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Abstract 

A hierarchical space–time version of the epidemic-type aftershock sequence (HIST–ETAS) model was constructed 
for an optimally adapted fit to diverse seismicity features characterized by anisotropic clustering as well as regionally 
distinct parameters. This manuscript validates this elaborate model for short-term prediction based on several years 
of recent inland Japan earthquakes as a testing data set, by evaluating the results using a log-likelihood ratio score. 
To consider intermediate- and long-term performance, several types of space–time Poisson models are compared 
with the background seismicity rate of the HIST–ETAS model. Results show first that the HIST–ETAS model has the best 
short-term prediction results for earthquakes in the range of magnitudes from M4.0 to M5.0, although, for the larger 
earthquakes, sufficient recent earthquake data is lacking to evaluate the performance. Second, for intermediate-term 
predictions, the optimal spatial nonuniform Poisson intensity model has a better forecast performance than the 
seismic background intensity of the HIST–ETAS model, while the uniform rate Poisson model throughout all of inland 
Japan has the worst forecast performance. For earthquakes of M6 or larger, the performance of retrospective long-
term forecasts was tested in two ways. First, a retrospective forecasting experiment divided the entire period from 
1885 to the present into two parts, with the recent ~ 30 years as the forecast period. Second, the historical damaging 
earthquake data (599–1884) were spatially validated using century data from 1885 to the present. In both validations, 
it was determined that the spatial intensity of the inland background seismic activity of the HIST–ETAS model is much 
better than the best-fit nonuniform Poisson spatial model, leading to the best results. The findings of this study will be 
critical for regional earthquake hazard planning in Japan and similar locations worldwide.
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Introduction
Earthquake occurrence patterns vary greatly from place 
to place and exhibit a variety of clustering character-
istics. For this purpose, practical space–time exten-
sions of the epidemic-type aftershock sequence model 
(ETAS) model (Ogata 1985, 1988, 1989; Ogata et  al. 
1993) have been proposed (Ogata 1998). Such a space–
time ETAS model can be sufficiently accurate in the 
sense that it adapts well in time and space to various 
local activity patterns and predicts them well. Indeed, 
in the above space–time ETAS model, automatic data 
modifications are implemented from the ordinary epi-
center positions of the rupture initiation and an iso-
tropic aftershock distribution. For example, they can 
be elliptical contour-shaped spatial aftershock distri-
butions (Utsu 1969) that reflect the ratio of the length 

in the parameter values of the model between locations 
become larger. For example, it is clear that the p val-
ues of aftershock attenuation vary from place to place, 
and in particular, the background seismicity rates vary 
largely from place to place. Therefore, in Ogata (1998), 
we extended the best-fit case of the candidate space–
time ETAS models to a hierarchical version (hierarchi-
cal space–time ETAS model, hereafter referred to as 
HIST–ETAS model), whose parameters depend on the 
location of the earthquake (Ogata et al. 2003 and Ogata 
2004).

The parameter estimation of the HIST–ETAS model 
by Ogata et  al. (2003) and Ogata (2011) as well as the 
non-homogeneous Poisson model used in this manu-
script rely on the Akaike Bayesian Information Criterion 
(ABIC; Akaike 1980):
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to width of the fault, the tilt angle, and use of centroid 
main shock epicenters for aftershocks of unilateral fault 
rupture. To identify these features, earthquakes of a 
certain magnitude or higher, all subsequently detected 
and located earthquakes within a short time span (say, 
1  h) are automatically processed using the Akaike 
Information Criterion (Akaike 1974):

where the maximizing parameter θ̂ is the maximum like-
lihood estimate (MLE).

In contrast, we know empirically that, as the magni-
tude threshold decreases and the number of data events 
increases or as the area becomes wider, the differences 

(1)
AIC = (−2)max

θ

{

log likelihood(θ)
}

+ 2 dim (θ),

(2)ABIC = (−2)max
w

{

log

∫

�

Posterior(θ |w) dθ

}

+ 2 dim (w),

where w is a hyper-parameter vector representing some 
weights to determine the strengths of the smoothness 
constraints within the parameter coefficients θ . The 
hyper-parameters ŵ minimizing the ABIC will optimally 
smooth constraints of a large number of parameter coef-
ficients θ by maximizing Posterior(θ |ŵ) ; we call this θ̂ , the 
maximum a posteriori (MAP) estimate. However, it is 
necessary to demonstrate that the plugged-in forecasting 
model using the MAP solution has excellent prediction 
ability in the case of a large number of parameter coef-
ficients. Additional methodological details are provided 
by Ogata et  al. (2003) and Ogata (2004, 2011). Relevant 
computational FORTRAN codes and practical manuals 
are also available (Ogata et al. 2021).
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Fig. 1  Epicenter locations within inland Japan (blue boundary curve). a Earthquake locations of the target data from the JMA catalog (1923–2018, 
M ≥ 4.0) applied to estimate the models, in addition to those of the Utsu catalog (1885–1922, M ≥ 6.0). b Earthquake locations of the target data 
(2019 to September 2021, M ≥ 4.0) applied for evaluating forecast of models

