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Abstract:  We present the extension of the Kalmag model, proposed as a candidate for IGRF-13, to the twentieth 
century. The dataset serving its derivation has been complemented by new measurements coming from satellites, 
ground-based observatories and land, marine and airborne surveys. As its predecessor, this version is derived from 
a combination of a Kalman filter and a smoothing algorithm, providing mean models and associated uncertain‑
ties. These quantities permit a precise estimation of locations where mean solutions can be considered as reliable 
or not. The temporal resolution of the core field and the secular variation was set to 0.1 year over the 122 years the 
model is spanning. Nevertheless, it can be shown through ensembles a posteriori sampled, that this resolution can 
be effectively achieved only by a limited amount of spatial scales and during certain time periods. Unsurprisingly, 
highest accuracy in both space and time of the core field and the secular variation is achieved during the CHAMP and 
Swarm era. In this version of Kalmag, a particular effort was made for resolving the small-scale lithospheric field. Under 
specific statistical assumptions, the latter was modeled up to spherical harmonic degree and order 1000, and signal 
from both satellite and survey measurements contributed to its development. External and induced fields were jointly 
estimated with the rest of the model. We show that their large scales could be accurately extracted from direct meas‑
urements whenever the latter exhibit a sufficiently high temporal coverage. Temporally resolving these fields down 
to 3 hours during the CHAMP and Swarm missions, gave us access to the link between induced and magnetospheric 
fields. In particular, the period dependence of the driving signal on the induced one could be directly observed. The 
model is available through various physical and statistical quantities on a dedicated website at https://​ionoc​ovar.​
agnld.​uni-​potsd​am.​de/​Kalmag/.
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Introduction
Separating the different contributions to the Earth’s mag-
netic field from direct measurements of it is a difficult 
task. The main reason making this problem complex is 
the wide range of spatial and temporal scales overlapping 
one another. The core field, which is sustained by dynamo 
action in the Earth’s outer core, is at the Earth’s surface 
the dominant large-scale field, and it evolves on timescale 
ranging from months to millennia. On the opposite, the 
lithospheric field is dominant at small scales. Emanat-
ing from the remnant magnetization of the rocks lying 
within the crust, it follows the motions of the latter and 
therefore varies very slowly with time. External sources, 
such as the magnetospheric fields or the ionospheric 
field are driven by thermospheric winds and solar radia-
tions. Their direct link to solar activity make them sub-
ject to intense variations from very short up to decadal 
timescales. These fluctuations induce currents within the 
electrically conducting parts of the crust and the man-
tle which in return generate a secondary magnetic field. 
Induction processes also occurs within the oceans. The 
circulation or tidal motions of the latter within the ambi-
ent magnetic field create electrical currents which also 
produce a secondary field.

From the seventeenth century to today, geomagnetic 
data have been continuously accumulated. First col-
lected during marine and land surveys, measurements 
of the Earth’s magnetic field were quickly comple-
mented by instrumentation installed within ground-
based observatories [see Jackson and Finlay (2007)]. 
The development of aviation in the 1950s offered 
another support to measure the field. But the big-
gest step in geomagnetic monitoring certainly comes 
from the rise of low-orbiting satellite missions. Start-
ing in 1965 with the POGO mission, many spacecrafts 
dedicated to geomagnetic field modeling were later 
launched. These include non-exhaustively the Mag-
Sat, the Oersted and the CHAMP spacecrafts and the 
Swarm constellation.

Technical constraints to build geomagnetic field mod-
els strongly depend on the type of data to be assimilated. 
Satellite missions provide measurements at a high fre-
quency. The algorithms they are feeding therefore need 
to be adapted to treat a large amount of observations. 
Land, marine and airborne surveys operate at the level or 
slightly above the Earth’s surface. As a consequence, the 
contribution of the small-scale lithospheric field to the 
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data they produce is important. Accounting for this field 
requires to model it at a very high resolution, a technical 
challenge.

