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Abstract 

Cosmogenic radionuclide records (e.g., 10Be and 14C) contain information on past geomagnetic dipole moment and 
solar activity changes. Disentangling these signals is challenging, but can be achieved by using independent recon-
structions of the geomagnetic dipole moment. Consequently, solar activity reconstructions are directly influenced 
by the dipole moment uncertainties. Alternatively, the known differences in the rates of change of these two pro-
cesses can be utilized to separate the signals in the radionuclide data. Previously, frequency filters have been used 
to separate the effects of the two processes based on the assumption that millennial-scale variations in the radionu-
clide records are dominated by geomagnetic dipole moment variations, while decadal-to-centennial variations can 
be attributed to solar activity variations. However, the influences of the two processes likely overlap on centennial 
timescales and possibly millennial timescales as well, making a simple frequency cut problematic. Here, we present 
a new Bayesian model that utilizes the knowledge of solar and geomagnetic field variability to reconstruct both 
solar activity and geomagnetic dipole moment from the radionuclide data at the same time. This method allows for 
the possibility that solar activity and geomagnetic dipole moment exhibit variations on overlapping timescales. The 
model was tested and evaluated using synthetic data with realistic noise and then used to reconstruct solar activity 
and the geomagnetic dipole moment from the 14C production record over the last two millennia. The results agree 
with reconstructions based on independent geomagnetic field models and with solar activity inferred from the Group 
Sunspot number. Our Bayesian model also has the potential to be developed further by including additional con-
founding factors, such as climate influences on the radionuclide records.
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Introduction
Cosmogenic radionuclides such as 10Be and 14C are the 
best proxies for solar activity reconstructions prior to 
the period of direct solar observations (Beer et al. 1988; 
Muscheler et al. 2007) such as the record of group sun-
spot number (GSN) starting in 1610 CE (Svalgaard and 
Schatten 2016), and the extended neutron monitor data 
back to 1939 CE (Herbst et al. 2017). Cosmogenic radio-
nuclide records are vital for studies of long-term changes 
of the Sun and Sun–climate linkages far back in time. The 
radionuclides are continuously produced from the inter-
action between high-energy galactic cosmic rays (GCRs) 
coming to the Earth (and secondary particles) and atoms 
in the atmosphere. Their production rates correlate 
with the flux of GCRs reaching the Earth’s atmosphere, 
which is modulated by solar and geomagnetic shielding 
(Beer et al. 2012). Thus, reconstructions of solar activity 
from cosmogenic radionuclide records require correc-
tion for the geomagnetic field influence, usually based on 
independent reconstructions of the geomagnetic dipole 
moment (GDM). Consequently, solar activity reconstruc-
tions are directly influenced by the GDM uncertainties. 
The uncertainties of GDM reconstructions depend on 
the choice of the underlying data and the different meth-
ods to build global geomagnetic field models from them. 
Moreover, differences in GDM reconstructions directly 
lead to discrepancies in solar activity reconstructions. 
Additional uncertainties in solar reconstruction arise 
from cosmogenic radionuclide measurement uncertain-
ties and possible systematic biases such as uncorrected 
climatic influences on 10Be transport and deposition 

processes or carbon cycle influences on atmospheric 14C 
concentrations (Muscheler et al. 2007).

An alternative approach to directly disentangle solar 
and GDM influences on radionuclide records is to uti-
lize the known differences on the rates of change and 
the GCR shielding effects of these two processes. In gen-
eral, millennial variations in the radionuclide records are 
assumed to be dominated by GDM variations, while dec-
adal-to-centennial variations can be mainly attributed to 
solar activity variations (Snowball and Muscheler 2007). 
Utilizing this prior knowledge could not only eliminate 
the need for independent GDM estimates for solar activ-
ity reconstructions, but also provide the possibility to 
infer GDM variations from radionuclide records only. 
Those radionuclide-based GDM reconstructions pro-
vide valuable information on the past GDM as they are 
dominated by the global dipole field, in contrast to the 
information of magnetic field directions and intensity 
stored in, for example, archeological artifacts, igneous 
rocks and sediment records that only provide local read-
ings of the past geomagnetic field. Long-term changes 
in GDM have been reconstructed from radionuclide 
data by removing variations on timescales shorter than 
3000  years (Muscheler et  al. 2005; Zheng et  al. 2021). 
Similarly, the removal of long-term variations from the 
radionuclide data has been conducted in some stud-
ies to minimize the geomagnetic field influence in order 
to assess past changes in solar activity (e.g., Adolphi 
et al. 2014). Until now, these approaches have used sim-
ple frequency filtering with a hard cut-off frequency 
depending on the targets of the studies. However, Snow-
ball and Muscheler (2007) showed that solar and GDM 
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variability likely overlap making a simple frequency dis-
tinction problematic. Quasi-periodicities of ~ 200  years 
to up to ~ 2400 years in solar variations have been shown 
in previous studies of long-term radionuclide records 
(e.g., Bond et al. 2001; Wagner et al. 2001; Snowball and 
Muscheler 2007; Adolphi et al. 2014; Usoskin et al. 2016; 
Dergachev and Vasiliev 2019). Meanwhile, GDM can 
have short-term variation on timescales between ~ 60 
and ~ 200  years but with a relatively low power (Hel-
lio and Gillet 2018; Huder et al. 2020). Significant influ-
ence of GDM on the radionuclide records begins on 
timescales between 300 and 500 years as suggested from 
the correlation between 14C production rate and recon-
structed GDM over the last 10,000 years (Snowball and 
Muscheler 2007). Therefore, the overlap of solar and 
GDM influences on timescales longer than 300  years is 
very challenging for separating their effect on cosmo-
genic radionuclide production rates. Thus, simple fre-
quency filters likely fail in separating the signals and, 
in addition, often lead to unreliable end effects. These 
effects make it difficult to connect the reconstructions 
to present day values of solar activity or GDM intensity 
inferred from instrumental data. These difficulties moti-
vated this study to improve methods to disentangle solar 
and geomagnetic influences for the reconstructions of 
solar activity and GDM from radionuclide records.

Here, we address the challenges discussed above by 
incorporating prior knowledge of solar and GDM vari-
ability and their influence on radionuclide production 
rates into a Bayesian framework. We present a new 
Bayesian method to separate solar activity and GDM var-
iations from the radionuclides data inspired by recently 
developed methods to reconstruct geomagnetic field 
variations using paleomagnetic data (Hellio and Gillet 
2018; Nilsson and Suttie 2021). Our goal is to develop 
a model that can incorporate and utilize the knowledge 
of solar and geomagnetic field variations to reconstruct 
both solar activity and GDM from the radionuclides data 
at the same time. This method allows for the possibility 
that solar activity and GDM exhibit variations on over-
lapping timescales. Different datasets used for the model 
development and testing are presented in the next sec-
tion. In Sect. 3, we outline the Bayesian framework and 
our setup of prior information on the model parameters. 
The model is tested in Sect.  4 using synthetic 14C data, 
before being applied to nearly 2000 years of 14C produc-
tion data inferred from IntCal20 (Reimer et al. 2020).

Data
Observation‑based solar activity and geomagnetic field 
data for model calibration
The reconstruction of solar activity with 14C data requires 
calibration with the instrumentally measured cosmic-ray 

flux record during the present period (Muscheler et  al. 
2016). The solar modulation of the cosmic-ray flux is usu-
ally quantified using the solar modulation potential, φ 
[MV], (also known as the solar modulation parameter). 
Particularly, the parameter approximates the adiaba-
tic energy loss of GCRs in the heliosphere due to solar 
shielding (Vonmoos et  al. 2006; Herbst et  al. 2017). In 
this study, we used the monthly record of the solar mod-
ulation potential φHE16 from 1939 to 2017 CE published 
by Herbst et  al. (2017). The annual average of φHE16 is 
shown in Fig.  1. The modulation potential depends on 
the assumed local interstellar spectrum (LIS) which is the 
flux of GCRs outside the heliosphere. We used the recent 
LIS model from Herbst et al. (2017).