In this manuscript, I aim to validate this elaborate 
Bayesian-type model from the short-, medium-, and 
long-term forecasting viewpoints using earthquakes that 
occurred in inland Japan as a testing data set, by evaluat-
ing the results using log-likelihood ratio scores. Specifi-
cally, I consider shallow earthquakes of M4.0 or greater 
for the period 1923–2018 in inland Japan (see Fig.  1), 

selected from the Hypocenter Catalog of the Japan Mete-
orological Agency (JMA), hereafter referred to as the 
JMA catalog (JMA, 2021). I further use the Utsu catalog 
for 1885–1922 (Utsu 1982, 1985), for the precursory data 
to withstand the stationary nature of the ETAS model, 
whose magnitude determination method is consistent 
with the JMA catalog. Although the Utsu catalog is com-
plete with earthquakes of M6 or higher, I use them as the 
precursory history in the HIST–ETAS model in the tar-
get period, since such large earthquakes affect the seismic 
activity in the target and forecasting period under study. 

The time frame concept of short-to-long-term forecast-
ing varies from author to author, but in the context of this 
study I define short-term forecasting to mean within a 
few days, medium-term forecasting to mean within a few 
years, and long-term forecasting to mean longer.

Probability forecasting and verification methods
For the spatio-temporal element, defined as Δ(t, x, 
y) = [t, t + dt) × [x, x + dx) × [y, y + dy), in which earth-
quakes of a certain magnitude threshold or higher may 
occur, the occurrence probability satisfies the following 
relationship for calculating the short-term forecast of 
earthquake occurrence, depending on the history of past 
occurrences:

where λ(t, x, y| Ht) is a conditional intensity function, and 
Ht =

{

(tj , xj , yj ,Mj); tj < t, Mj ≥ Mc

}

 represents the 
history of earthquake occurrence time {ti} up to time t, its 
corresponding epicenters (xi, yi), and magnitudes Mi.

Here, if a model is independent of history and time t, in 
such a way that

this actually characterizes a stationary space–time Pois-
son process.

As for models for the magnitude sequence, considering 
that

the probability of the occurrence of an earthquake of 
magnitude M can be provided in principle by the multi-
plication λ(t, x, y| Ht)·f (M | Ht). In fact, the magnitude 
sequence is mathematically history-dependent, and there 
is a case for it (Ogata et al. 2018). However, only a limited 

(3)Probability
{

an event occurs in �
(

t, x, y
)

|Ht

}

= �
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t, x, y|Ht

)

dtdxdy+o
(

dtdxdy
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t, x, y|Ht
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= �
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x, y
)

,

(5)Probability
{

earthquake magnitude is in (M,M + dM) |Ht

}

≈ f (M|Ht)dM,
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number of models for studying the dependence is avail-
able. So far, most previous research results assume that f 
(M | Ht) is independent of history and then distributed by 
the Gutenberg–Richter law (G–R) (Gutenberg and Rich-
ter, 1944) or its modifications (Utsu, 1999). Therefore, for 
simplicity, I have assumed f (M | Ht) = f (M) = 10−b̂ (M−4.0) 
in this manuscript hereafter.

Suppose that various point-process models �θ (t, x, y|Ht) 
are obtained from the earthquake occurrence data with 
magnitudes M ≥ 4.0 whose parameters θ̂ are obtained by 
the Bayesian maximum a posteriori (MAP) estimate as 
described in “Estimation of the HIST–ETAS and space–
time Poisson process models for predicting seismic activity 
over a wide area” section. Then, for predictors of earth-
quakes of Mc and larger is computed by

(6)�̂(t, x, y,Mc|Ht) = �
θ̂
(t, x, y|Ht) 10

−b̂ (Mc−4.0),

with the MLE b̂ of G–R law. Thus, the standard short-, 
intermediate-, and long-term seismicity forecasts are 
implemented throughout the inland region of Japan (see 
Fig. 1) using the specific models introduced in “Estima-
tion of the HIST–ETAS and space–time Poisson process 
models for predicting seismic activity over a wide area” 
section.