Many models of the geomagnetic field have been pro-
posed over the last decades [see Hulot et  al. (2015)], 
and most of them were obtained with a regularized 
least square approach. This is the case for the CHAOS 
model series from Olsen et  al. (2006) to Finlay et  al. 
(2020), the comprehensive models by Sabaka et  al. 
(2002, 2015, 2018, 2020), the GRIMM models by Lesur 
et al. (2008, 2010, 2015), the POMME models by Maus 
et al. (2005, 2010), or the gufm1 by Jackson et al. (2000). 
Least square methods are very efficient numerically, but 
the usually considered reweighed version can only pro-
vide unique solution. On the opposite, Bayesian inver-
sions are computationally demanding but results are 
expressed in terms of posterior distributions, providing 
therefore predictions of mean solutions together with 
their associated uncertainties. Bayesian inversion in the 
context of geomagnetic field modeling was initiated by 
Gillet et  al. (2013). Considering ground-based obser-
vatory, survey and satellite data, they could derive the 
COV-OBS model spanning the 1840− 2010 time win-
dow, a period which was recently increased to 2020 by 
Huder et al. (2020). Similar efforts have been followed 
by Holschneider et al. (2016) in a study where emphasis 
was put on better characterizing the spatial properties 
of the different magnetic sources through correlation 
kernels. Extending this work to the time domain, and 
sequentializing the problem, Baerenzung et  al. (2020), 
Ropp et  al. (2020) could derive geomagnetic field 
models from the combination of a Kalman filter and a 
smoothing algorithm. This approach conserves all the 
advantages of the Bayesian method proposed by Gil-
let et al. (2013) and alleviates most of its drawbacks. In 
particular, the dimension of the system, the amount of 
observations to be assimilated, or the non linear link 
between certain magnetic sources, are not anymore 
strong limiting factors.

In this paper, we present the extension of the Kalmag 
model by Baerenzung et al. (2020) to the twentieth cen-
tury. Deriving only from CHAMP and Swarm data, 
Kalmag covered the 2000.5− 2020 time period, and 
was a candidate for the IGRF-13 model [see Alken et al. 
(2021)]. The present version resulted from the assimi-
lation of extra measurements taken by ground-based 
observatories, POGO, MagSat and Oersted satellites and 
during land, airborne and marine (L.A.M.) surveys. To 
assimilate the latter type of data, we introduced a statis-
tical approximation within the Kalman filter algorithm 
enabling us to resolve the lithospheric field up to spheri-
cal harmonics degree and order ℓ = 1000 . Therefore, 

there is no need to subtract the lithospheric contribution 
to L.A.M. survey observations with high-resolution mod-
els such as the WDMAM by Lesur et al. (2016), the EMM 
model by Maus (2010) or the recent model of Thébault 
et al. (2021), to build the model. In addition, a small-scale 
lithospheric field model could be recovered without pre-
processing of the data.

The article is organized as follows. In the first part, the 
dataset used to construct the model and the selection cri-
teria applied are presented. In the second part, the dif-
ferent magnetic sources, their prior characterization and 
dynamical behavior are detailed. At the end of this sec-
tion, the various formulations to assimilate data, update 
the model and sample it are provided. In "Results" sec-
tion, the properties of our model for the core field, the 
secular variation, the lithospheric field and external and 
induced fields are discussed. The article ends with a dis-
cussion and some concluding remarks.

