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Abstract 

Emergency responses during a massive tsunami disaster require information on the flow depth of land for rescue 
operations. This study aims to predict tsunami flow depth distribution in real time using regression and machine 
learning. Training data of 3480 earthquake-induced tsunamis in the Nankai Trough were constructed by numeri-
cal simulations. Initially, the k-means method was used to discriminate the areas with approximately the same flow 
depth. The number of clustered areas was 18, and the standard deviation of the flow depth data in a cluster was 
0.46 m on average. The objective variables were the mean and standard deviation of the flow depth in the clustered 
areas. The explanatory variables were the maximum deviation of the water pressure at the seafloor observation points 
of the DONET observatory. We generated multiple regression equations for a power law using these datasets and the 
conjugate gradient method. Further, we employed the multilayer perceptron method, a machine learning technique, 
to evaluate the prediction performance. Both methods accurately predicted the tsunami flow depth calculated by 
testing 11 earthquake scenarios in the cabinet office of the government of Japan. The RMSE between the predicted 
and the true (via forward tsunami calculations) values of the mean flow depth ranged from 0.34–1.08 m. In addition to 
large-scale tsunami prediction systems, prediction methods with a robust and light computational load as used in this 
study are essential to prepare for unforeseen situations during large-scale earthquakes and tsunami disasters.
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Introduction
An earthquake of magnitude 9.0 occurred in 2011 on the 
plate boundary at the Japan Trench (e.g., Ammon et  al. 
2011; Simons et al. 2011; Satake et al. 2013), which was 
associated with a gigantic tsunami. A tsunami warning 
was issued approximately 3 min after the earthquake was 
detected. The first tsunami warning for Iwate Prefecture 
predicted a tsunami of less than 3 m, but a detailed post-
earthquake survey (Mori et al. 2012) for the area showed 
that the maximum tsunami run-up reached an eleva-
tion of 40.1 m. The second warning issued approximately 
30  min after the first was much higher, but some areas 
could not receive the second and subsequent tsunami 
warnings owing to power outages or communication 
losses caused by the strong shaking. The 2011 Tohoku 
earthquake caused widespread damage, with approxi-
mately 23,000 dead or missing (Fire and Disaster Man-
agement Agency 2021).

Since the 2011 Tohoku earthquake, there have been 
many types of research and development aimed at 
improving the accuracy of tsunami early warnings. The 
first of these is the development of a large-scale seismic 
and tsunami observation system connected by submarine 
cables, called the Dense Ocean floor Network system for 
Earthquakes and Tsunamis (DONET; Kaneda et al. 2015), 
and a seafloor observation network for earthquakes and 
tsunamis along the Japan Trench (S-net; Mochizuki et al. 
2018). DONET and S-net transfer seafloor observed data 
to the Japan Meteorological Agency (JMA) for tsunami 
monitoring and early warning. An innovative algorithm 

called tsunami forecasting based on inversion for initial 
sea-surface height (tFISH, Tsushima et  al. 2009; 2012) 
has improved tsunami prediction accuracy using sea-
floor pressure data. This tFISH algorithm was already in 
operation for the tsunami early warning of the JMA in 
2019. Maeda et  al. (2015) and Wang et  al. (2017; 2018) 
used assimilation methods to estimate the complete tsu-
nami wavefield from discrete seafloor pressure data with-
out estimating the initial sea-surface height. Koshimura 
(2017) developed a system to immediately predict tsu-
nami inundation and anticipated damage using a real-
time solution of fault motion from land-based Global 
Navigation Satellite System data. While these require 
high-speed and large-scale tsunami computations, the 
development of computers and tsunami computation 
software is one of the factors that now makes such meth-
ods possible (e.g., Musa et  al. 2015; Baba et  al. 2016). 
Other methods have been proposed to predict tsuna-
mis in real time, such as database search models (Yama-
moto et al. 2016), regression models (Igarashi et al. 2016; 
Yoshikawa et al. 2019), and deep learning models (Fauzi 
and Mizutani 2020; Makinoshima et al. 2021).