Then, I adopt the space–time log-likelihood score calcu-
lated from the occurrence prediction as an evaluation crite-
rion and the result in the forecasting time interval [S, T] is 
as follows:

Here, it should be noted that, even with truncated or 
tapered magnitude distributions, there is no mathematical 
inconsistency when integrating from Mc to infinity.

Alternatively, the spatial log-likelihood score

where �(x, y,M) = �(x, y) · 10−b(M−Mc) . The likelihood 
in (8) is actually conditional on the given fixed num-
ber of occurred earthquakes in the likelihood in (7) in 
case where the intensity function is history independ-
ent, namely, Poisson processes. Here, it should be noted 

(7)log L
(

�̂; S, T ,Mc

)

=
∑

{i; S<ti<T ,Mi≥Mc}

log �̂
(

ti, xi, yi,Mi|Hti

)

−

∫ ∞

Mc

∫ T

S

∫∫

Inland
�̂
(

t, x, y,M|Ht

)

dx dy dtdM

(8)log L(�̂; Inland,Mc) = log
∏

{i; Mi≥Mc}

{

�̂(xi, yi,Mi)
∫∞
Mc

∫∫

Inland �̂(x, y,M) dx dydM

}

,

that the periods for estimation and prediction should 
be mutually disjointed for the space–time Poisson pro-
cesses. For earthquakes of Mc = 6.0 or larger, I conducted 
a retrospective forecasting experiment by dividing the 
entire period from 1885 to the present into two parts, 
using the last part of approximately 30 years as the fore-
cast period. Furthermore, as a long-term backcast of 
large earthquakes, I attempt to cross-validate historical 
earthquakes against the JMA data to evaluate the perfor-
mance of the spatial Poisson models.

Estimation of the HIST–ETAS and space–time 
Poisson process models for predicting seismic 
activity over a wide area
HIST–ETAS model
The HIST–ETAS model (Ogata 2015, 2016, 2017a, b, and 
2020) is defined by the following equation:

This equation separates the background seismicity 
rate µ and the superposed space–time clusters. In the 
clusters, the temporal factor adheres to the Omori–
Utsu law characterized by the parameters K, c and p; 
and the spatial factor assumes the inverse power-law of 
distance with the parameter q and scaling size is char-
acterized by α, considering the following 2 × 2 covari-
ance matrix depicting the possible anisotropy of spatial 
clustering distribution:

Furthermore, sometimes the center of spatial cluster-
ing does not coincide with the epicenter coordinates 
of the triggering earthquake (Additional file 1: Fig. S1) 

particularly in cases where the earthquake is so large 
that it is necessary to estimate the centroid coordi-
nates (xi, yi) . Both (xi, yi) and the covariance matrix Si 
are automatically determined in quasi-real time after 
a relatively large earthquake of a certain magnitude or 

(9)�θ (t, x, y|Ht) = µ (x, y)+
∑

{i; t<ti}

K (xi, yi)

(t − ti + c)p (xi ,yi)
×

[

(x − xi, y− yi)S
−1
i (x − xi, y− yi)

t

eα(xi ,yi) (Mi−4.0)
+ d

]−q(xi ,yi)

(10)
Si =

(

σ 2
x, i ρiσx, iσy, i

ρσx, iσy, i σ 2
y, i

)
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higher; for further details, see Section S1 in Additional 
file 1. Additional file 1: Fig. S1 shows some examples of 
this type of diverse spatial cluster of earthquakes that 
occurred within 1 h.

Furthermore, as it is necessary to make accurate pre-
dictions that reflect regional characteristics, I made 
the key parameter functions location-dependent so as 
to be able to run the HIST–ETAS model (9) with loca-
tion-dependent parameters that adapt to various local 
seismicity patterns over a wide region. Therefore, as 
explained in Section S2 and Fig. S2 in the Additional 
file  1, each of the location-dependent parameters μ(x, 
y), K(x, y), α(x, y), p(x, y), and q(x, y) are represented by 
piecewise functions on Delaunay triangles. Namely, the 
value at any location (x, y) is linearly interpolated by 
the three values (the coefficients) at the locations of the 
nearest three earthquakes (triangle vertices) on the tes-
sellated plane by the epicenters. When the parameters 
α, p, and q depend on the location (x, y), as in (9), it is 
called the HIST–ETAS–5pa model, and when they are 
constant, it is called the HIST–ETAS–μK model.

