicable for the detection and classification of irregular 
geological formations, such as layers, including those of 
natural resources.

Discussion
Some clusters defined by HMM overlapped in correla-
tion plots (Additional file  1: Figures  S1–S4); however, 
they were well separated in the depth plots (Figs. 4, 7, and 
12). As depth trend of logging data is an important fea-
ture when log units are defined visually, capturing such 
features in statistical models should be crucial to conduct 
good clustering. In the developed method, we include 
depth information in observables to explicitly represent 
depth trend of logging data.

Table 3  Clustering results for Site C0020

Clusters Depth (mbsf) Previously 
reported log 
units

Previously 
reported 
lithological units

– – Unit 1
647–1256.5

Unit I
647–1256.5

A 1272.2–1404.0 Unit 2
1256.5–1825.5

Unit II
1256.5–1826.5B 1321.6–1422.8

C 1440.8–1581.0

D 1602.6–1744.6

E 1755.6–1807.0

F 1814.4–1911.4 Unit 3
1825.5–2055.0

Unit III
1826.5–2046.5G 1905.2–2012.2

H 2068.6–2160.4 Unit 4
2055.0–2466.0

Unit IV
2046.5–2466I 2132.6–2216.2

J 2237.6–2395.8.6

K 2020.6–2450.4

L 1993.0–2445.8

M 1429.4–2350.4 Units 2–4 Units 2–4

N 1539.6–2456.0

Table 4  Documented coal layers at Site C0020

Depth of reported coal layers 
thicker than 30 cm (mbsf)

Log unit Cluster N

1529.5–1530.1 Unit 2b 1529.0–1530.2

1539.4–1539.7 1539.0–1539.8

1543.4–1544.0 1542.2–1544.2

1704.0–1704.4

1839.1–1840.0 Unit 3a 1839.0–1840.2

1846.3–1846.9 1845.4–1846.6

1863.7–1864.6 1863.4–1864.4

1868.6–1869.0

1916.2–1923.5 Unit 3b 1916.2–1923.8

1944.4–1947.9 1944.2–1949.0

1958.4–1958.7 1958.2–1958.8

1978.8–1979.3 1978.6–1979.4

1993.7–1994.8 1993.4–1994.6

1997.5–1998.8 1997.2–1998.8

2001.0–2001.2

2002.3–2003.0 2002.2–2003.2

2027.0–2028.1 2026.8–2028.4

2043.9–2045.3 2043.4–2046.2

2054.7–2055.0 Unit 4b 2054.6–2055.6

2448.4–2449.3 2448.2–2449.6

2455.0–2458.0
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We searched for the optimum number of clusters by 
grid search for K, assuming five other hyperparameters. 
Among the assumed hyperparameters, α represented 
uniform distribution of the prior probability. m0 and w0 
were determined based on the input data. However, β0 
and υ0 were assumed empirically. Additional file  1: Fig-
ures S5–S7 show the clustering results with different β0 
and υ0 and with the same K of the optimum model. The 
clustering results were not strongly dependent on these 
two hyperparameters. Boundaries of clusters, which cor-
respond to previously reported log-unit boundaries, are 
usually consistent among clustering results with differ-
ent hyperparameters. On the other hand, some clusters, 
which are smaller than subunits previously reported, 
could vary according to the assumed hyperparameters. 
With increasing β0 , covariance ellipses tend to become 
larger because larger β0 put more emphasis on prior dis-
tribution, which is assumed to be covariance matrix cal-
culated for the entire input data. Based on the results of 
the three cases in this study, we consider that β0 = 10 
may be too large, and we select β0 = 1 as a reference 
parameter. On the other hand, υ0 may influence cluster-
ing results less significantly than β0 , at least in the param-
eter range studied in Additional file 1: Figures S5–S7. As 
the reference parameter set (β0, υ0) = (1,D) works good 
in datasets from completely different geological settings, 
it is also expected to be good in other datasets. However, 
future analysts can adjust these hyperparameters for 
their own datasets.

At Site C0020, logging data were preprocessed for 
alignment because different logs were acquired at differ-
ent depth. To investigate the effects of preprocessing on 
the clustering results, we conducted clustering for log-
ging data collected at different depth intervals (40  cm 
instead of 20  cm in the original dataset) using the ref-
erence set of hyperparameters. According to the grid 
search for K with index X, the optimum number of clus-
ters was defined to be 18. The clustering results (Addi-
tional file  1: Figure S8) showed that the boundaries of 
clusters, which correspond to log-unit boundaries previ-
ously reported, are consistent between the results of the 
two depth intervals. Therefore, preprocessing of logging 
data did not significantly affect clustering results.

Clustering results are not necessarily consistent with 
lithological (or geological) classifications, especially 
when logging data show systematic changes with depth, 
as observed in Sites C0001 and C0020. This was because 
we mainly used data that are more sensitive to physical 
properties (such as resistivity and velocity logs) rather 
than lithology (such as mineral composition data). When 
logging data do not show a systematic trend with depth, 
as observed in Site ITA, lithological differences should 
be more considered in HMM clustering by focusing on 

the differences in the NGR log, which is more sensitive to 
lithology.