Data
The proposed model was derived from either vector field 
or intensity measurements of the geomagnetic field taken 
from 1900.0 to today by satellites, ground-based obser-
vatories and during land, airborne and marine surveys. 
Satellite observations from five different missions were 
considered. These are, the POGO (1965–1971) (e.g., Cain 
and Sweeney 1973), the MagSat (1979–1980) (e.g., Lan-
gel and Estes 1985a), the Oersted (since 1999) (e.g., Neu-
bert et  al. 2001), the CHAMP (2000-2010) (e.g., Rother 
et  al. 2000), and the SWARM (since 2013) (e.g., Olsen 
et  al. 2013) missions. For ground-based observatories, 
hourly mean vector fields provided by the World data 
center for geomagnetism from 1886 (e.g., Macmillan and 
Olsen 2013) and selected through the procedure which is 
detailed in the following, were used to derive secular vari-
ation data, the latter being used only to constrain the core 
field evolution. These types of observations, feeding also 
other models such as the CHAOS series by Olsen et al. 
(2006), Finlay et al. (2020), the C3FM by Wardinski and 
Holme (2011), Wardinski et  al. (2020) or the COV-OBS 
model by Gillet et al. (2013), Huder et al. (2020) were here 
obtained by first averaging vector field measurements 
over 0.1-year time windows. The resulting mean values 
b̄(t) were then used to derive secular variation data γ (t) 
through the relation γ (t) = b̄(t + 0.5yr)− b̄(t − 0.5yr) . 
The location of each observatory taken into account is 
displayed with black triangles in Fig. 1. For aeromagnetic, 
land and marine survey data, three compilations served 
the model derivation (e.g., Quesnel et al. 2009). The first 
one is provided by British Geological Survey at www.​
wdc.​bgs.​ac.​uk/, the second one by the National Oceanic 
and Atmospheric Administration at maps.​ngdc.​noaa.​

http://www.wdc.bgs.ac.uk/data.html
http://www.wdc.bgs.ac.uk/data.html
https://www.ncei.noaa.gov/maps/geophysics/
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gov and the third one is made accessible by the U.S. geo-
physical survey at www.​mrdata.​usgs.​gov. The positions of 
L.A.M. data are typically given through the latitude, lon-
gitude and altitude location of the measuring vessel. For 
airborne measurements, whenever altitude was provided 
by radar altimeter it was corrected above land surfaces 
with the ETOPO1 global relief model of Amante and 
Eakins (2009).

Before being assimilated, each data containing vector 
information, such as North, East, Down or declination, 
inclination and intensity, was projected in geographic 
spherical coordinates. The resulting dataset was then 
subject to selection. The main purposes of this proce-
dure are to avoid the contribution of the dayside iono-
spheric field which is not modeled, to operating during 
low geomagnetic activity and, for satellite observations, 
to be weakly perturbed by the substorm auroral elec-
trojet. The latter two criteria were fulfilled through a 
selection based on the values of independently derived 
indices, respectively, a given threshold on the Kp geo-
magnetic index and the required positiveness of the 
z-component of the interplanetary magnetic field 
(IMF). The Kp threshold was set to 2− for satellite data 
and to 4− for all other observations. To limit the contri-
bution of the dayside ionospheric field, only night-time 
measurements (when the sun is below the horizon) 

were kept at magnetic latitude lying between ±60◦ . This 
constraint was nevertheless relaxed for MagSat data 
for which the satellite followed a dawn–dusk orbit and 
for some land survey data which were either not dated 
precisely enough to determine their local solar time, or 
only used to derive the lithospheric field model. Note 
also that for CHAMP and SWARM satellites, it was 
also required that measurements were taken when both 
the vector field magnetometer and the star tracker were 
functioning in nominal mode.

Finally, each L.A.M. surveys and satellite dataset were 
subsampled. For POGO, MagSat, and Oersted satel-
lites, a rate of 1 datum every 10s (0.1Hz) was chosen. 
For CHAMP satellite, the sampling rate was increased to 
0.2Hz. For SWARM, only satellites Alpha and Bravo are 
considered with a simultaneous sampling rate of 0.1Hz. 
Distance criteria were applied to subsample L.A.M. sur-
veys data. In a first selection, a minimum distance of 5 
km between any data point within 1-h time windows was 
imposed. Every measure lying too close to the previously 
selected ones were removed. The resulting dataset was 
then split in 8 subsets in which the minimum distance 
was set to 40 km. Therefore, at a given epoch within the 
Kalman filter algorithm, data from each of these sub-
sets were sequentially assimilated whenever they were 
available.