The GSN record by Svalgaard and Schatten (2016) is 
the longest and most recent compilation of direct tel-
escope-based solar observations. It contains the yearly 
average (average over all months of the year) of the GSN 
from 1610 CE to present. The GSN record is a relatively 
robust solar proxy which is not affected by the shielding 
effects of the geomagnetic field and climate influences as 
in the case of 10Be records or by carbon cycle effects in 
the case of 14C records. However, there are often gaps in 
the GSN data due to the discontinuity of observations. 
Consequently, the GSN record was compiled by many 
observers and, therefore, exhibits uncertainties from the 
process of calibration and combination of different data-
sets, especially during the data-poor times (Svalgaard 
and Schatten 2016). Moreover, the constant improve-
ment of the observation technique through time adds 
more challenges to the calibration of the older data. We 

Fig. 1  Solar modulation potential since 1610 CE inferred from the 
GSN and neutron monitor data. The black line and the grey shading 
indicate the mean and 2-sigma uncertainty of the solar modulation 
potential inferred from the GSN (Svalgaard and Schatten 2016). The 
Grand Solar Minima are indicated by name and blue shadings. The 
solar modulation potential estimated from neutron monitor data 
(Herbst et al. 2017) from 1939 onwards is shown as an orange dashed 
line
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inferred the solar modulation potential from the GSN, 
i.e., φGSN, following the method proposed by Usoskin 
et al. (2002). A Monte Carlo approach was used to assess 
the uncertainty of the inference, i.e., 1000 realizations of 
the solar modulation potential were generated consistent 
with the GSN record and its uncertainties. The mean and 
2-sigma uncertainty of these 1000 realizations are shown 
in Fig. 1. The record clearly shows the 11-year Schwabe 
cycle (Schwabe 1844). Centennial variations of solar 
activity are also represented such as the so-called “Grand 
Solar Minima”. These are extended periods of relatively 
low solar activity such as the Maunder Minimum from 
1645 to 1715 CE and the Dalton Minimum from 1790 to 
1820 CE (highlighted in Fig. 1). φGSN is the longest obser-
vation-based solar modulation record containing the 
known typical solar variability, i.e., the 11-year variation 
and the centennial variation, and therefore we consider it 
suitable for model parameterization. Thus, we used φGSN 
to assess the typical behavior of solar activity which was 
then included as prior knowledge in our Bayesian model.

On the other hand, for the GDM calibration we used 
the recent model COV-OBS. × 2 (Huder et al. 2020). The 
GDM was constrained by observational data from both 
ground-based stations and satellites as well as older sur-
veys over the period 1840–2020 CE.

Radiocarbon data
We inferred the 14C production rate for the period 
1–1950 CE from the IntCal20 Northern Hemisphere 14C 
calibration curve (Reimer et al. 2020). IntCal20 was com-
piled by the IntCal Working Group for improving the 14C 
age calibration and it can be used to reconstruct fluctua-
tions in past atmospheric 14C concentrations. We calcu-
lated the 14C production rate from the atmospheric 14C 
fluctuations using a box-diffusion carbon cycle model, 
which includes atmosphere, biosphere, an upper ocean 
mixed layer and 42 deep-sea layers. The option for direct 
ventilation of the deep ocean was turned off (Siegenthaler, 
1983). The uncertainty in the IntCal20 calibration curve 
was quantified using 100 posterior realizations of possi-
ble atmospheric 14C curves obtained via fitting Bayesian 
splines to the 14C data underlying IntCal20 (Heaton et al. 
2020; Reimer et al. 2020). The average of the annual 14C 
production rates inferred from these 100 realizations is 
depicted in Fig. 2. The 14C production rates were normal-
ized to have the pre-industrial mean of one. The surge in 
atmospheric CO2 from 1850 CE due to fossil-fuel burn-
ing was included in the calculation to account for the 
dilution of 14C in relation to 12C (Muscheler et al. 2007).

Short-term solar proton events (SPEs) such as the 
774/775 event and the 993/994 event (Miyake et al. 2012, 

2013; Mekhaldi et  al. 2015; Reimer et  al. 2020) can be 
observed in the annual production rate as rapid rises 
in the production rate. During these events, the Sun 
released significant amounts of energetic particles which 
resulted in short-term radionuclide production enhance-
ments (Mekhaldi et al. 2015). These SPEs are outside the 
scope of this study and, therefore, they were not included 
in our model. The 774/775 event resulted in an extreme 
peak in the production rate and, therefore, it needs to be 
excluded from the model data. We removed the extreme 
values during the event and replaced them using a spline 
interpolation. In addition, we decreased the sampling 
resolution of the 14C data prior to 1600 CE by comput-
ing the mean 14C production rate every 10 years, as the 
data underlying IntCal20 decreases in amount and reso-
lution further back in time. Figure 2 shows the mean and 
the 2-sigma uncertainty of the processed 14C production 
rate. The mix of different temporal resolutions allowed 
us to assess our model performance at both long (prior 
to 1600 CE) and short timescales (after 1600 CE) and, at 
the same time, it helped to save computational costs via 
reducing the number of data points. This approach was 
further motivated by the fact that the 14C data underly-
ing IntCal20 is continuously annual only for the last 
1000  years. In fact, the processed 14C data retain varia-
tions similar to the unprocessed data prior to 1000 CE, 
except for the periods with annual resolution such as 
from 300 to 400 CE and around the SPE spikes.

Fig. 2  14C production rate for the last 2000 years inferred from 
IntCal20. The blue line indicates the mean of a hundred realizations of 
annual 14C production rate inferred from IntCal20 and normalized to 
have the pre-industrial mean of one. The SPEs during 774–775 CE and 
993–994 CE can be observed as rapid rises in the 14C production rate. 
The orange line and orange shading indicate the mean and 2-sigma 
uncertainty of 100 realizations of the processed 14C data (see text). 
The vertical dash-dotted line indicates the year where the process 
data were split into two temporal resolutions, i.e., 10-year average 
before 1600 CE and annual resolution after 1600 CE
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Modeling method
The global production rate of cosmogenic radionuclides
The global production rate of cosmogenic radionuclides 
depends on the cosmic-ray flux coming to the Earth which 
is modulated by solar activity (i.e., solar shielding of GCRs 
in the heliosphere) and the shielding effects of the geomag-
netic field (Masarik and Beer 1999). Concentrations of sta-
ble and radioactive nuclides in meteorites and terrestrial 
archives suggest that, on time scales of about 0.5 million 
years, the GCR flux outside the heliosphere has remained 
constant within ± 10% over the past ∼ 10 million years 
(Wieler et  al. 2013). Therefore, the assumption of a con-
stant local interstellar GCR spectrum outside the helio-
sphere is usually made for any reconstruction of solar and 
geomagnetic field activity using cosmogenic radionuclides. 
The global production rate of cosmogenic radionuclides 
(Q [atoms cm−2 s−1]) can then be modeled as a function of 
solar modulation potential (φ [MV]) and GDM denoted as 
M [1022 A m2]:

where t represents time. In this study, we employed the 
tabulated function established in Kovaltsov et  al. (2012) 
for the 14C production rate (Fig.  3). Since the tabulated 
function was published with discrete data, we approxi-
mated it with a polynomial function (details in section 1 
of the Additional file  1). This allowed us to work with 
continuous values of φ and GDM.

The function established by Kovaltsov et  al. (2012) was 
based on the LIS model from Usoskin et al. (2005). Accord-
ing to Herbst et al. (2017), φ from one LIS can be converted 

(1)Q(t) = f (φ(t),M(t)),

to φ in another LIS by means of linear regression functions. 
We then used the following regression function to convert 
from φUS05 to the more recent LIS model by Herbst et al. 
(2017), i.e., φHE16:

Theoretical 14C production rates and the normalized 
14C data need to be connected via a normalizing con-
stant. This constant can be estimated through a com-
parison of the 14C production rate data with theoretically 
expected 14C production rates inferred from independent 
records of solar modulation potential and GDM. As men-
tioned above, the GDM from 1840 CE provided by COV-
OBS. × 2 is suitable for our purpose. On the other hand, 
φHE16 provides a  record of solar activity inferred from 
instrumental data. However, it only overlaps with the 
radiocarbon data for a short period from 1939 to 1950 
CE. Therefore, we rely on the solar modulation record 
inferred from the GSNs as an alternative.

Figure 4 shows the global 14C production rate estimated 
by combining the mean of φGSN and the mean GDM pre-
dicted by COV-OBS. × 2 from 1840 to 1950 CE. The sig-
nificant 11-year solar variation can be observed in the 
estimated mean production rate, while the variation has 
a lower amplitude in the processed 14C data (Fig.  4). The 
main reason is the smoothening which occurred during 
the construction of the average IntCal20 14C record (Hea-
ton et  al. 2020; Reimer et  al. 2020) and the fact that the 
11-year cycle variability is strongly dampened and close 

(2)φHE16 = 1.025× φUS05 + 24.18MV.