The clustering results obtained by the proposed 
method were usually consistent with previously reported 
log unit classifications. In addition, HMM clustering 
sometimes divided logging data in a more detailed man-
ner than that of previous interpretations. In Sites C0001 
and C0020, where logging units were reported by expe-
dition reports, some log subunits corresponded to single 
clusters classified by HMM clustering (log units 1b, 2b, 
2c, 3a, and 3c at Site C0001 and log units 2b, 3a, 3b, and 
4b at Site C0020), whereas some log subunits were com-
posed of several clusters by HMM clustering (log units 
1a, 2a, and 3b at Site C0001 and log units 2a, 2c, and 
4a at Site C0020). Such differences between the results 
of subjective clustering and our quantitative clustering 
offers a good opportunity to discuss interpretations of 
the geological meaning of data. These differences might 
imply that the resolutions of subjective clustering based 
on previous interpretations were not consistent for the 
entire depth range. Otherwise, our quantitative cluster-
ing method might emphasize the differences on acoustic 
properties within a single geological unit. Quantitative 
clustering results using our proposed method assist sci-
entists in making geological interpretations and deter-
mining unit classifications efficiently.

The detailed division of logging data by the proposed 
method provides us new insights on geological interpre-
tations of the logging data. At Site C0001, log unit 3b was 
divided into four clusters. Of the four clusters, Cluster L 
is characterized by a clear drop in electrical resistivity and 
P-wave velocity (Fig. 4b). This cluster was stably detected 
in results with any sets of hyperparameters tested in 
Additional file 1: Figure S5. The characteristics of Cluster 
L are similar to those of Cluster H (log unit 3a), which 
is interpreted as the fault zone or the mass transport 
deposit (Expedition 314 Scientists 2009b). According to 
the expedition report (Expedition 314 Scientists 2009b), 
the hole was intersecting faults and fractures at depths of 
800, 835, and 860 mbsf, which correspond to the depth 
range of Cluster L. Therefore, it is highly possible that 
Cluster L corresponds to the fault zone in log unit 3b. 
At Site C0020, log unit 2c was divided into two clusters 
(Clusters D and E), the boundary of which at  ~ 1750 mbsf 
is characterized by a clear drop in porosity and S-wave 
velocity and a clear increase in NGR log. This boundary 
was stably detected in results with any sets of hyperpa-
rameters tested in Additional file 1: Figure S7, except for 
the one set of (β0, υ0) = (0.1, 10) . According to the site 
report of Site C0020 (Expedition 337 Scientists 2013a), 
a minor fault intersects with the hole at approximately 
1700–1750  mbsf based on the reflection image in this 
region (red lines in Figure F2 of Expedition 337 Scientists 
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2013a). The clear boundary at  ~ 1750 mbsf documented 
in our clustering results may correspond to the fault in 
the reflection image. As demonstrated by these examples, 
clustering results using our proposed model is useful to 
interpret geological structures from logging data.

The proposed method is expected to have a wide appli-
cability and extensibility. In this study, it provided rea-
sonable results at offshore accretionary prism, onshore 
fault zone, and offshore buried coal layers. The last 
example showed that spiky data points related to natural 
resources are efficiently extracted from other data points 
at the baseline, which helped specify layers with natural 
resources. As tephra layers in marine sediments were 
also identified using spiky data points in logging data 
(Mahony et al. 2016), this method could also be applied 
for the detection of tephra layers in marine sediments to 
study large magnitude explosive volcanism. Although this 
study used only basic logging data (electrical resistivity, 
NGR, porosity, and velocities), other types of data can be 
used as inputs. For example, clustering the orientations 
of bedding, fractures, and faults identified from resistiv-
ity image logs or borehole televiewers may be useful for 
structural geological interpretations. When using such 
periodical data, von Mises distributions should be used 
as the data generation probability instead of the normal 
distribution assumed in this study. Geochemical data 
from drill core samples are also a candidate. Although the 
proposed method cannot be used directly for such types 
of data not constantly acquired in depth, minor modifi-
cations (such as marginalization of probability at data-
missing depth) could be used to treat them. In addition, 
the statistical framework for logging data we proposed 
can serve as the basis of quantitative core-log-seismic 
integration for the efficient interpretation of subsurface 
structures.

This study proposed a statistical method using unsu-
pervised HMM for quantitative logging data clustering. 
Our proposed method assists our interpretations of log-
ging data, providing a quantitative basis and validity to 
define log unit boundaries, which has been thus far done 
subjectively. We applied our model on three different 
geological settings and showed that clustering results 
agree with the log unit classification previously con-
ducted using manual inspection. The proposed statistical 
model is expected to have wide applicability and exten-
sibility to incorporate various types of data other than 
those used in this study.
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