The tsunami forecasting system must be robust even 
in disasters when power supply and internet commu-
nications are lost. Therefore, the JMA duplicates the 
warning system in Tokyo and Osaka, and the system 
of Koshimura (2017) can prioritize the supercomput-
ers of Tohoku and Osaka Universities in the event of 
a disaster. However, we should also develop alter-
native methods that do not require high-speed and 

Graphical Abstract



Page 3 of 10Kamiya et al. Earth, Planets and Space          (2022) 74:127 	

large-scale computations as a contingency plan. The 
regression model (Igarashi et al. 2016; Yoshikawa et al. 
2019), which uses the correlation between offshore and 
coastal tsunamis, is the most suitable for this purpose. 
Although the regression model would require com-
putational resources to construct training data, once 
the regression equation is constructed, it can predict 
tsunamis using only a small number of observation 
values, such as maximum tsunami amplitude. The pre-
diction of the regression model is quick. As a personal 
computer would be sufficiently practical for tsunami 
prediction using a regression model, it is easy to mul-
tiplex the prediction system. An earlier study (Igarashi 
et  al. 2016) proposed a method for predicting coastal 
tsunami heights from the data of submarine cable sys-
tems using a Gaussian regression process. However, 
the Gaussian process is less accurate in extrapolation. 
Therefore, Yoshikawa et  al. (2019) proposed a regres-
sion method using a power law based on offshore and 
coastal tsunami relationships. The power law regres-
sion showed almost the same performance as the 
Gaussian regression in the interpolation part and per-
formed better in the extrapolation part.

However, Yoshikawa et  al. (2019) predicted the tsu-
nami height at only one point on the coast and did not 
obtain the spatial distribution of the maximum tsu-
nami flow depth. Emergency response after a tsunami 
disaster requires information on the flow depth dis-
tribution in the damaged area, in addition to the tsu-
nami height along the coast. To obtain these data using 
regression models, all the points in the inundated area 
are predicted, but the number of predicted points is 
enormous, and the processing time is too long. Hence, 
this study proposes a method to reduce the number of 
predicted points by pre-grouping the areas where the 
flow depths are always similar.

The analysis procedure was as follows. First, we 
calculated the tsunamis of 3480 cases in the Nan-
kai Trough (Fujiwara et  al. 2020) for training data to 
construct a regression model. Then, we applied clus-
ter analysis to the flow depths of the training data to 
identify areas with similar flow depths for all tsunami 
events in the training data. Regression relationships 
were estimated using the conjugate gradient (CG), and 
the multilayer perceptron (MLP) methods, in which 
objective valuables are the average flow depths in the 
clustered areas, and the explanatory variables are the 
maximum ocean bottom pressure deviations during a 
tsunami at DONET stations. Finally, we used the con-
structed regression models to predict the tsunami flow 
depths calculated from hypothetical earthquake sce-
narios released by the Japanese government (Cabinet 
Office 2012) to evaluate the prediction accuracy.

Analysis methods
Training and test datasets
Fujiwara et  al. (2020) proposed fault models with 3480 
cases of interplate earthquakes in the study area (Fig. 1). 
We constructed the training data by calculating all the 
tsunamis generated by these 3480 fault models. Fault 
motion in each model caused seafloor displacement 
assuming a semi-infinite homogeneous elastic body 
(Okada 1985). We estimated the initial tsunami water 
level using the vertical component of the seafloor dis-
placement, the effect of tsunami excitation by horizontal 
displacement of the seafloor slope (Tanioka and Satake 
1996), and the filter of the linear potential theory (Kajiura 
1963). Numerical tsunami simulations used the rise time 
of the initial water level at 60 s. The nonlinear long-wave 
equations solved by the staggered grid leapfrog difference 
method (Baba et  al. 2015; 2016) estimated the tsunami 
propagation from the initial water level and tsunami run-
up on land. The topographic data used in the tsunami 
calculations were obtained from the local government in 
the study area, i.e., Tokushima Prefecture. Topographic 
nesting consisted of five layers (Fig.  1b). The grid inter-
vals in the layers were 810, 270, 90, 30, and 10 m from the 
coarsest layer to the finest layer in the study area (Fig. 1c). 
The tide level when the tsunami occurred was assumed 
to be the mean tide level (0 m in Tokyo Peil). Coastal tsu-
nami defense structures smaller than the grid intervals, 
such as breakwaters, were modeled as line structures in 
the calculations. When a tsunami overtopped the coastal 
structures, we considered them to be collapsed struc-
tures and continued the calculation by excluding the line 
structures. The integral time was 6  h, so that the maxi-
mum tsunami waves arrived in all the evaluation areas. 
To satisfy the stability condition of the computation, the 
computational time step width was set to 0.1 s. Owing to 
the large computational load, we used a supercomputer 
(Earth Simulator, ES3) to perform the tsunami calcula-
tions. Each tsunami calculation took approximately 11 h 
using four ES3 nodes.