Fig. 3  Global production rate of 14C as a function of solar modulation 
potential and GDM. The graph is based on the model of Kovaltsov 
et al. (2012)

Fig. 4  A comparison between the 14C production rate data and 
theoretically expected 14C production rates. The theoretical estimate 
of the mean global 14C production rate (black line) for the period 
1840–1950 CE was based on φGSN and COV-OBS. × 2. The dash-dotted 
line depicts the estimated 14C production rate after being filtered 
with a 9-year moving average filter. The 14C production rate based 
on IntCal20 (blue line) was normalized to have the same mean 
as the filtered 14C production rate for the overlapping period. The 
correlation coefficients between the 14C production rate modeled 
from the data and the filtered or non-filtered estimates of 14C 
production rate are shown
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to the detection limit in tree-ring based reconstructions of 
the atmospheric 14C concentration (Brehm et al. 2021). The 
smoothening of the 14C data will have consequences for 
our modeling approach later on. Assessing this smoothen-
ing with a moving average filter showed that a 9-year mov-
ing average version of the theoretical 14C production rate 
(Fig.  4) approximates best the variations in the 14C data 
(r = 0.76). A normalizing constant was then computed by 
comparing the averages of the estimated 14C production 
rate filtered with a 9-year moving average filter, and the 
averages of the 14C production data for the period of over-
lap. The model uses this normalizing constant to connect 
the input 14C data to the global production rates generated 
with Eq. 1.

A Bayesian approach for sampling the past solar 
modulation potential and geomagnetic dipole moment
Consider a model with a set of parameters (θ) and observed 
data (y); a set of parameters that fit with the observed data 
can be found using Bayes’ theorem (Gelman et al. 2004):

Within the Bayes’ framework, p(θ|y) is the unnormalized 
posterior distribution of the parameters after consider-
ing the observed data. p(y|θ) is the distribution of the data 
conditional on θ. It is also called the likelihood function if 
it is treated as a function of θ. p(θ) is the prior distribution 
of the model parameters before any observation. Although 
the posterior distribution p(θ|y) cannot always be solved 
analytically, Eq. 3 allows for an approximation by generat-
ing samples from the posterior distribution via different 
sampling methods. This method of statistical inference or 
Bayesian inference allows us to incorporate our additional 
knowledge into the prior distribution of the parameters. 
Moreover, the parameters’ distribution could be updated 
continuously as more observations become available. This 
is particularly useful in cases where the sample size is not 
fixed and/or when the users want to incorporate additional 
information.

We employed the Hamiltonian Monte Carlo (HMC) 
method which utilizes the Hamiltonian dynamic simu-
lation to efficiently generate samples from the posterior 
distribution (Neal 2011). We developed and executed our 
model via Stan (Carpenter et al. 2017), a probabilistic pro-
gramming language for statistical modeling and high-per-
formance statistical computation. In addition, we used the 
No-U-Turn Sampler (NUTS), an extension of HMC devel-
oped by (Hoffman and Gelman 2014) to sample from the 
posterior distribution of solar variations and GDM. NUTS 
provides an auto-tuning of difficult and highly sensitive 
parameters of the HMC sampler.

If the solar modulation potential (φ) and the GDM (M) 
are considered as parameters in formula 3, the Bayesian 

(3)p
(
θ |y

)
∝ p

(
y|θ

)
× p(θ).

approach can be used to find φ and M that fit with the 
observed global production rate (Q):

and if φ and M are independent, the formula can be re-
written as:

where the likelihood function p(Q|φ,M) can be estab-
lished based on the global production rate function of 
Kovaltsov et  al. (2012) (Fig.  3). This Bayesian method 
allows us to input our information on the characteris-
tics of the Sun and the geomagnetic field intensity via the 
prior distribution p(φ) and p(M). Combining this infor-
mation with the observed production rate data offers the 
possibility to reduce the uncertainty and improve the 
reconstructions.

Setting up the prior distributions
Prior distribution of solar variability
The prior distribution of solar activity was set up using 
the framework of a Gaussian process (GP) described by 
Rasmussen and Williams (2006):

where φ(t) represents the solar modulation potential at 
time t. t and t’ are separated by a time difference r. mφ(t) 
is the mean function and kφ(t,t’) is the covariance func-
tion of φ(t). The mean function and the covariance func-
tion are given by:

where E represents the expected values. The GP is a gen-
eralization of the multivariate Gaussian probability dis-
tribution (Rasmussen and Williams 2006), where each 
point t is described by a mean and a joint Gaussian dis-
tribution with the surrounding points. Consequently, 
every point/event in time is influenced by (correlated 
to) the data before and afterwards. Characteristics of the 
correlation are determined by the covariance function. 
The covariance matrix, generated using a specific covari-
ance function (discussed later), is the collection of vec-
tors defining the correlation of every point in time with 
the surrounding points. In other words, the covariance 
matrix includes the information on the characteristic 
timescales and variances of the physical processes that 
we aim to reconstruct.

(4)p(φ,M|Q) ∝ p(Q|φ,M)× p(φ,M),

(5)p(φ,M|Q) ∝ p(Q|φ,M)× p(φ)× p(M),

(6)φ(t) ∼ GP
(
mφ(t), kφ

(
t, t

′
))

,

(7)mφ(t) = E[φ(t)],

(8)
kφ

(
t, t

′
)
= E

[(
φ(t)−mφ(t)

)
×

(
φ

(
t
′
)
−mφ

(
t
′
))]

,
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The most common covariance function within the 
machine learning field is the squared exponential (SE) 
(Rasmussen and Williams 2006). The covariance (kSE) and 
spectral density (SSE) of the SE covariance function have 
the forms:

where D is the dimensionality, σ2 is the signal variance 
and l is the length-scale that determines how quickly the 
correlation diminishes with time. s in Eq.  10 represents 
frequencies. Additional file 1: Fig. S3 shows an example 
of the covariance kSE (r) as a function of the input dis-
tance r in time.

In this study, a new covariance function for the solar 
variations was created by adding two SE covariance func-
tions with different characteristic timescales:

One SE covariance function simulates the observed 
short-term variations (e.g., 11-year cycle), while the 
other one simulates the observed centennial variations 
(e.g., 88–100  years) of the Sun. This combined covari-
ance function was established based on the variations 

(9)kSE(r) = σ 2 × exp

(
−

r2

2l2

)
,

(10)SSE(s) = σ 2 ×

(
2π l2

)D
2
× exp

(
−2π2l2s2

)
,

(11)

k(r) = σ 2
shortexp

(
−

r2

2l2short

)
+ σ 2

longexp

(
−

r2

2l2long

)
.

of the solar modulation parameters (i.e., φGSN) which is 
the longest observational record of solar activity. The 
record shows solar activity for the last ~ 400 years which 
was dominated by the 11-year cycle and the centennial 
variations (Fig.  1). The short length of φGSN is a weak-
ness of the model since the record is not long enough to 
capture possible quasi-periodicities of ~ 400  years to up 
to ~ 2400 years in solar variations (e.g., Bond et al. 2001; 
Snowball and Muscheler 2007; Usoskin et al. 2016; Der-
gachev and Vasiliev 2019). However, we want to avoid 
including long-term cycles inferred from the radionu-
clide records in our prior information which would lead 
to circular reasoning as the model is applied to radionu-
clides. Moreover, solar variations inferred from radionu-
clide records on longer time scales are rather ambiguous 
since it is challenging to completely eliminate influences 
from geomagnetic field variations, transport and depo-
sition processes for 10Be and carbon cycle effects on 14C 
(Vonmoos et al. 2006; Snowball and Muscheler 2007). In 
addition, we lack a longer direct observational record of 
solar activity that could help us to obtain a better con-
strained prior for solar variability on timescales longer 
than the GSN record. Nevertheless, the GSN record 
still shows indications of the 200-year cycle such as the 
Maunder minimum, a period with an almost complete 
lack of sunspots, which can be considered as an expres-
sion of the 200-year cycle (Fig.  1). The millennial-scale 
cycles can possibly be characterized as bundling of 
larger-amplitude centennial-scale variations followed 
by periods of weaker centennial-scale variability, and, in 

Fig. 5  The distribution of φGSN approximated with log-normal distributions. The histograms show the density distribution (a) and the cumulative 
distribution (b) of φGSN. The vertical dash-dotted black lines represent the mean of φGSN. The orange and green lines depict log-normal distributions 
with the best fit to φGSN and φGSN + 200MV, respectively. The green lines in both panels a and b have been shifted to the left (via subtracting c) to be 
able to compare with φGSN
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such cases, the proposed covariance function can repro-
duce the millennial-scale variations to some extent.