Fig. 1  Locations (dots) and epoch (color) of each land, airborne and marine survey measurement. Black triangles correspond to every 
ground-based observatories feeding the model with data

https://www.ncei.noaa.gov/maps/geophysics/
https://mrdata.usgs.gov/magnetic/
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In Table  1, the time period, the selection criteria and 
the type and total number of measurements associated 
with each dataset are summarized.

Magnetic sources
Seven sources compose the Kalmag model. These are a 
core field ( bc ), a lithospheric field ( bl ), an induced/resid-
ual ionospheric field ( bii ), a remote ( brm ), a close ( bm ) and 
a fluctuating ( bfm ) magnetospheric fields and a source 
associated with field-aligned currents ( bfac ). Except for 
bfac , each of these sources bs is assumed to derive from 
a potential Vs such as bs = −∇Vs . For bfac , as in Sabaka 
et  al. (2004) the currents themselves are assumed to 
derive from a potential Vfac . Waters et  al. (2001) has 
shown that under this assumption the resulting magnetic 
field could be expressed as bs = −r ×∇Vs.

The potentials Vs are then expanded in spherical har-
monics (SH) such as potentials of internal and external 
origin are, respectively, given by:

Where Yℓ,m are Schmidt semi-normalized spherical har-
monics of degree ℓ and order m considered, respectively, 
up to ℓmax and mmax , as is a reference radius, and gs,ℓ,m(t) 
(later referred as gs ) are the spherical harmonics coeffi-
cients expressed at as . Each field is projected in a given 
spherical coordinate system {r, θs,φs} as indicated in 

(1)

V I
s (r, θs,φs, t)

= as
∑

ℓ≤ℓmax

m=mmax
∑

m=−mmax

(as

r

)l+1

gIs,ℓ,m(t)Yℓ,m(θs,φs) ,

(2)

VE
s (r, θs,φs, t) =as

∑

ℓ≤ℓmax

m=mmax
∑

m=−mmax

(

r

as

)l

gEs,ℓ,m(t)Yℓ,m(θs,φs) ,

Table 2. These systems can either be geographic (GEO), 
magnetic (MAG), solar magnetic (SM), or geocentric 
solar magnetospheric (GSM) (see Laundal (2017)).

Depending on the observations which are being assimi-
lated, the spatial resolution of the lithospheric field is var-
ied. Whereas for CHAMP and Swarm data, the latter is 
expanded up to ℓ = 150 , it is only modeled up to ℓ = 100 
for other satellite measurements. Since L.A.M. survey 
data are taken close to the Earth’s surface, they contain 
a strong contribution of the small scale lithospheric field. 
To assimilate such measurements, the lithospheric field 
is therefore parameterized up to spherical harmonics 
degree ℓ = 1000 with an approximation of the associated 
covariance matrix between 100 < ℓ ≤ 1000 as detailed in 
the following.

Table 1  Dataset used to derive the model. Missions (first column) and their time span (second column)

Selection criteria applied the data: night-time (third column), Kp threshold (fourth column) and positiveness of the z-component of the IMF (fifth column). Number of 
vector field components (sixth column) and intensity measurements (seventh column)

Percentage of rejected data through the (eighth column)

Mission Period Selection type # data

Night time Kp IMF Bz > 0 Vector components Intensity

Observatories 1900.0− 2019.5 × Kp < 4o 3× 74, 410

L.A.M. surveys 1900.0− 2009.0 × Kp < 4o 3× 132, 502 2, 106, 816

Pogo 1965.7− 1971.4 × Kp < 2o × 1, 405, 585

MagSat 1979.8− 1980.4 Kp < 2o × 3× 102, 459

Oersted 1999.2− 2000.5 × Kp < 2o × 3× 152, 705

CHAMP 2000.5− 2010.7 × Kp < 2o × 3× 6, 103, 759

Swarm 2013.8− 2022.2 × Kp < 2o × 3× 5, 843, 961

Total 1900− 2022.2 3× 12, 409, 799 3, 512, 401

Table 2  Magnetic sources considered in the model (first 
column) together with the coordinate systems they are 
expressed in (second column)