We are particularly concerned with sensitive spatial 
estimates of the first two parameter functions of the 
model. First, the estimated parameter function μ(x, y) of 
the background activity is useful as the perpetuity prob-
ability, as will be discussed for long-term forecasting in 
“Results and evaluation of short-, intermediate- and long-
term predictions in the seismic activity of inland Japan” 
section. Next, the parameter function K(x, y) represents 
heterogeneous aftershock productivity in space, which 

is useful for an accurate short-term prediction, because 
spatial aftershock intensity could possibly be heteroge-
neous in and around an asperity zone of fault rupture 
(Ogata 2004). Fortunately, the coefficients of these two 
factors are linear with respect to the log-likelihood func-
tion (Ogata 1978) such that its maximizing solutions are 
stably obtained.

Such a large model needs to be estimated with mutually 
constrained coefficients of parameter functions, which 
are determined by the ABIC (Akaike 1980). Then, I solve 
the inverse problem to find the parameter that maxi-
mizes the posterior distribution, i.e., the MAP estimate. 
The coefficients of the parameter functions are simulta-
neously estimated by maximizing a penalized log-like-
lihood function described in Additional file  1: Sects. S2 
and S3 that determines the optimum trade-off between 
the goodness of fit to the data and uniformity constraints 
of the functions (i.e., facets of each piecewise linear func-
tion being as flat as possible) as mathematically described 
in Additional file 1: Section S2. Such an optimum trade-
off is objectively attained by minimizing the ABIC in (2) 
(see “Results and evaluation of short-, intermediate- and 
long-term predictions in the seismic activity of inland 
Japan” section), which evaluates the expected predictive 
error of Bayesian models based on the data used for the 
estimation (e.g., Ogata 2004).

These parameter coefficients are represented by piece-
wise linear Delaunay functions, which are estimated by 
fitting them to the JMA seismic source data for earth-
quakes of M ≥ 4.0, in the target time interval 1923–2018. 

Fig. 2  Snapshots of the optimal maximum a posteriori (MAP) conditional intensity function in Eq. (3) at the dates and times listed at the top for the 
HIST–ETAS–5pa model in a learning period 1885–2018 and b forecasting period starting from 2019 to September 2021. Contours in both images 
are presented with the common equidistant intervals in logarithmic scale. The color bars below the images represent the occurrence rate of a 
M ≥ 4.0 event per 1.0° × 1.0° cell per day on the ordinary logarithmic scale
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To ensure the long-term dependence of the seismic 
activity model, I further use the Utsu catalog from 1885 
to 1922 (Utsu 1982, 1985) of the earlier interval for the 
precursory data to withstand the stationary nature of the 
ETAS model. The optimal posterior distribution of the 
coefficients of the local linear Delaunay function is then 
obtained by minimizing the ABIC, and the inverse prob-
lem is solved to obtain the MAP; the conditional intensi-
ties of the MAP coefficients are then used for short-term 
prediction. The prediction programs of the above mod-
els, HIST–ETAS–μK and HIST–ETAS–5pa, have already 
been submitted to the CSEP (Collaboratory for the Study 
of Earthquake Predictability) Testing Center at the Earth-
quake Research Institute, University of Tokyo (Tsuruoka 
et al. 2012), and are undergoing comparative validation in 
different frameworks together with a number of space–
time ETAS derived models as described by Nanjo et  al. 
(2012) and Ogata et al. (2013). In this manuscript, a snap-
shot is shown in Fig. 2a that is taken from the conditional 
intensity function in Eq.  (3) of HIST–ETAS–5pa model 
with the MAP parameters estimated during the target 
period 1923–2018 and the precursory period 1885–1922, 
along with another snapshot from the forecasting period 
2019–2021 shown in Fig.  2b by establishing the fore-
casting model using data obtained from the precursory 
period 1885–2018. Figure  2a depicts the seismicity of 
onshore earthquakes at the time about 4 h after the M9 
Tohoku–Oki earthquake, and Fig.  2b is predicted seis-
micity at the time about 3 days after the M6.7 Yamgata–
Ken–Oki earthquake.

Space–time Poison process models
Similarly, I considered four types of Poisson spatio-tem-
poral models (4) that are stationary in time but nonuni-
form in space, independent of history. Calculations for 
these models are implemented for all short-, intermedi-
ate-, and long-term forecasts.