The histograms in Fig. 5 show that φGSN has a positive 
distribution (i.e., the adiabatic energy loss of GCR can-
not be negative) that is skewed toward higher values. 
Therefore, the symmetrical Gaussian distribution, which 
also allows for negative values, implied by Eq.  6 is not 
an appropriate approximation of φ. Moreover, the poly-
nomial approximation (Additional file  1: Fig. S2) of the 
14C production rate function starts to become unrealistic 
and produces negative values at φ smaller than -362 MV 
which would be problematic to the modeling process. For 
φ within the range of − 362 to 0 MV, which also implies 
unphysically negative shielding, the approximation pro-
duces unrealistically large values of 14C production rate 
which would then mostly be rejected by the Bayesian 
sampler. However, the sampling process would be ineffi-
cient if the model has to frequently reject negative values 
of φ. Thus, we considered modeling φ using a log-normal 
distribution which is also a skewed positive distribution:

where μlog(φ) represents the mean and σ2
log(φ) represents 

the variance of the log transformation of φ. A disadvan-
tage of using a log-normal distribution is that the model 
will occasionally generate extremely high values of φ due 
to the nonsymmetrical characteristic (Fig.  5a). How-
ever, the proposed φ will be rejected by the model when 
it is unrealistically high and cannot be explained by the 
radionuclide production rate. Another problem of the 
log-normal distribution is a bias toward lower values of 
φ as demonstrated by the histograms. Consequently, 
values above the mean of φGSN will be generated with 
a lower probability. A solution for this is to add a con-
stant (c [MV]) to φGSN before fitting with a log-normal 
distribution:

After sampling from this distribution, we exponenti-
ate and subtract c to obtain φ. This approach allows the 
model to generate a more flexible distribution agree-
ing well with the φGSN distribution (Fig.  5). This mini-
mizes the bias toward lower values of φ at the cost of 
allowing for negative values of φ (i.e., as low as minus 
c) with a low prior probability. We assessed the fitted 
distribution for the case of c equal to 100, 200 and 300 
MV (Additional file  1: Fig. S4) and decided to choose 
200 MV as this value shows a good balance between the 
pros and cons. The fitted distribution to log(φ + c) with 
c equal to 200 MV is shown in Fig. 5. Parameters of the 
fitted log-normal distribution such as mean and variance 

(12)log(φ) ∼ N
(
µlog(φ), σ

2
log(φ)

)
,

(13)log(φ + c) ∼ N
(
µlog(φ+c), σ

2
log(φ+c)

)
.

were assessed using the method of maximum likelihood 
estimation. In summary, the prior distribution allows 
for negative values of solar modulation as low as − 200 
MV but with a low probability in exchange for a better 
model performance with less bias toward lower values 
of φ. Negative solar modulation values, while unphysi-
cal, could be generated associated with the biases in 
radionuclide data (e.g., climate impact), extreme spikes/
enhancement in the radionuclide records (e.g., SPEs), 
or simply the data uncertainties. Data uncertainties are 
included in the model and we assume that climate biases 
are minor for the 14C production rate. However, SPEs are 
not included in our model and, therefore, we removed 
the known SPE production peaks (i.e., the 774/775 and 
the 993/994 peaks) from the 14C data. In addition, Fig. 5 
shows that the prior distribution (green line) still slightly 
underestimates the probability of solar modulation from 
around 500 to 1000 MV. This could still lead to a slight 
bias toward lower values of solar modulation. However, 
the posterior distribution of solar activity will ultimately 
be evaluated and selected based on the radionuclide data. 
Therefore, a small inclination toward low solar modu-
lation values of the prior distribution will not bias the 
results.

We then replaced Eq. 6 with:

where φc(t) = φ(t) + c. The mean function and the covari-
ance function are adjusted accordingly:

The mean of our proposed prior distribution (mlog(φc)) 
for the modeling period was equal to the mean of the fit-
ted log-normal distribution.

The short-term and long-term variations of the Sun 
were defined in Eq. 11 by the characteristic length-scale 
(lshort, llong) and the signal variance (σ2

short, σ2
long). These 

parameters were determined using φGSN, particularly the 
power spectrum of log(φGSN) (Fig. 6a). In other words, we 
investigate how log(φGSN) behaves in the frequency range 
and adjust our prior to resemble it. The short-term varia-
tions are reflected as a bump and changes in the slope of 
the power spectrum around the 6- to 16-year period. The 
centennial variation could be observed for periods longer 
than 55  years, but the changes in the slope were not as 

(14)log(φc(t)) ∼ GP
(
mlog(φc)(t), klog(φc)

(
t, t

′
))

,

(15)mlog(φc)(t) = E[log(φc(t))],

(16)

klog(φc)

(
t, t

′
)
= E

[(
log(φc(t))−mlog(φc)(t)

)

×

(
log(φc

(
t
′
)
)−mlog(φc)

(
t
′
))]

.
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strong as the short-term variation. First, we determined 
lshort and σ2

short by tuning our covariance function for the 
period from 10 to 12 years (highlighted in Fig. 6a). This 
ensures that our prior captures the short-term variations 
which are most prominent for period lengths from 10 
to 12 years. We then tuned llong and σ2

long for the period 
from 50 to 136 years where the transition in power occurs 
(highlighted in Fig.  6a). Details of the parameterization 
process are outlined in section 2 of the Additional file 1.

The spectral density of the combined covariance 
function with tuned parameters is shown in Fig.  6a. 
The power decreases stepwise with a constant period 
between the steps as a result of the combination of our 
two SE covariance functions. As expected, the combina-
tion of the two tuned covariance functions does not fully 
simulate the bump-like structure in power generated 
by the short-term variation of the Sun around a 10- to 
12-year period. The power was instead raised to a higher 
level before and after the bump. A fixed periodic signal 
could be introduced to simulate the bump-like property 
as a peak in the power spectrum. However, this would 
also limit the short-term variations to a narrowly defined 

cycle as, for example, an 11-year cycle. We here chose to 
apply a more relaxed prior since the short-term varia-
tions of the Sun vary around the 11-year timescale rather 
than being a cycle with constant frequency (Friis-Chris-
tensen and Lassen 1991; Solanki et  al. 2002; Petrovay 
2010; Brehm et al. 2021). Moreover, the short-term vari-
ations could have changed further back in time. Overall, 
despite this drawback, we still chose the SE covariance 
function because the flexibility in the range of the short-
term variations allows for a variable frequency for the 
“quasi” 11-year cycle. Therefore, the solar cycle can be 
determined by the data instead of being imposed by the 
prior.

Figure  6b shows a comparison of the power spectra 
of φGSN and solar modulation potential realizations 
that were randomly generated with our tuned covari-
ance function for the same time period. As expected, 
the covariance function generates short-term varia-
tions that are not fixed to, but rather vary around, the 
11-year cycle. The transition in the power spectrum of 
φGSN from 50 to 136 years is well simulated. The covari-
ance function generates curves with higher power than 
φGSN for periodicities with 16–40  years cycle lengths. 
This is a drawback of the SE covariance function that 
cannot be avoided with this rather simple approach, 
but on the other hand it is necessary to generate high 
enough power to capture the short-term variations. 
Variations on timescales shorter than 4  years can be 
observed in the power spectrum of φGSN. We interpret 
these variations as not relevant for our radionuclide 
data interpretation and decided to exclude them in our 
parameterization. Therefore, it is not a problem when 
the power spectrum of our generated solar modulation 
potential diminishes rapidly for periodicities shorter 
than 4 years.

We generated 1000 realizations of φ from 1 to 1938 CE 
using Eq.  14 to simulate our prior distribution of solar 
activity. We found that 1000 realizations were enough to 
capture the main aspect of our covariance matrix, mainly 
around the diagonal. The covariance matrix and hence 
the realizations were connected to the present solar 
activity of φHE16. Every realization was binned (i.e., tak-
ing an average of every 10 years) prior to 1600 CE to have 
the same time resolution as the processed 14C data. Post 
1600 CE the realizations were smoothened with a 9-year 
moving average filter to match the treatment of the 14C 
data, as discussed in Sect. 3.1. A new adapted covariance 
matrix for solar variations over the period 1 to 1938 CE 
was computed from these 1000 processed realizations to 
account for the lower resolution and smoothening. The 
final prior distribution of solar activity was estimated via 
1000 realizations generated using the adapted covariance 
matrix (Fig.  7a). Again, we tested and found that 1000 

Fig. 6  Power spectrum of log (φGSN) and φGSN approximated by 
our tuned covariance function. a Compares the power spectrum of 
log(φGSN) (black line, standardized to have mean = 0 and variance = 1) 
with the theoretical spectral density of the tuned covariance 
function (red line). The tuning periods are highlighted with light 
red shading. Panel b compares the power spectrum of φGSN (black 
line, standardized to have mean = 0 and variance = 1) with power 
spectrums of two random realizations (color lines) generated by the 
tuned covariance function for the period from 1610 to 2015 CE. The 
light red envelop indicates the estimated 95% confidence interval of 
the power spectrums from 1000 random realizations. c Is similar to 
panel b, but shows the power spectrum of a 9-year moving average 
version of φGSN (black lines) and the power spectra of 1000 random 
realizations generated by the adapted covariance matrix (see text) for 
the same time period. All of the power spectra were computed with 
the Multitaper Method (bandwidth NΩ = 8, tapers K = 8)
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realizations were enough to represent the adapted covari-
ance matrix. The new solar realizations have comparable 
variations to the 9-year moving average version of φGSN 
during the same period (Fig. 6c). The approach described 
here allows us to directly adjust/adapt our covariance 
matrix without having to adjust/re-parameterize the 
covariance function. Thus, it will be helpful for modeling 
radionuclide data with different temporal resolution or 
smoothening when applied to long-term radionuclide 
records.