GEO  geographic, SM  solar magnetic, MAG  magnetic,  GSM  geocentric solar 
magnetospheric

ℓmax and mmax are, respectively, the maximum degree and order of the SH 
expansion
a  POGO, MagSat, Oersted data.    
b  CHAMP, Swarm data.    
c  L.A.M. surveys data

Source Coordinate ℓmax mmax

Core gc GEO 20 ℓmax

Lithospheric gl GEO 100a , 150b , 1000c ℓmax

Remote magnetospheric grm GSM 1 0

Close magnetospheric gm SM 15 1

Fluctuating magnetospheric gfm SM 15 0

Residual ionospheric/ induced gii MAG 50 1

Field-aligned currents gfac SM 15 1
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Sequential modeling
The Kalmag model is constructed sequentially through 
a Kalman filter approach [see Kalman (1960)]. This 
technique proceeds in two alternating steps, namely a 
forecast and an analysis. In the forecast, the model is 
propagated in space and time until some measure-
ments become available. Then the analysis takes place 
and the model is updated accordingly to them. Because 
this method provides the posterior distribution of the 
model only given the previously assimilated data, it is 
complemented by a smoothing algorithm. Perform-
ing backward in time, this algorithm enables us to cor-
rect the model at any time according to the complete 
dataset.

Dynamical model
The spatio-temporal evolution of the various sources 
composing the geomagnetic field is of complex nature. 
Involving nonlinear couplings, a large range of spa-
tial and temporal scales, some regimes which are not 
yet numerically achievable or simply not sufficiently 
well characterized, the dynamics of the Earth’s mag-
netic field cannot be directly simulated. This is why, as 
initiated by Gillet et  al. (2013) in the context of geo-
magnetic modeling, we chose simplified stochastic 
equations, namely auto-regressive processes (or ARPs), 
to predict the evolution of the different fields. Mimick-
ing dispersion and memory effects occurring within 
dynamical systems, such processes are computationally 
cheap to simulate and are formulated within a Gaussian 
framework as required by the Kalman filter approach. 
A priori, each source is characterized by its own pro-
cess which is independent from the others. As shown 
in Appendix  A, ARPs in their sequential form, can be 
described by the following general relation:

where zs is a quantity characterizing the sth source to 
be propagated, Fs(�t) is the parameter of the ARP and 
ξi(t,�t) is a temporal Gaussian white noise spatially 
characterized by the distribution N

(

0,�∞
zs

− Fs�
∞
zs
FT
s

)

 , 
where �∞

zs
 is the stationary state covariance matrix asso-

ciated with zs . Except for the lithospheric field which is 
assumed to be static, and for the core field which evolu-
tion is prescribed by a second-order process, the dynam-
ics of each source is controlled by a first-order ARP. In 
this case, zs(t) simply corresponds to the vector of SH 
coefficients gs(t) associated with the sth field and the 
parameter of the process is given by:

(3)zs(t +�t) = Fs(�t)zs(t)+ ξi(t,�t),

(4)Fs(ℓ,�t) = exp [−|�t|/τs(ℓ)],

where τs(ℓ) is a parameterized scale-dependent charac-
teristic time which is specified for each source in the fol-
lowing. For the core field, the use of a second-order ARP 
induces a coupling between the field itself ( gc ) and its 
first time derivative ( ∂t gc ). Therefore, zc = (gc, ∂t gc)