First, I consider the inland uniform Poisson process 
model with the same rate of occurrence only in the inland 
region and zero rate of occurrence outside the inland 
region (see Fig. 3a), such that

where the inland region boundary is shown in Fig. 1. Sec-
ond, I use a spatial nonuniform Poisson process model of

(11)

�
(

x, y
)

= �̂inland if
(

x, y
)

is within the inland region,

= 0 if
(

x, y
)

is outside of the inland region,

(12)�(x, y) = �̂(x, y),

with the optimal MAP estimate of a piecewise linear 
Delaunay function obtained by the ABIC minimization 
(see Fig.  3b and Additional file  1: S3b). The third is the 
background intensity rate of the HIST–ETAS–μK model 
(see Fig. 3c and Additional file 1: S3c) such that

where the proportional constant is adjusted using the 
average number of earthquakes per year in the target 
estimation period, and the last is

which is the background intensity rate of the HIST–
ETAS–5pa model (see Fig. 3d and Additional file 1: S3d) 
with constant correction, both (13) and (14) are spatial 
nonuniform Poisson process models. The MAP estimates 
μ(x,y) of the HIST–ETAS model for the background seis-
mic activity are very stable in the sense that they consist-
ently show very similar solutions for the data because of 
the selection of the period of interest; see, for example, 
see Additional file 1: Fig. S4.

Results and evaluation of short‑, intermediate‑ 
and long‑term predictions in the seismic activity 
of inland Japan
The HIST–ETAS models were applied to the target data 
collected from both the JMA (1923–2018, M ≥ 4.0) and 
Utsu catalogs together (1885–1922, M ≥ 6.0) regard-
ing large earthquakes that occurred in the precursory 
period; and the optimal Bayesian likelihood was deter-
mined by minimizing the ABIC. It was found that the 
HIST–ETAS–5pa model fitted significantly better than 
the HIST–ETAS–μK model for estimation in the wide-
area seismic data, with a difference of ABIC = 1533.5. 
However, such a prediction model that inserts the MAP 
estimate into the posterior distribution model (plug-
in model) is not necessarily superior in prediction skill 
(Akaike 1978).

Therefore, I examined the prediction ability of the pro-
posed model by calculating the space–time log-likelihood 
score (7) of the prediction results using the plug-in pre-
dictor (6) of the MAP estimate model among the above 
models applied to the future data. Here, historical infor-
mation Ht =

{

(tj , xj , yj ,Mj); tj < t, Mj ≥ 4.0
}

 is the 
information on the occurrence of earthquakes of M4.0 or 
greater up to time t at the end of 2018. In the case of the 
Poisson process model, historical information Ht is not 
necessary. It can also be compared and evaluated with 
the results of earthquake predictions for earthquakes 
of medium and large magnitude (M ≥ 4, 4.5, 5.0, 5.5), 

(13)�(x, y) ∝ µ̂HIST−ETAS−µK (x, y),

(14)�(x, y) ∝ µ̂HIST−ETAS−5pa(x, y),
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assuming that the b value of the G–R law in the entire 
inland region is uniformly 0.9, i.e., the MLE equals 0.9. 
The time frame of short-to-long-term forecasting in the 
following refers to the definitions as: short-term forecast-
ing to mean within a few days, medium-term forecasting 
to mean within a few years, and long-term forecasting to 
mean longer than a few years.

Short‑term forecasts
In the evaluation, I evaluated the short-term forecast-
ing results using the log-likelihood ratio scores com-
pared to those of the inland uniform Poisson process 
model (11) that has the location-independent forecast 
probability. Table  1 shows that the HIST–ETAS–5pa 
model has the best short-term prediction results for 

Fig. 3  Poisson space–time models for the long-term seismicity of inland Japan, all of which are shown by the respective MAP estimate that 
minimizes the ABIC: a inland uniform Poisson process model, b nonuniform spatial Poisson process model, c background μ(x, y) intensities of the 
HIST–ETAS–μK model, and d HIST–ETAS–5pa model. The colors and contours are in logarithmic scale indicating the expected number of M ≥ 4 
earthquakes/deg2/day)
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earthquakes up to the M5 class for the last 2 years and 
9 months, followed by the HIST–ETAS–μK model; 
both of the HIST–ETAS models are far superior to the 
Poisson process models. This may be taken to suggest 
that, generally, triggered clusters are forecasted well 
in the short-term by the HIST–ETAS models. How-
ever, for earthquakes of M ≥ 5.5 in this table, the inland 
nonuniform model looks best, though this evaluation 
is unstable, since it uses only 3 such events. For a sta-
ble evaluation, more events of that magnitude would 
be required, and thus, accordingly, a longer experiment 
period would also be required.

Intermediate forecasts
Obtaining intermediate-term forecasts taking account of 
the clustering effect of the HIST–ETAS model may pre-
sent challenges for further evaluations. This is because 
I need to simulate future data of magnitude series. For 
example, I need to use the G–R rule to simulate the mag-
nitude many times for intermediately forecasting by the 
HIST–ETAS models for such scenario earthquakes and 
observe how they change. This needs to be done under 
a large number of, say, 10,000 iterations of calculations 
to show the variation of the spatio-temporally predicted 
probability density for all possible scenarios.