In 2012, the Cabinet Office of Japan re-investigated 
geological and geophysical features and historical inter-
plate earthquakes in the Nankai Trough to construct 
earthquake scenarios (fault slip distributions), which 
may occur in the Nankai Trough. The basic procedure 
for constructing the earthquake scenarios was as fol-
lows. First, the fault plane was divided into a tsunami 
fault zone shallower than a depth of 10 km, and a main 
fault zone deeper than 10  km. The seismic moment of 
the main fault zone was calculated using a scaling law 
from the average amount of stress drop and the area of 
the main fault zone. Many sub-faults were defined (of 
approximately 5 × 5  km) on the fault plane, whose slip 
amount was calculated using the seismic moment and 
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the difference in the plate convergence rate. The slip 
angle on the sub-faults was assumed to be in the oppo-
site direction to the plate convergence angle; thus, mainly 
thrust motions. In addition, large slip and super-large 
slip patches were introduced to account for earthquake 
slip heterogeneity. The large-slip patch had a slip amount 
twice the average slip, accounted for 20% of the total area 
of the fault, and was located somewhere in the shallow 
half of the fault plane. The super-large patch had a slip 
four times larger than the average slip and was located in 
the tsunami fault zone, along the trench axis neighbor-
ing the large slip patch. Eleven earthquake scenarios were 
created with a magnitude of 9.1 (hereafter referred to as 
M9 scenarios) by changing the location of the large slip 
and the super-large slip patches (Additional file 1: Figure 
S1). This study calculated tsunamis from the M9 scenar-
ios outlined above and used them as test data (Additional 
file 1: Figure S2).

Cluster analysis for tsunami flow depth
To reduce the number of prediction points, we created 
clustered areas where the tsunami flow depth was always 
similar among the 3480 fault cases. Fourteen fault mod-
els that resulted in significant tsunami inundation in the 

study area were randomly selected from the training data, 
and the k-means method (Hartigan and Wong 1979) was 
applied to their flow depth distributions. Of the 3480 
cases, the selected fault model identification numbers 
were 101, 315, 884, 1562, 1596, 1816, 1838, 2125, 2512, 
2645, 2668, 2725, 2842, and 2850 in Fujiwara et al. (2020). 
Ideally, it would be better to conduct the clustering anal-
ysis using all 3480 fault cases, but this was not possible 
because of the amount of memory required for clustering 
analysis using a large number of points. We repeated the 
clustering analysis several times by changing the selected 
models and confirmed that the obtained cluster patterns 
were similar.

In the k-means method, the analyst should specify the 
number of clustered areas in advance. This study deter-
mined the number of clustered areas based on the vari-
ance in flow depth in the clustered area. Additionally, a 
small number of clustered areas is preferable because the 
purpose of this study is to predict tsunami flow depths 
with low computational cost. We repeated the clus-
ter analysis by changing the number of clustered areas 
generated and evaluated the standard deviation of the 
tsunami flow depth data in each clustered area. For con-
venience, we assumed a criterion that standard deviation 

Fig. 1  a Regional map of the study area. The dotted lines are the plate boundaries proposed by Bird (2003). b Tsunami computational area. Black 
rectangular areas indicate nesting layers. Red star shapes are the locations of the seafloor pressure gauges of the DONET observatory. Coordinate 
system is Japan plain rectangular coordinate system IV. c Tsunami prediction area. Color refers to clustered areas for the tsunami flow depth using 
the k-means method. Terrestrial contours indicate elevation, with an interval of 50 m
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of the flow depth data in each cluster must be less than 
0.5 m with as small a number of clusters as possible. This 
criterion led to 18 clustered areas being the optimal case.

The obtained cluster classification showed good corre-
lation with the topography (Fig. 1c). The clustered areas 
12 and 13 appear around the river in the northern part of 
the map, and the clustered area varies following elevation 
in the southern part of the map. Some clustered areas are 
not spatially continuous, but discrete, because this study 
aims to reduce the number of predicted points by using a 
small number of clustered areas. Figure 2 shows the fre-
quency percentage in the flow depth data for each clus-
tered area for M9 scenario No. 3 (Additional file 1: Figure 
S2) as an example.