Prior distribution of geomagnetic field intensity
We set up the prior distribution for GDM following Bou-
ligand et al. (2016). We simplified the approach using just 
the axial component to approximate the GDM. This was 
justified because the axial dipole is the component that 
dominates the geomagnetic shielding of galactic cosmic 
rays (Masarik and Beer 1999). The covariance function for 
changes in the axial component is given by:

(17)

k(r) =
σ 2

2ξ
∗

(
(χ + ξ)e−(χ−ξ)|r| − (χ − ξ)e−(χ+ξ)|r|

)
,

with ξ2 = χ2 −  ω2. χ and ω are parameters representing 
frequencies. σ2 and r, again, symbolize signal variance 
and difference in time. The power spectral density of the 
covariance function is as follows:

The power spectrum (P) has an arc shape with the 
power decreasing with increasing frequency. It is often 
divided into several frequency ranges which can then be 
approximated locally with various spectral indices (p) 
(Bouligand et al. 2016; Hellio and Gillet 2018):

At very low frequency where p ≅ 0, the spectrum is 
almost flat indicating that it has the largest power at long-
term periods such as periods longer than 50,000 years as 
shown in Additional file 1: Fig. S5. The power decreases 
faster at shorter periods (i.e., larger spectral indices). The 
decrease in power spectrum is simulated by changes in 
the slope which are determined by the cut-off frequencies 
Ts and Tf. The cut-off frequencies indicate the time peri-
ods where transitions into steeper slopes occur and their 
formulas are given by Bouligand et al. (2016):

χ and ω are then chosen to achieve the desired cut-off 
frequencies.

A recent geomagnetic field model COV-LAKE span-
ning the last 3000  years has Ts ~ 100,000  years and 
Tf ~ 60 years (Hellio and Gillet, 2018). The model is based 
on measurements of the magnetic field directions and 
intensity stored in archeological artifacts, igneous rocks 
and sediment records. The power spectral densities for 
the axial component of COV-LAKE are shown in Addi-
tional file  1: Fig. S5 and the GDM provided by COV-
LAKE is shown in Fig.  10. The COV-OBS. × 2 model 
(Additional file  1: Fig. S5) has the same Ts but higher 
Tf (~ 235  years). This earlier transition (at longer time 
period) in the slope resulted in lower power for variations 
on timescales shorter than 200 years.

We tested generating a prior distribution of GDM 
using Ts and Tf from COV-LAKE and COV-OBS. × 2 
models (results are shown in Additional file  1: Fig. S6). 
However, comparisons to the reconstructed GDM based 
on COV-LAKE suggest the prior distribution is rather 

(18)P
(
f
)
=

4χω2σ 2

(ω2 − (2π f )2)
2
+ (4πχ f )2

.

(19)P
(
f
)
∝ f −p.

(20)Ts =
2π(χ + ξ)

ω2
,

(21)Tf =
2π(χ − ξ)

ω2
.

Fig. 7  Prior distributions of φ and GDM, and the synthetic 14C 
data generated from the distributions. a and b Show the prior 
distributions of the solar activity and GDM, respectively. The grey 
lines depict 50 random realizations and the two black dashed lines 
indicate 2-sigma uncertainty of a thousand realizations. The orange 
lines represent the recent observations to which the model is 
connected, i.e., φHE16 and GDM based on COV-OBS. × 2. The blue lines 
represent the selected realization used to generate the synthetic 14C 
production rate. c Shows the synthetic 14C production rate (blue line) 
and the resampled values with 6.7% standard error (orange circles 
with error bars)
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conservative. We also compared our prior distribution 
with pfm9k.1b another major reconstruction for the last 
2000  years (Nilsson et  al. 2014; Muscheler et  al. 2016). 
pfm9k.1b provides a low temporal GDM reconstruction 
(300–400 years) over the Holocene based on almost the 
same underlying dataset as COV-LAKE (COV-LAKE 
was extended to include additionally new sediment and 
archeological intensity data). The GDM reconstructed 
by pfm9k.1b over the last 2000 is shown in Fig. 10. The 
GDM indicated by pfm9k.1b was mostly above and out-
side the prior distribution (Additional file  1: Fig. S6). 
Too conservative prior distributions could result in a 
bias toward values of GDM lower than the range seen in 
the previous GDM models. Therefore, we adjusted the 
parameters to widen our prior distribution (Additional 
file 1: Fig. S6c) and allow for more variability in the prior 
for GDM. We used a lower Ts of 50,000 years, a higher Tf 
of 433  years and also a larger signal variance. The vari-
ations for timescales between 100 and 10,000  years of 
our prior are larger compared to the prior used for COV-
OBS. × 2 (Additional file 1: Fig. S5). For variations shorter 
than 100 years, our prior agrees with the prior used for 
COV-OBS. × 2. The parameters of COV-OBS. × 2, COV-
LAKE and from this study for the axial component are 
shown in Additional file  1: Table  S1. The variations of 
the axial dipole are insignificant at timescales shorter 
than 20  years. Therefore, the prior distribution of the 
GDM can be used directly without any adjustment (e.g., 
smoothening) of the covariance matrix. In addition, the 
prior distribution of GDM was connected to present 
GDM from 1939 to 2020 CE predicted by COV-OBS. × 2. 
We generated 1000 realizations of GDM simultaneously 
with φ to estimate the prior distribution (Fig. 7).

Results of palaeomagnetic field models could be used 
to further constrain the prior distribution. This would 
reduce the reconstruction uncertainty for periods where 
past GDM variations are well constrained, but would 
introduce uncertainties associated with the chosen pal-
aeomagnetic field model. Disagreement in GDM recon-
structed by different palaeomagnetic field models would 
lead to discrepancies in solar activity reconstructions. 
In addition, this also defeats our purpose of being inde-
pendent of GDM models and providing a radionuclide-
based reconstruction for GDM. Therefore, we did not 
further constrain our prior distribution based on results 
of palaeomagnetic field models.

Evaluation of the proposed solar activity and GDM
The samples of φ and M drawn from the prior distribu-
tion were evaluated via the likelihood function:

(22)Qt ∼ N
(
f (φt ,Mt), σ

2
Q,t

)
,

where Qt is the data vector of the observed global pro-
duction rates and σ2

Q,t is the vector representing uncer-
tainty (i.e., variance) of the observed data. φt and Mt are 
the vectors of the solar modulation potential and GDM, 
proposed by the Bayesian model as the solution for Qt. 
The link between Qt and φt and Mt [i.e., f(φt,Mt)] was 
established based on the global production rate function 
in Kovaltsov et al. (2012) (see Fig. 3 and section 1 in the 
Additional file 1). In summary, the Bayesian model com-
bines our knowledge about the parameters (i.e., incor-
porated in the prior distributions) with the additional 
constraints provided by the observations (here, the global 
production rate) to yield a new (posterior) distribution of 
the parameters.

The prior distributions allow for an overlap of geomag-
netic field and solar variability, which is the main chal-
lenge our method addresses. However, this leads to the 
fact that the reconstruction for geomagnetic field and 
solar variability on timescales significantly longer than 
200  years is to some extent ambiguous since the prior 
distribution of solar activity was established based on 
variations observed in the 400-year-long GSN record. 
Nevertheless, the prior distribution is based on flexible 
SE covariance functions so that the choice of timescales 
does not prevent the model from finding longer perio-
dicities, if the data requires them. The power spectrum of 
the tuned covariance function in Fig. 6 is essentially flat 
for longer timescales, but presumably the actual power 
spectrum decreases at very long periods. The model will 
compare and decide if the variations in the radionuclide 
record at timescales longer than 200  years can or can-
not be explained by geomagnetic field variations (char-
acterized in the prior distribution) and, if not, the model 
will likely consider those as solar variations. Overall, the 
model has larger uncertainties for variations on time-
scales longer than 200  years, but the prior information 
allows for some separation of solar and geomagnetic field 
influences also on these timescales. This is an advantage 
of the model over a simple band-pass frequency filter in 
disentangling solar and geomagnetic field variations on 
timescales longer than 200 years.