Alternatively, for an intermediate-term forecast for 
the period of a few years, I apply the space–time Poisson 

models with the intensity functions (11)–(14), where (13) 
and (14) are obtained by multiplication of the normal-
ized background intensity of each HIST–ETAS model 
and the average number of earthquakes of M ≥ 4.0 per 
day estimated from the target period. All intensities of 
the competing models are shown in Fig.  3. According 
to the spatial log-likelihood score (8) in Table  2 for the 
intermediate-term forecast of 2019 to September 2021, 
the optimal MAP nonuniform Poisson process model 
(12) in the range up to M5.5 is superior to the two back-
ground intensities of the HIST–ETAS models and much 
better than the spatially uniform Poisson process model 
(11) over the entire inland area.

Long‑term forecasts
Within the last 3 years, the current number of large 
earthquakes (e.g., M6.0 and above) is insufficient for 
accurate verification, making evaluation difficult. How-
ever, large earthquakes in the long-term seem to have 
occurred more frequently in highly active background 
regions of the HIST–ETAS models (Ogata 2008, 2020). 
Indeed, the background rate models μ(x,y) in (13) and 
(14) look promising for forecasting events in the 25-year 
period of 1996–2018 as seen in Fig. 4a, when the optimal 
MAP estimate is used (Additional file 1: Fig. S4a) and for 
which I obtained the data from the target interval 1926–
1995. Therefore, I fitted the ETAS models to the data 
in the period 1926–1995 and then forecasted it for the 
period 1996–2018.

In fact, Table  3 shows that the optimal nonuniform 
Poisson process model forecast (12) in the range up to 
M5.0 again has the best performance, but the background 
spatial intensity of the HIST–ETAS–5pa model (14) then 
outperforms the others in M5.5 and larger, better than 
the nonuniform Poisson model (12). In particular, the 
inland uniform Poisson model (11) was considerably 
worse throughout all magnitude ranges. However, for 
M7.0 and larger earthquakes, the differences are not clear 
because of the small number of such earthquakes within 
30 years.

Alternatively, instead of long-term forecasting in this 
present case, I try to make “backward predictions” for 
historical earthquakes (Utsu 1990). In other words, 
because of the nature of the Poisson process, I can ignore 
the causality of the time axis. Therefore, I can carry out a 
cross-validation evaluation using score (8), where �̂ refers 
to the model derived from the JMA catalog (1923–2018, 
M ≥ 4.0), and 

{

(xj , yj ,Mj); Mj ≥ Mc

}

 is the estimated 
epicenter of damaging historical earthquakes (599–1884) 
by Utsu (1990), as shown in Fig.  4b. Table  4 presents a 
comparison of the fit performance. In contrast to the 
intermediate-term forecast, the background spatial 
intensity of the HIST–ETAS–5pa model is the best, far 

Table 1  Space–time log-likelihood score (7) of short-term 
forecasts

Assuming the G–R law with b = 0.9 nationwide in Japan, these are the score 
values of the forecasting of earthquakes of respective magnitude ranges; scores 
are relative to those of the “inland uniform Poisson model.”

Forecast for magnitude range M ≧ 4.0 M ≧ 4.5 M ≧ 5.0 M ≧ 5.5

Number of earthquakes 126 42 12 3

(a) Inland uniform Poisson 0.0 0.0 0.0 0.0

(b) Non-homogeneous Poisson 157.9 105.6 41.7 9.3
(c) HIST–ETAS–μK 551.2 252.5 49.9 − 3.2

(d) HIST–ETAS–5pa 638.7 276.6 55.8 − 3.9

Table 2  Spatial log-likelihood score (8) of intermediate-term 
forecasts for 2019 to September 2021

These are the scores of the forecasting of earthquakes of respective magnitude 
ranges; scores are relative to those of the “inland uniform Poisson” model

Forecast of magnitude range M ≥ 4.0 M ≥ 4.5 M ≥ 5.0 M ≥ 5.5

Number of output events 126 42 12 3

(a) Inland uniform Poisson 0.00 0.00 0.00 0.00

(b) Non-homogeneous Poisson 139.68 59.71 20.31 3.04
(c) Background of HIST–ETAS–μK 91.24 41.79 9.30 − 1.35

(d) Background of HIST–ETAS–5pa 55.52 38.91 10.95 − 0.91
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better than that of the nonuniform Poisson spatial model. 
For earthquakes of M ≥ 7.5, the inland uniform model 
performs best although the difference in scores is small 
owing to the small sample size, and regional dependence 

of great earthquakes of M8 class cannot be identified 
within 10 centuries of historical data. Surprisingly, the 
performance of nonuniform Poisson spatial model (b) 
is remarkably poor compared to the rest of the models. 