Regression models using a power law
Green’s law, which states Hh1/4 = const , where H  is 
the wave height and h is the water depth, can express 
the amplification of tsunami wave height under the 
linear tsunami theory. Hence, a linear multiple regres-
sion seemed reasonable for predicting coastal tsunami 
heights using data from multiple offshore tsunami sta-
tions. However, tsunamis contain strong nonlinear 
effects from advection terms and bottom friction near 
the coast, and these nonlinear effects are more likely 

to appear in large tsunamis. Yoshikawa et  al. (2019) 
pointed out that multiple regressions with a power 
law are more suitable than linear multiple regressions. 
Hence, we also used multiple regressions with a power 
law for our tsunami prediction model. It should be 
noted that Green’s law correlates the tsunami height 
between coastal and offshore points. However, ocean 
bottom pressure gauges do not simply observe the tsu-
nami heights for earthquakes at the gauges because 
the seafloor, seawater (tsunami generation), and the 
gauges move simultaneously owing to crustal displace-
ment (Tsushima et al. 2012; Baba et al. 2014; Additional 
file  1: Figure S3). Hence, the pressure gauges observe 
the water pressure fluctuation (crustal movement + sea 
surface displacement). The water pressure remains 
almost unchanged during tsunami excitation under the 
assumption of hydrostatic pressure. The water pres-
sure decreases with tsunami propagation, and the water 
pressure corresponding to the vertical component of 
the crustal movement decreases after a tsunami sub-
sides. Therefore, this study used the absolute value of 
the maximum deviation of seafloor water pressure 
during a tsunami as the explanatory variable ( x ). The 
tsunami prediction equation used in this study is as 
follows:

Fig. 2  Histograms depicting the frequency percent of tsunami flow depth at each clustered area for the M9 scenario 3 (test data). Gray histograms 
were obtained by a forward tsunami calculation. Blue and red curves were predicted from seafloor pressure data using the CG and MLP methods, 
respectively
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where y is the objective variable, which is the mean and 
standard deviation of the tsunami flow depths in the 
clustered areas. In other words, we predicted the shape 
of the frequency percentage of the tsunami flow depths 
in the clusters shown in Fig. 2; n = 51 is the number of 
offshore observation points (Fig. 1b); k is the observation 
point number; i is the objective variable number. Because 
there are two variables (mean and standard deviation) 
for each cluster, the total length of i is 36 (18 clusters × 2 
variables); j is the fault case number, whose total length 
is 3480; and a and b are the regression coefficients to be 
estimated.

The CG method (Fletcher and Reeves 1964) estimated 
the regression coefficients (a and b) using all the train-
ing data from 3480 cases. The CG method solves nonlin-
ear problems by employing an iterative process. Starting 
from arbitrary initial values, observational equations 
(thus, Eq. (1)) perform the predictions and the prediction 
errors are evaluated. The initial values are then slightly 
changed in the direction of error reduction. The itera-
tion process is repeated until the solution is sufficiently 
convergent (error is not reduced any further). Herein, 
we used the function optim of the statistical processing 
software R. The CG method included the intercept (c), 
and gave 0 to a and c, and 1 to b as the initial values for 
iteration.

Multilayer perceptron
The regression analysis described above is a type of 
machine learning. In recent years, however, many 
research fields have used more advanced machine learn-
ing techniques. The field of tsunami prediction is no 
exception (Fauzi and Mizutani 2020; Makinoshima et al. 
2021). The MLP method (e.g., Gardner and Dorling 
1998) is a standard machine learning method that uses 
a mathematical model that mimics the neuron network 
structure in the human brain. It consists of several lay-
ers, which include an input layer, intermediate multiple 
layers, and an output layer. A layer has multiple nodes, 
and a node has a value that is given by a superposition of 
all node values of the previous layer using the following 
equation:
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 where Ni
j  indicates the j th node on the i th layer and i

= 0 for the input layer, i = 1∼m for the intermediate lay-
ers, and i = m +1 for the output layer; m is the number 
of intermediate layers; f  is the activation function, but 
which is not applied for the output layer ( i = m+1); k is 
the node number of the previous layer (i.e., at i − 1). The 
number of nodes can differ among the layers. W  and c are 
the weight and bias, respectively, which are optimized to 
construct the prediction model. Input values are given to 
nodes in the input layer, W  and c are initialized at ran-
dom, prediction is performed using Eq.  (2), and Nm+1 
is compared with the true value to obtain the prediction 
error. Using an error backpropagation method, W  and c 
are updated in the direction that reduces the prediction 
error. The prediction is performed again with the new W  
and c, the error is re-evaluated, and W  and c are further 
updated using the error backpropagation method. This 
procedure repeats to find the optimal W  and c.