We also evaluate the correlation coefficient (rφt,Mt) 
between the proposed curves of φ and GDM:

We set the mean (μr) and standard deviation (σr) of 
the correlation coefficient equal to 0 and 0.01, respec-
tively. This ensures the independence of the recon-
structed solar activity and geomagnetic field strength 
which was the initial assumption of the Bayesian 
approach (Eq.  6). It is worth mentioning that we 
tested different values of σr and chose 0.01 as the value 

(23)rφt ,Mt ∼ N
(
µr , σ

2
r

)
.
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providing the best independence constraint. σr larger 
than 0.01 would result in φ and GDM correlating 
more strongly than we expect (we do not expect a link 
between solar activity and GDM variations), while σr 
lower than 0.01 would be too severe a constraint. The 
model will then reject the majority of the proposed 
samples albeit some low correlation can occur just by 
coincidence. It is also worth mentioning that some 
chance correlation between φ and GDM is more likely 
if we investigate a short period of time (e.g., shorter 
than 1000 years), especially if both processes exhibit a 
long-term trend over the investigated period.

Testing the model with synthetic data
Generating synthetic data
Here we aim at testing how well the model can recover 
solar activity and GDM from 14C production rates 
that were calculated from these synthetic solar and 
geomagnetic field records. The synthetic data were 
generated from the prior distribution of φ and GDM 
and therefore it contained only variations that were 
included in the model. Therefore, the model was tested 
in a control scenario where the data did not contain 
unknown patterns. This is an important step in model 
validation before running the model with a real data-
set with solar and geomagnetic field variations that are 
unknown.

Firstly, we randomly generated a realization of solar 
activity (φ’) and GDM (M’) using the prior distribution. 
These realizations were considered as the reference 
(i.e., “true”) values which, after adding the assumed 
uncertainties, the Bayesian model was challenged to 
reconstruct. Figure  7a and b shows the prior distribu-
tions (50 random realizations and a 2-sigma envelope 
of a thousand realizations), and the reference φ’ and M’. 
The differences between solar variations with annual 
resolution and 10-year resolution are visible in the solar 
realizations in Fig. 7a. Before 1600 CE, only variability 
on longer timescales such as centennial variations is 
left but no 11-year variations as these short-term varia-
tions were largely removed due to the low sampling res-
olution. After 1600 CE, the 11-year solar cycle can be 
observed. Occasionally, the model generated φ values 
larger than 2000 MV which is significantly larger than 
the values of φHE16. This is a consequence of the log-
normal distribution as discussed above. However, most 
of the values were below 1300 MV as indicated by the 
2-sigma envelope (black dashed line). The prior distri-
bution of GDM (Fig. 7b) shows insignificant short-term 
variations and larger millennial variations. A synthetic 
14C production rate (Fig.  7c) resulting from φ’ and M’ 
was computed. We then resampled the synthetic pro-
duction rate (orange circles with associated 1-sigma 

errors in Fig. 7c) assuming it followed a normal distri-
bution with a standard deviation similar to the standard 
error of our inferred 14C production rate from IntCal20. 
This allows us to test our model with realistic levels of 
uncertainty. The standard error of the 14C production 
rate (from 1 to 1950 CE) ranges from 2.1% to 6.7%. We 
assumed the worst-case scenario and used 6.7% uncer-
tainty to resample the synthetic 14C production rate.

Assessing model performance
For a given model parameter (θi), we estimate the poste-
rior mean ( ̂θi ) and variance ( ̂σ 2

θi
 ) directly from the Markov 

chain Monte Carlo (MCMC) samples:

with N being the sample population. In this study, we 
generated a thousand MCMC samples (N = 1000) to esti-
mate the posterior distribution of φ and M. We assess 
our model performance using two diagnostics following 
(Hellio and Gillet 2018; Nilsson and Suttie 2021), the nor-
malized dispersion (Φθi) and the normalized error (Ψθi). 
The normalized dispersion equals to the standard devia-
tion of the posterior divided by the standard deviation of 
the prior:

The squared normalized dispersion (Φ2
θi), also known 

as the shrinkage factor, measures the amount of infor-
mation contributed by the observations to the prior dis-
tribution. Φ2

θi equal to 1 indicates that no information 
was added. The second parameter, the normalized error, 
is equal to the absolute difference between the posterior 
mean and the reference value (θi’) (i.e., the selected φ’ and 
M’, blue lines in Fig. 7a and b) normalized by the stand-
ard deviation of the posterior:

The normalized error measures the accuracy of the 
prediction with Ε[Ψθi] = 1 indicating that the reference 
values are mainly within the uncertainty of the prediction 
values. The root mean squared (RMS) values of Φθi and 
Ψθi for φ and M are shown in Additional file 1: Table S2.
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Fig. 8  Assessing solar activity and GDM reconstruction of the Bayesian model with the synthetic dataset. Posterior distributions of solar activity 
(a) and GDM (b) depicted with means (red lines) and 2-sigma uncertainty of a thousand realizations (light red shadings). The prior distributions are 
also depicted with the 2-sigma uncertainty (black dashed lines). The blue lines represent the reference φ’ and M’ and the orange lines represent 
the recent values that the model is connected to, i.e., φHE16 and GDM based on COV-OBS. × 2. c Shows the mean (red line) and 2-sigma uncertainty 
(light red shading) of a thousand 14C production rate curves generated by the recovered φ and M. The reference 14C production rate is represented 
by the blue line. d Shows the histogram of the model-data residuals (grey bars) defined as the differences between individual posterior realizations 
of 14C production rate and the input 14C data, normalized by the data uncertainties. A standard normal distribution is shown as the blue line for 
comparison
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The posterior distribution of φ was well estimated and 
constrained as indicated by a low value of ΦRMS (Addi-
tional file 1: Table S2). Figure 8a shows that the posterior 
distribution of φ (i.e., the 2-sigma uncertainty envelope) 
is significantly smaller than the 2-sigma envelope of the 
prior. On the other hand, less information was added to 
the prior distribution of GDM as indicated by ΦRMS equal 
to 0.73. Figure 8b shows that the posterior distribution of 
GDM was almost the same as the prior distribution in the 
recent period, for example after 1500 CE. This suggests 
that the 14C production rate could not help improve the 
estimation of GDM for the recent period. The posterior 
distribution of GDM was smaller than the prior distribu-
tion further back in time indicating that GDM was bet-
ter constrained during the earlier periods. On the other 
hand, the values of ΨRMS just below 1.0 (Additional file 1: 
Table S2) demonstrate that the original solar activity and 
GDM (Fig. 8a and b) were mainly within the reconstruc-
tion uncertainty.

Another important validation is the 14C production 
rate generated by the recovered φ and M. If the model 
performed well, the recovered 14C production rate will 
be within uncertainty of the reference 14C production 
rate. Figure  8c compares the reference 14C production 
rate with mean of the recovered 14C production rate. The 
reference values are well within the posterior 2-sigma 
uncertainty and mostly agree with the recovered produc-
tion rate. Figure  8d shows the histogram of the model-
data residuals (i.e., the differences between individual 
posterior realizations and the synthetic 14C data, normal-
ized by the data uncertainties). The symmetrical distri-
bution of the model-data residuals resembles a standard 
normal distribution. This indicates that the model does 
not lead to a bias toward a low or high value of 14C pro-
duction rate, and there are no extreme values or outliers 
in the recovered production rate. Overall, our model per-
formed well with the synthetic data. The solar variations 
and GDM can be recovered from the 14C production rate 
corrupted by a realistic level of measurement uncertainty.

We also estimated the upper limit of data uncertainty 
by corrupting the synthetic 14C production rate with var-
ious uncertainty levels from 15 to 70% (Additional file 1: 
Fig. S7). The reference solar variation (φ’) was not fully 
recovered by the model when the data uncertainty was at 
20% and larger. An increase in the data uncertainty also 
resulted in larger ΦRMS and reconstruction uncertainty 
which indicates that the model’s ability to constrain past 
solar activity decreased. In summary, we conclude that 
data uncertainty of less than 20% is required for a good 
model performance.