T and 
the parameter of the process is given by:

where τc(ℓ) is also chosen to be scale dependent. Con-
trary to first-order ARPs where the stationary state 
covariance matrices are given by �∞

zs
= �∞

gs
 , for the core 

field it reads:

as shown by Hulot and Le Mouël (1994). With the 
proposed setup, �∞

zs
 and τs(ℓ) completely defines the 

dynamical behavior of the ARPs. The covariance matri-
ces characterizing the stationary state of each source are 
assumed to derive from energy spectra Es(ℓ, as) expressed 
at given radii as such as:

where Nm is the number of modeled spherical harmonics 
coefficients per degree ℓ , and R is given by R(ℓ) = ℓ+ 1 
and R(ℓ) = ℓ for internal and external sources, respec-
tively. The shape of each energy spectrum is imposed. 
It can either be flat, such as Es(ℓ) = A2

s  or identi-
cal to the correlation kernels proposed by Holschnei-
der et  al. (2016) that we refer as of C-based type with 
Es = A2

s (2ℓ+ 1)R(ℓ) , where As is the magnitude of the 
spectrum. For most sources, the dipole part is assumed 
to be independent from the rest of the spectrum such as 
Es(ℓ = 1) = D2

s  . Under these assumptions, the radii as , 
the amplitudes As and the dipole magnitudes Ds form the 
free parameters of the stationary state covariance matri-
ces �∞

zs
 . Characteristic timescales are parameterized by 

power laws such as τs(ℓ) = Msℓ
−αs with given magni-

tudes ( Ms ) and slopes ( αs ) which are for some sources 
allowed to continuously vary from one range of spheri-
cal harmonics to the other. The ARP’s parameters were 
estimated through a machine learning algorithm with 
a subsample of CHAMP and Swarm data as detailed in 
Baerenzung et al. (2020). The same values are used in this 
study. They are reported in Table 3.

(5)
Fc(ℓ,�t) =

(

1+ |�t|/τc(ℓ) �t

−�t/τ 2c (ℓ) 1− |�t|/τc(ℓ)

)

exp [−|�t|/τc(ℓ)] ,

(6)�∞
zc

= �∞
gc ,∂t gc

=

(

�∞
gc

0

0 �∞
gc
/τ 2c (ℓ)

)

,

(7)

�∞
gs
(ℓ,m, ℓ′,m′, r = as) =

Es(ℓ, as)

NmR(ℓ)
δ(ℓ− ℓ′)δ(m−m′),
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Note that here, the energy spectrum of the lithospheric 
field is split into two ranges. In the first one, between 
ℓ = 1 and ℓ = 74 , the spectrum is of the C-based type 
and exhibits a characteristic radius of al = 6287 km and 
a magnitude of Al = 0.16 nT. These are values obtained 
by Baerenzung et  al. (2020). In the second range, 
between ℓ = 75 and ℓ = 1000 , the spectrum is flat with 
al = 6367.9 km and Al = 6.5 nT. In this case, the param-
eters were estimated through a least square fit between 
ℓ = 75 and ℓ = 400 of the energy spectrum associated 
with the WDMAM model of Lesur et al. (2016).

The source associated with field-aligned currents, as 
well as the components at SH degree larger than ℓ = 1 of 
the fluctuating magnetospheric field, exhibit very small 
characteristic timescales of, respectively, τfac(ℓ) = 1 min 
and τfm(ℓ > 1) = 18 min. These timescales being smaller 
than the time step of the Kalman filter algorithm (here 
set to 30 min), the associated fields are assumed to tem-
porally evolve as a white noise but are correlated in space 
and time during the analysis. Setting a priori a zero mean 
for both fields their covariance can be expressed as:

Filtering, smoothing, sampling
The prior statistical properties as well as the dynamics 
of the different magnetic sources being characterized, 
assimilation can be initiated. As a first step, a vector z 
containing the spherical harmonics coefficients of each 

(8)
E[gs(ℓ, t)gs(ℓ

′, t +�t)] = �∞
s (ℓ) exp [−|�t|/τs(ℓ)]δ(ℓ− ℓ′) .