In addition to the power law regression in Eq.  (1) 
solved using the CG method, this study predicted the 
tsunami flow depth for the clustered area using the MLP 
method with y as the output layer ( Nm+1 ) and x as the 
input layer ( N 0 ). We used Tensorflow libraries (Abadi 
et  al. 2016) with the ReLU activation function. We 
repeated preliminary experiments of the MLP with dif-
ferent numbers of intermediate layers and nodes to eval-
uate the prediction error. The larger the number of layers 
and nodes, the lower the prediction error. We used the 
numbers of layers and nodes with which the prediction 
error did not decrease with further increases in the num-
bers. However, this method could lead to overfitting. For 
avoiding this, we used the Adam algorithm (Kingma and 
Ba 2015) to minimize the loss function with an L2 regu-
larization term of the mean square error. A cross-valida-
tion method was used to determine the hyperparameter 
value of the regularization term. Finally, this study used 
9 intermediate layers ( m ). The first intermediate layer 
( i = 1) had eight nodes (23), and the number of nodes in 
the following intermediate layers was set by successively 
increasing the exponent by one.

Prediction of test dataset
Here, we demonstrate the performance of tsunami 
flow depth prediction using the test data of the 11 
M9 scenarios (Cabinet Office 2012), which are differ-
ent Nankai Trough earthquake models from the train-
ing of 3480 cases. The absolute values of the seafloor 
water pressure deviations at 51 DONET stations from 
the M9 scenarios represent explanatory variables that 
were substituted into the prediction equations from 
the CG and MLP methods. Figure 3 shows scatter plots 
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between the predictions using the two methods and 
the true values (i.e., forward calculation results from 
the 11 M9 scenarios). The MLP method (coefficient of 
determination, R2 = 0.977) was more accurate than the 
CG method (R2 = 0.938) in predicting the average flow 
depth. The R2 of the prediction of the standard devia-
tion of the clustered flow depth data were calculated 

to be 0.880 and 0.958 for the CG and MLP methods, 
respectively.

Figure  4 shows more quantitative comparisons of the 
prediction error using the root mean square of residual 
errors (RMSE) between the predicted and true value for 
each scenario. The CG method predicted the tsunamis 
based on the M9 scenarios with RMSE of between 0.39 

Fig. 3  Scatter diagrams between true values (forward calculations) and predicted values using (a) the CG method and (b) the MLP method. Red 
and blue circles represent the mean and standard deviation, respectively, of the flow depth in clustered areas

Fig. 4  Line graphs of the RMSE between true (forward calculations) and values predicted using (a) the CG method and (b) the MLP method for the 
M9 scenarios 1‒11. Solid and dashed lines indicate mean and standard deviation, respectively
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and 1.75 m, while the MLP method predicted them with 
RMSE of between 0.34 and 1.08 m. The M9 scenarios 4 
and 5 had lower prediction accuracy than the other sce-
narios. Figure  2 shows the normal distribution curves 
obtained by using the predicted results overlain on the 
true frequency percentages for the M9 scenario 3. Fig-
ure 5 compares the tsunami flow depth distribution cal-
culated forwardly with one predicted using the CG and 
MLP methods.

Discussion
The CG method generates a prediction model using a 
linear summation of power law basis functions (Eq. (1)). 
Because the MLP method does not need to restrict the 
form of the basis function, the prediction is more accu-
rate than the CG method. However, both methods 
showed poor predictive capability for M9 scenarios 4 
and 5 (Fig.  4), which contain large slip and super-large 
slip patches off the coast of Shikoku (Additional file  1: 
Figure S1). This poor prediction may be related to insuf-
ficient training data because machine learning tech-
niques generally require a large amount of training 
data. We increased the clustered areas from 18 to 30 to 
pseudo-increase the training data and applied the same 
procedure. However, the prediction accuracies of the CG 
and MLP methods for M9 scenarios 4 and 5 were not 
increased (Fig. 4).