Fig. 4  a Blue circles represent shallow earthquakes of M ≥ 6 that occurred during the period 1996–2019 and the color image with contours 
represents the μ value distribution of the HIST–ETAS–5pa model for the period 1926–1995. b Blue and red circles show the locations of historical 
damaging earthquakes before and after 1585, respectively. The horizontal dotted line indicates 38°N. The color image with contours represents 
the μ value distribution of the HIST–ETAS–5pa model for the period 1926–2018. The color scale for both (a) and (b) are the same as in Fig. 3 and 
Additional file 1: S4

Table 3  Spatial log-likelihood score (8) of retrospective long-term forecasts for 1996 to September 2021

Scores are the same as explained in Table 2

Forecast of magnitude range M ≥ 4.0 M ≥ 4.5 M ≥ 5.0 M ≥ 5.5 M ≥ 6.0 M ≥ 6.5 M ≥ 7.0

Number of output events 2765 990 305 103 43 18 5

(a) Inland uniform Poisson 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(b) Non-homogeneous Poisson 2835.0 1024.9 264.8 60.1 12.3 9.8 2.5

(c) HIST–ETAS–μK background 2270.7 843.5 230.0 53.7 16.9 9.2 3.0
(d) HIST–ETAS–5pa background 2576.7 954.1 263.7 61.6 19.9 10.6 2.5

Table 4  Spatial log-likelihood score of long-term “reverse prediction” of historical disaster earthquakes for 599–1884

Scores are the same as explained in Table 2

Forecast of magnitude range All events M ≥ 6.0 M ≥ 6.5 M ≥ 7.0 M ≥ 7.5

Number of events 205 184 100 49 7

(a) Inland uniform Poisson 0.0 0.0 0.0 0.0 0.0
(b) Non-homogeneous Poisson − 31.5 − 38.0 − 30.9 − 21.1 − 4.0

(c) HIST–ETAS–μK background 53.1 42.9 18.0 4.8 − 1.5

(d) HIST–ETAS–5pa background 61.2 52.4 24.2 8.2 − 0.5
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Although, the nonuniform Poisson spatial model appears 
similar to the HIST–ETAS models in Fig.  3 in terms of 
background seismicity rates, the intensity of the model is 
more spatially concentrated, i.e., the number of contour 
lines is higher, compared to the HIST–ETAS models. On 
the other hand, historical earthquakes in the M7 class are 
characteristic, considered to be intrinsic to major active 
faults, and the recurrence interval is very long, such as 
around 1000  years in Japan (Matsuda 1975); therefore, 
the spatial density of the seismic activity of the recent 
last 100 years, including aftershocks, appears to be more 
strongly biased from compared to that of the characteris-
tic earthquakes.

There is a lack of damage earthquakes as we go back 
in history and regionally (see Additional file  1: Fig. S6).
Thus, similar spatial log-likelihood score are herein cal-
culated by restricting the period of historical data to 
1585–1884 and the area in lower latitude 38°N to avoid 

regional bias from documented earthquakes. Namely, 
for ancient developed regions of capital cities, such as 
Kyoto, Nara, and Kamakura, such earthquakes may be 
better documented before 1585 as seen by blue circles in 
Fig.  4b. Furthermore, it is unclear whether earthquakes 
around Tokyo Bay may be shallow, where the interplate 
earthquakes occur at depths of 30  km or more. Table  5 
suggests that the background spatial intensity of the 
HIST–ETAS–5pa model is best for all range of magni-
tudes, far better than the other Poisson spatial models.

Probability forecasting on a cell
When the MAP coefficients of the background intensi-
ties of the HIST–ETAS–5pa at the vertices of Delaunay 
triangles spanned by M ≥ 4.0 earthquakes is adopted 
in Fig.  5a, which is equivalent to Fig.  3d and Addi-
tional file 1: S3d that are the interpolated image at each 
0.1° × 0.1° grid. Thus, consider a grid cell (i, j) of a small 

Table 5  Spatial log-likelihood score of long-term “reverse prediction” of historical disaster earthquakes for 1500–1884 that are at a 
lower latitude than 38°N