field is constructed. For the full model, z is composed 
of NM = 1002696 entries. The lithospheric field which 
is expanded up to ℓ = 1000 is filling more than 99.9% of 
the z vector. With such a model dimension, the size of the 
covariance matrix associated with z , namely �z , should 
be of NM × NM ∼ 1012 . Yet computations with such a 
matrix would be numerically impossible. This is why we 
approximate the predicted uncertainties of the small scale 
lithospheric field (for 101 ≤ ℓ ≤ 1000 ) by only keeping its 
variance information (the one associated with each of its 
spherical harmonics coefficients). Under such an assump-
tion the dimension of �z reduces to NM × NM ∼ 108 , a 
computationally conceivable size. This strong approxima-
tion, which induces a complete loss of the predicted spa-
tial correlations of the lithospheric field beyond ℓ = 100 
is evaluated in "Lithospheric field" section.

To forecast z , each parameter matrix Fs of equation 3 
are incorporated in a global matrix F . The same operation 
is performed for the stationary state covariance matrices 
�∞ which are assembled into the covariance matrix �∞ . 
Given F and �∞ , the covariance matrix associated with 
the Gaussian white noise of the full model forecast step 
reads �̃ = �

∞ − F�
∞
F
T . Therefore, the evolution of the 

mean model and its covariance from time step k − 1 to 
step k is then given by:

(9)E[zk|k−1] =Fk−1E[zk−1]

(10)�zk|k−1
=Fk−1�zk−1

F
T
k−1 + �̃ .

Table 3  Magnetic sources parameters as described in "Dynamical model"  section and evaluated by Baerenzung et al. (2020)

The prior spatial covariance matrices are derived from energy spectra expressed at some radii as which are either flat with E∞s (ℓ) = A2s  or of the C-based type [see 
Holschneider et al. (2016)] with the form E∞s (ℓ) = A2s (2ℓ+ 1)R(ℓ) , where R(ℓ) = ℓ+ 1 and R(ℓ) = ℓ for, respectively, internal and external sources

The characteristic timescales are parameterized by τs(ℓ) = Msℓ
−αs

Field Spectrum Radius a (km) A (nT) M α

Core Flat 3456 D: 1.12× 105

9.74× 104
τc(1) : 935 yrs
M(ℓ ≥ 2) = 514 yrs

1.06

Lithospheric 1 ≤ ℓ ≤ 74 C-based 6287 0.16 ∞ 0

75 ≤ ℓ ≤ 1000 Flat 6367.9 6.5 ∞ 0

Close magnetospheric C-based 12524 D: 9.16
1.88

τm(1) : 1.54 days
M(ℓ ≥ 2) = 18 min

0

Remote magnetospheric C-based 235570 7.3 10.31 yrs 0

Fluctuating magnetospheric C-based 13028 D: 3
4.56

τfm(1) : 0.36 day
τfm(2) : 0.55 days
M(ℓ ≥ 3) = 4 days

1.15

Residual ionospheric/ induced Flat 6324 D: 5.48
4.39

τs(1) : 0.71 day
M(ℓ ≥ 2) = 1.76 day

0.93

Field-aligned currents C-based 7917 D: 0
1.22

τfac(1) : 0
M(ℓ ≥ 2) = 1 min

0
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After the forecast, whenever measurements are available, 
the model is updated accordingly. This operation is per-
formed through a Bayesian inversion which reads:

where Rk is the covariance matrix associated with meas-
urement errors, Kk is the Kalman gain matrix and Hk is 
the operator projecting the model to the observations 
dk at iteration k. Rk is chosen to be diagonal with con-
stant standard deviations of 0.1 nT for intensity data [see 
Quesnel et al. (2009)] and vector field measurements, and 
of 4.85 nT/yr for each component of secular variation 
data as we estimated it with a similar algorithm used to 
calibrate Kalmag (see Baerenzung et al. (2020)). When dk 
corresponds to intensity measurements, the linearization 
approach proposed by Mauerberger et al. (2020); Schan-
ner et  al. (2022) is applied. In their developments, they 
showed that at first order, the predicted intensity Ik could 
be related to the predicted magnetic field Bk through 
the relation Ik ∼ E[Bk ]