The tsunami heights of the M9 scenarios of the test 
data were comparable to the largest tsunami of the 3480 
cases of training data. Giant tsunamis possess strong 
nonlinearity and more complex propagation resulting in 

a greater difficulty in prediction. We may have needed 
training data with tsunamis much larger than those pro-
duced by M9 scenarios. Therefore, we reanalyzed the 
training data that included larger tsunami cases using the 
CG and MLP methods. The larger tsunami cases were 
generated by multiplying the slip amount by a factor of 
1.5 in 268 relatively large cases among the 3480 earth-
quake cases. We repeated the same procedure as for pre-
dictions of the M9 scenarios, but the accuracy did not 
improve in this test (Fig. 4).

The pattern of the clustered areas may be inappropri-
ate for the prediction because the clustered areas were 
generated using the training data, which were different 
from the test data of the M9 scenarios. Therefore, we per-
formed a cluster analysis on tsunami flow depth distri-
butions in the test data (Additional file 1: Figure S4). We 
reconstructed the predictive models of the CG and MLP 
methods using the new cluster areas and predicted the 
tsunamis of the test data. However, the prediction accu-
racy did not improve from that using the original cluster 
areas (Fig. 4). From this trial, the effect of cluster classifi-
cation appears to be small, at least for the datasets herein.

However, our cluster classification of tsunami flow 
depths requires improvement. The clustering analy-
sis should have used all 3480 cases of the training data. 
However, owing to the memory limitations of the analy-
sis computer, we could only perform the cluster classifi-
cation based on a limited number of training datasets (14 
cases) selected at random. Although we confirmed that 
the results changed little by using different selected sets 
of 14 cases, there remains room for improvement. There 

Fig. 5  Spatial map showing (a) tsunami flow depth distribution calculated forwardly from the M9 scenario 3; (b) and (c) are tsunami flow depth 
distributions predicted using the CG and MLP methods, respectively. Terrestrial contours indicate elevation, with an interval of 50 m
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is also no clear criterion to determine the number of clus-
ters. In this study, the number of clusters was set based 
on the data variance within the clusters. This criterion 
should include both the data variance and an operational 
perspective. For example, it may be better to classify the 
clusters according to the administrative area classifica-
tion, such as postal codes, to provide easy-to-understand 
tsunami information.

Increasing the number of training datasets and chang-
ing the cluster classification did not improve the accu-
racy. One possibility to further improve the prediction 
accuracy is the use of different characteristics in addition 
to the tsunami amplitude. The tsunami arrival time con-
tains information on the direction of tsunami propaga-
tion, i.e., the location of the tsunami source. By using the 
arrival time as an explanatory variable, we can include 
information on the tsunami source location, which may 
improve the prediction accuracy. Additionally, a scheme 
that learns the full pressure waveforms may be helpful 
for further development. These investigations will be the 
subject of subsequent research.

Conclusion
An earlier study (Yoshikawa et  al. 2019) proposed a 
method to predict the maximum tsunami height at a 
coastal point using multiple regression of power law 
equations. Here, we extended the method to predict the 
tsunami flow depth distribution on land areas. The MLP 
method successfully predicted the tsunami flow depth 
distribution on land areas, and the RMSE between the 
predicted and true values of the average flow depth was 
estimated to be in the range of 0.34 to 1.08 m. The MLP 
method was more accurate than the CG method because 
the former does not need to define the form of the basis 
function.

Although further improvements are needed, the meth-
ods presented here can construct a light and robust pre-
diction system that does not require fast computation or 
a large database. While large-scale tsunami prediction 
systems are currently becoming mainstream, it is benefi-
cial to have such a stand-alone prediction system to miti-
gate unforeseen circumstances during a great disaster. 
Furthermore, tsunami disasters are a global problem, but 
only a few countries have access to high-speed real-time 
computers for tsunami early warnings.

Abbreviations
CG: Conjugate gradient; MLP: Multilayer perceptron; DONET: Dense oceanfloor 
network system for earthquakes and tsunamis; S-net: Seafloor observation 
network for earthquakes and tsunamis along the Japan Trench; JMA: Japan 
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