Scores are the same as explained in Table 2

Forecast of magnitude range All events M ≥ 5.5 M ≥ 6.0 M ≥ 6.5 M ≥ 7.0 M ≥ 7.5

Number of events 131 129 114 57 25 3

(a) Uniform in inland Japan 0.0 0.0 0.0 0.0 0.0 0.0

(b) Non-homogeneous Poisson − 7.8 − 11.3 − 15.7 − 16.3 − 12.4 − 1.2

(c) HIST–ETAS–μK background 32.9 28.1 24.0 9.8 4.0 1.1

(d) HIST–ETAS–5pa background 36.7 31.8 29.4 12.5 5.5 1.6

Fig. 5  a Optimal MAP μ(x, y) estimate of the HIST–ETAS–5pa model on epicenter locations (colored dots) of earthquakes of M ≥ 4.0 in and around 
Japan for the target period 1923–2018. The color table refers to the linearized frequency, and the scale represents the probability per day and deg2. 
b Probability of a M ≥ 6 shock during the next 30 years in each 0.2° × 0.2° (about 400 km2) cell in inland Japan assuming b = 0.9
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area ∆2 in the inland, and assume that the integral of 
background intensity µ̂(x, y) over the cell is approxi-
mated as µ̂(i, j) . Then, according to Eqs.  (3)–(6), long-
term probability of a large earthquake of Mc or more for 
the future predicting period [T, U] is calculated by

where the proportional constant is ratio of all M ≥ 4.0 
earthquakes over the entirety of inland Japan in the train-
ing period [S, T] to the expected sum of the background 
probability µ̂(i, j) ·�2(T − S) over all cells in the inland. 
If we set b = 0.9, � = 0.2◦ and U–T = 30 years to forecast 
M ≥ 6.0 earthquake on the 20 × 20 km cell, Fig. 5b shows 
the approximate long-term probabilities for a 30-year 
period.

Conclusions
This study used HIST–ETAS models and non-homoge-
neous space–time Poisson models including derivative 
models of the HIST–ETAS for the short-, intermediate-, 
and long-term probability forecasting of inland earth-
quakes in Japan. Based on the source data from the Utsu 
and the JMA hypocenter catalogs, Japan inland earth-
quake prospective forecasting for the later years and also 
post-dictions of historical disaster earthquakes are pre-
sented and evaluated.

The space–time log-likelihood scores were applied 
to evaluate the results of the short-term prediction for 
the recent few years, which showed that the location-
dependent HIST–ETAS–5pa model provided the best 
prediction results, followed by the less location-depend-
ent HIST–ETAS–μK model, for earthquakes of sizes 
ranging from M4.0 to M5.0. Both of the HIST–ETAS 
models performed far better than the Poisson process 
models owing to the clustering feature, even for larger 
earthquakes.

Furthermore, for intermediate and long-term predic-
tion, the spatial log-likelihood score was adopted. Among 
several compared Poisson process models, the opti-
mal nonuniform Poisson process model in the range up 
to M5.0 is found to be superior to the two background 
intensities of the HIST–ETAS model and performed 
much better than the spatially uniform Poisson process 
model over the entire inland area for an intermediate-
term forecast of 2019–2021.

For a long-term forecast of large earthquakes for the 
range up to the M7 class, the training estimation period 
was reduced to 1885–1995 to evaluate retrospective fore-
casts for a sufficient number of larger earthquakes in the 
prediction period of 26  years during 1996–2021. It was 
found by the spatial log-likelihood score that the optimal 

(15)
P
(

i, j : M ≥ Mc

)

∝ µ
(

i, j
)

·�2(U − T ) · 10−b(Mc−4.0),

nonuniform Poisson process model forecast in the range 
up to M5.0 had the best performance, but the back-
ground spatial intensity of the HIST–ETAS–5pa model 
outperformed the others in the class of M5.5 and larger, 
better than the nonuniform Poisson spatial model.

Finally, for the candidate models for the target data 
estimated by the data in the period 1923–2018, the spa-
tial log-likelihood scores of historical damaging earth-
quakes (599–1884) were examined. The results show that 
the background spatial intensity of the HIST–ETAS–5pa 
model significantly outperformed the others, far better 
than the nonuniform Poisson spatial model. By restricting 
the period of historical data to 1585–1884 and the area in 
lower latitude 38°N taking better accuracy of the histori-
cal record into account, the background spatial intensity of 
the HIST–ETAS–5pa model is best for all range of magni-
tudes, far better than the other Poisson spatial models. For 
earthquakes of M7.5 class or above, the difference in scores 
was small owing to the small number of historical damag-
ing earthquakes, which represents only a small fraction of 
the earthquakes that occurred in prehistory, and little sig-
nificant regional difference could be observed.

The findings of this study can be expected to provide a 
new approach to estimating short-, intermediate-, and 
long-term inland earthquakes with better accuracy and 
reliability, since the model is based on location-dependent 
variables. Applications of the proposed HIST–ETAS model 
will be critical for regional earthquake hazard planning in 
Japan and similar locations worldwide.
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