Reconstruction of solar and geomagnetic field 
activity from 14C data
Bayesian reconstruction
We applied the Bayesian model to recover solar activity 
and GDM variations from the processed 14C production 
rate data inferred from IntCal20. Results of the Bayes-
ian 14C-based reconstruction are shown in Fig. 9. Short-
term variations (from decadal up to ~ 300  years) in the 
14C data were mostly attributed to solar variations. For 
example, the increase and then decrease in 14C produc-
tion rate between ~ 1350 CE and 1600 CE was interpreted 
by the model as solar induced. Meanwhile, the long-term 
increase in the production rate since 1 CE was attributed 
to the gradual decrease in GDM. The posterior distribu-
tion of past geomagnetic field activity was constrained 
better (i.e., smaller uncertainty range) by the real 14C 
data than by the synthetic 14C data. One reason was 
that the synthetic dataset has larger uncertainties since, 
for testing the model, we included the maximum value 
of the realistic uncertainty. Figure  9c compares the 14C 

Fig. 9  Solar activity and GDM reconstructed by the Bayesian model 
for the last 2000 years. Posterior distributions of solar activity (a) and 
GDM (b) are depicted with mean (red lines) and 2-sigma uncertainty 
of a thousand realizations (light red shadings). The 2-sigma 
uncertainty of a thousand realizations from the prior distributions 
are indicated by two black dashed lines. Panel c shows the mean 
(red line) and 2-sigma posterior uncertainty (light red shading) of a 
thousand curves of 14C production rate generated by the recovered 
φ and M. The input mean 14C production rate is represented by the 
blue line. The uncertainty of the input 14C production rate (not shown 
in the figure) is similar to the posterior uncertainty (light red shading). 
Figure 2 shows the uncertainty of the input 14C production rate 
before normalization
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production rate generated from the reconstructed φ and 
GDM with the input 14C data. They agree well (within the 
posterior uncertainty) which indicates that the model is 
able to find the combinations of φ and M that are consist-
ent with the 14C data.

Comparing the Bayesian reconstruction 
with the conventional reconstruction method
Figure  10b compares our Bayesian 14C-based recon-
struction of GDM with published reconstructed GDMs 
based on pfm9k.1b and COV-LAKE. The smaller 
uncertainty of COV-LAKE during the last 2000  years 
compared to pfm9k.1b is mainly due to the more con-
servative assumptions made regarding age uncertain-
ties in pfm9k.1b and to a lesser degree related to the 
different model strategies. In general, all of the recon-
structions demonstrate a decreasing trend over the last 
2000  years. Disagreements among the reconstructions 
can be observed especially from around 850–1750 CE. 
The COV-LAKE models indicate a small dip in GDM 
with an average of 8.85 (± 0.12) x1022Am2 from 850 to 
1250 CE. Meanwhile, the pfm9k.1b models suggest a 
small peak with an average of 9.74 (± 0.38) ×  1022Am2. 
Our Bayesian 14C-based reconstruction shows a gradual 
decrease in GDM from 9.81 (± 0.33) ×  1022Am2 to 9.23 
(± 0.32) ×  1022Am2 over the same period. From 1250 to 

1750 CE, the Bayesian 14C-based reconstruction indi-
cates a mean GDM of around 8.75 (± 0.26) ×  1022Am2 
which is 0.33 × 1022Am2 and 0.72 × 1022Am2 lower than 
COV-LAKE and pfm9k.1b, respectively. In addition, 
the Bayesian 14C-based reconstruction indicates a mean 
GDM of 10.50 (± 0.40) × 1022Am2 prior to 500 CE which 
is 0.50 × 1022Am2 higher than the mean GDMs based on 
pfm9k.1b and COV-LAKE during the same period.

We now compare solar activity reconstructed from the 
14C data via our Bayesian model (φBayesian) with the con-
ventional reconstruction method described in Muscheler 
et al. (2016). This conventional method involves conduct-
ing a larger number (e.g., often a thousand) of Monte 
Carlo simulations. In each simulation one of the reali-
zations of 14C production rate is randomly selected and 
combined with one of the randomly selected realiza-
tions from a GDM model via the 14C production func-
tion. The mean of a thousand simulations of past solar 
activity reconstructed from the 14C data and pfm9k.1b 
models (φpfm9k.1b) or COV-LAKE models (φCOV-LAKE) 
are shown in Fig.  10a. The solar reconstructions pre-
sented here should be the most up-to-date for the last 
2000 years based on 14C since we combined the method 
of Muscheler et  al. (2016) with an updated version of 
14C data from IntCal20 and the latest geomagnetic field 
reconstructions.

The different solar reconstructions agree mostly on 
short-term variations. Disagreements between the long-
term solar activity variations can be observed where the 
reconstructed GDMs start to deviate from each other 
(Fig.  10b). Before 500 CE, φBayesian is on average 496 
(± 63) MV, which is about 40 MV lower than the other 
two reconstructions. From 850 to 1250 CE, φBayesian is 
466 (± 44) MV on average which is similar to φpfm9k.1b 
but about 70 MV lower than φCOV-LAKE. From 1250 to 
1750 CE, the average of φBayesian is 354 (± 30) MV which 
is 20–50 MV larger than φCOV-LAKE and φpfm9k.1b, respec-
tively. This trend is the opposite in the reconstructed 
GDMs and it illustrates the influences of the selected 
GDM on the long-term reconstruction of solar activity. 
However, φBayesian still agrees with φpfm9k.1b and φCOV-

LAKE within the reconstruction uncertainties. Moreover, 
GDM reconstructions based on pfm9k.1b and COV-
LAKE are mostly within the  reconstruction uncertainty 
of the Bayesian 14C-based GDM. These results suggest 
that the reconstructions of solar activity and GDM from 
14C data of our Bayesian model are realistic over the last 
2000 years.

Figure  11 compares the solar activity reconstructions 
with the solar modulation potential based on GSN filtered 
with a 9-year running average filter (φGSN,filtered, orange 
line). The centennial variations of the recovered solar 
activity from different reconstructions generally agree 

Fig. 10  A comparison between the Bayesian model’s results with 
conventional reconstruction method and independent GDM models. 
a Compares different solar activity reconstructions from the Intcal20 
14C data by the Bayesian model (red line) with the conventional 
method in which the influences of GDM were removed using the 
pfm9k.1b (blue dashed line) and the COV-LAKE geomagnetic field 
model (green dashed line). The light red shading indicates the 
2-sigma uncertainty of the Bayesian reconstruction. b Compares 
GDM recovered from the 14C data by the Bayesian model (red color) 
with GDM from the pfm9k.1b models (blue color) and the COV-LAKE 
models (green color). The lines depict the mean GDM and the color 
shadings depict the 2-sigma uncertainties of the models
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well with φGSN,filtered. However, differences outside the 
inferred uncertainty can be observed around 1700–1800 
CE. φGSN,filtered suggests solar activity levels, on average, 
110–150 MV higher than all of the reconstructions from 
the 14C data. These disagreements could be due to the 
limitation of our Bayesian method, as discussed in Sect. 3, 
such as the small bias toward lower solar modulation val-
ues of our prior distribution. However, since our Bayesian 
reconstruction agrees well with conventional solar recon-
structions (i.e., φpfm9k.1b and φCOV-LAKE), we argue that the 
disagreements were more likely due to an underestimation 
of uncertainties of the 14C data and φGSN inferred from the 
GSN record. We used the Northern hemisphere 14C curves 
and there are differences to the Southern hemisphere 
records (Muscheler et al. 2007). It is also possible that the 
carbon cycle effects are not fully captured by the 14C pro-
duction rate calculation with the box-diffusion model. Pos-
sible uncertainty in this calculation is hard to quantify but, 
in general, a good agreement is obtained by calculations 
with different carbon cycle models (Muscheler et al. 2007). 
The subtle changes in the carbon cycle that were not fully 
captured by the box-diffusion model can be explored by 
adding such a component to future versions of the model 
and comparing the results from 14C to 10Be data. On the 
other hand, the uncertainty of the inferred φGSN was likely 
also underestimated. The standard error of the GSN data 
represented only the spread among different counting 
records (Svalgaard and Schatten 2016).

Figure  11 also shows that φBayesian has a lower uncer-
tainty compared to the two other reconstructions during 

the period where the model runs with annual resolution 
(e.g., after 1600 CE). Although the Bayesian 14C-based 
GDM has similar or even larger uncertainty than 
pfm9k.1b and COV-LAKE (Fig. 10b), the reconstruction 
uncertainty of GDM did not directly affect the recon-
struction uncertainty of solar activity in the Bayesian 
model. On the other hand, the uncertainties of φpfm9k.1b 
and φCOV-LAKE are a direct consequence of the uncertainty 
in GDM (see also Additional file 1: Fig. S8). This shows 
that the Bayesian model is able to reduce the solar activ-
ity reconstruction uncertainty via utilizing the knowledge 
of the differences in rates of change between variations 
of GDM and solar activity. The differences in variations 
are biggest after 1600 CE since significant short-term 
solar activity variations are captured by the annual reso-
lution. Consequently, the reconstruction uncertainty was 
reduced the most.

Comparing the Bayesian reconstruction 
with reconstruction using frequency filters
In the following, we illustrate the differences between the 
Bayesian 14C-based reconstruction and reconstruction by 
applying various frequency filters to separate solar and 
geomagnetic field influences.

Fig. 11  A close-up comparison between different reconstructions 
of solar activity with φGSN. The 9-year running average version of φGSN 
is depicted with mean (black solid line) and 2-sigma uncertainty 
(grey shading). The red line and red shading depict the mean and 
2-sigma uncertainty of the Bayesian 14C-based reconstruction. The 
blue dashed line and blue shading, and the green dashed line and 
green shading depict the means with their 2-sigma uncertainty of 
the conventional reconstructions where the influences of GDM were 
removed using the pfm9k.1b and COV-LAKE models, respectively

Fig. 12  A comparison between reconstruction by the Bayesian 
method and reconstruction by a simple frequency filter. Panel a 
compares solar activity reconstructed by the Bayesian method (red 
line) and the results using high-pass filters with cut-off frequencies 
of 1/250 year (green dashed line) and 1/600 year (blue dashed 
line), respectively. Panel b compares the GDM reconstructed by the 
Bayesian method (red line) and the results using low-pass filters with 
cut-off frequencies of 1/600 year (blue dashed line), 1/1000 year 
(green dashed line) and 1/2000 year (black dashed line), respectively. 
The light red shadings indicate the 2-sigma uncertainty envelope of 
the Bayesian reconstruction
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Figure  12a illustrates solar activity reconstructed 
from variations of the 14C data shorter than 250  years 
(φHP,1/250) and 600 years (φHP,1/600). The short-term vari-
ations were extracted using two separate high-pass fre-
quency filters with cut-off frequencies of 1/250  years−1 
and 1/600  years−1 to ensure reconstruction of solar 
activity on timescales of around 200 years and 500 years, 
respectively (details in section  5, Additional file  1). It 
should be noted that we applied the filters on the origi-
nally annual 14C data (blue line in Fig.  2) and therefore 
differences at timescales shorter than 10  years can be 
observed between φBayesian and φHP,1/250, and between 
φBayesian and φHP,1/600 prior to 1600 CE (Fig.  12a). The 
deviation of φHP,1/250 from φHP,1/600 and φBayesian indicates 
possible solar variations at timescales between 250 and 
600 years. For example, around 630–700 CE and around 
1650–1720 CE, φHP,1/250 is about 100 to 170 MV larger 
than mean φBayesian and φHP,1/600. Possible solar variabil-
ity at timescales significantly longer than 500 years could 
have caused φHP,1/600 to be around 185 MV higher than 
mean φBayesian around 1370–1600 CE. These differences 
are all outside the reconstruction uncertainty of the 
Bayesian model. Thus, the Bayesian model indicates long-
term solar variations at timescales larger than 200 years 
and even larger than 500 years that were removed/cut-off 
by the frequency filters. This result also supports long-
term solar variability patterns inferred from the radio-
nuclide records in previous studies (Wagner et al. 2001; 
Snowball and Muscheler 2007; Adolphi et al. 2014).

Figure  12b shows GDM reconstructions from varia-
tions of the 14C data longer than 600  years (MLP,1/600), 
1000  years (MLP,1/1000) and 2000  years (MLP,1/2000). We 
used three separate low-pass frequency filters with cut-
off frequencies of 1/600  years−1, 1/1000  years−1 and 
1/2000  years−1 to extract the possible geomagnetic field 
signal (details in section  5, Additional file  1). The rela-
tively large variations of MLP,1/600 for the last 2000 years 
suggest an uncorrected solar variability influence at 
timescales from 600 to 1000 years (Fig. 12b). This is also 
supported by disagreement between solar activity recon-
struction by the Bayesian model and the frequency filters 
from 1250 to 1650 CE (Fig.  12a). In addition, MLP,1/1000 
suggests a strongly decreasing trend especially after 1250 
CE where our Bayesian 14C-based reconstruction as 
well as pfm9k.1b and COV-LAKE suggest a rather con-
stant and higher value of the GDM. This is potentially 
due to the fact that MLP,1/1000 still contains solar influ-
ences at millennial timescale plus influences of the end 
effects of the frequency filter. It is possible to normalize 
MLP,1/1000 to the average value of the Bayesian 14C-based 
reconstruction after 1250 CE. However, by doing so it 
will increase the value of MLP,1/1000 prior to 1250 CE to a 
higher level not supported by independent geomagnetic 

field models. Figure 12b also demonstrates another prac-
tical problem of the frequency filter as the method in 
general exhibits unreliable end effects. For example, vari-
ations before 200 CE and after 1750 CE cannot be recov-
ered with MLP,1/1000 and MLP,1/2000. For this to be possible, 
one would need the data to cover much longer periods 
than the actual reconstruction period. Therefore, it is 
difficult to connect the reconstructions to the present 
values.

In summary, Fig.  12 illustrates the advantages of the 
Bayesian model over simple frequency filters. Frequency 
filters are useful in general to partially remove GDM 
influences for studying short-term solar activity vari-
ations in radionuclide records and vice versa for study-
ing millennial variations of the GDM. However, they can 
never completely separate the long-term solar activity 
from the GDM changes as their variability ranges partly 
overlap at centennial and possibly millennial timescales. 
On the other hand, the Bayesian model can separate solar 
and GDM effects on these overlapping timescales despite 
the limitation of using the relatively short GSN record to 
constrain the prior information of solar activity.

Conclusion and outlook
We have introduced a Bayesian model that can separate 
solar and geomagnetic influences on radionuclide data 
using prior information on how solar activity and GDM 
vary through time. Here, we derived prior information 
on solar variability from a solar modulation reconstruc-
tion inferred from the group sunspot number record. The 
prior distribution of the GDM was adapted from previ-
ously proposed priors used in recent geomagnetic field 
models, i.e., COV-LAKE and COV-OBSx2.

Our model performs well with the synthetic test and 
can reconstruct the reference solar activity and GDM 
from a synthetic 14C dataset corrupted with realis-
tic measurement uncertainty. Applying the Bayesian 
model on the 14C production rate data inferred from the 
IntCal20 calibration curve resulted in a reconstructed 
GDM which was gradually decreasing over the period 
of the last 2000  years. The Bayesian 14C-based GDM 
agrees mostly with independent reconstructions using 
the pfm9k.1b and COV-LAKE geomagnetic field models. 
The solar activity reconstructed by the Bayesian model 
also agrees with conventional reconstructions where 
GDM influences were removed using pfm9k.1b and 
COV-LAKE models. The solar activity reconstructed by 
the Bayesian model shows similar annual short-term var-
iations as the solar activity inferred from the GSN. There 
were, however, differences in the long-term variations 
outside the reconstruction uncertainty. This is probably 
due to underestimation of the uncertainty in the under-
lying 14C data (e.g., carbon cycle effect) and GSN data. 
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We also showed that our Bayesian model outperforms 
various simple frequency filters. The Bayesian model is 
able to disentangle solar and GDM influences on the 14C 
record on timescales where their variability ranges partly 
overlap. In addition, a comparison between the Bayes-
ian reconstruction with the reconstructions based on the 
frequency filters indicates that the Bayesian model can 
recover solar activity on timescales longer than 200 years.

In summary, the Bayesian model allows us to dis-
entangle solar and GDM influences from the radio-
nuclides data. This reduces the dependency of solar 
activity reconstructions on an independent GDM 
record and, therefore, can reduce the uncertainties 
associated with the independent GDM. Moreover, the 
Bayesian model can provide radionuclide-based GDM 
reconstructions which are valuable compliments to 
other GDM reconstructions.

The flexibility of the Bayesian framework outlined in this 
paper also allows for further improvements in the future. For 
example, independent GDM reconstructions could be incor-
porated into the model. This will help with the reconstruc-
tion of solar activity during periods where the GDM is well 
constrained. Moreover, more than one radionuclide dataset 
can be included into the model such as using several 10Be 
records from different ice cores in addition to the 14C data, 
or using a global compilation of 10Be records. Including the 
different geochemical behavior of these radionuclides might 
help us to estimate the factors leading to the differences in 
long-term solar activity reconstructions based on 10Be and 
14C as seen in Vonmoos et al. (2006). Prior information on 
the systematic influences such as changes in climate and car-
bon cycle could be incorporated into the model so that their 
signals can also be separated from the radionuclide data. This 
could further reduce the solar and geomagnetic field recon-
struction uncertainties. In addition, the model can also be 
extended with 10Be records from sediments. Records from 
these archives often contain non-production signals caused 
by the local processes and catchment conditions which 
can be separated via incorporating these processes into the 
model.
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