T
Bk/Ĩk , where Ĩk is the intensity 

derived from the mean magnetic field E[Bk ] . Note that 
this projection is realized with the mean magnetic field 
prediction. Therefore, no iteration over the updated solu-
tions is required. When dk correspond to secular varia-
tion data, Hk = 0 for each source except for the core field 
where Hk projects its associated secular variation on the 
data. Once all data have been assimilated, the different 
modeled epochs are corrected through a smoothing algo-
rithm (see Rauch et al. (1965)). Starting at the final step of 
the Kalman filter it performs iteratively backward in time 
through the following relations:

where d corresponds to the full dataset. The smooth-
ing algorithm only provides snapshots of the posterior 
model, therefore the resulting solution does not con-
tain information about temporal correlations. Although 
the posterior covariance between the model at different 
epochs can be analytically derived, obvious storage limi-
tations makes this option numerically inapplicable. This 

(11)Kk =�zk|k−1
H

T
k

(

Hk�zk|k−1
H

T
k + Rk

)−1
,

(12)E[zk|dk ] =E[zk|k−1] + Kk

(

dk −HkE[zk|k−1]
)

,

(13)�zk|dk
=(I− KkHk)�zk|k−1

,

(14)Gk−1 =�zk−1|dk−1
F
T
k �

−1
zk|k−1

,

(15)
E[zk−1|d] =E[zk−1|dk−1

] +Gk−1

(

E[zk|d] − E[zk|k−1]
)

,

(16)
�zk−1|d

=�zk−1|dk−1
+Gk−1

(

�zk|d
− �zk|k−1

)

G
T
k−1 ,

is why we introduced a formulation to sample ensembles 
from the posterior model which are correlated both in 
space and time. Starting with an ensemble ze randomly 
drawn from the last state of the Kalman filter solution, 
the algorithm proceeds similarly to the smoothing algo-
rithm, backward in time with:

where ζ e is a random realization from the Gaussian dis-
tribution characterized by a 0 mean and a covariance 
matrix given by:

Note that to correct deviations, due to sampling errors, 
between the ensembles and the true posterior means, the 
ensembles were recentered at each epochs accordingly to 
the mean smoothing solutions. For this study, we used an 
ensemble of 1024 members.

Model construction
To construct the model, the time step of the Kalman 
filter algorithm was set to �t = 30 min. Nevertheless, 
whenever the distance between two analysis windows 
exceeded this value, �t was increased accordingly. With 
a dataset covering the 20th century and the last 22 years, 
the direct approach would have been to start assimilat-
ing measurements in 1900.0 and to progress forward in 
time until today. However, we did not proceed this way. 
Instead, the Kalman filter simulation was initiated in 
2000.5 to first assimilate ground-based observatories, 
CHAMP and then Swarm data until 2022.18, the last 
epoch at which measurements were currently available. 
The smoothing algorithm was then applied to update 
the model within this time window. In a third part, the 
smoothing solution in 2000.5 was used as a restart file to 
assimilate, backward in time, the measurements taken 
prior to this date. Finally, the smoothing algorithm was 
applied from 1900 to today with a slight modification 
beyond 2000.5 which is detailed in Appendix B.

Two reasons motivated this choice of splitting the 
assimilation process. The first one is to possess a well-
resolved large-scale lithospheric field before assimilating 
survey data. This, in order to be able to distinguish the 
gain of assimilating such observations on this part of the 
field. To this end, the lithospheric field was fully mod-
eled up to SH degree ℓ = 150 during the CHAMP and 
Swarm eras. The full solution (mean and covariance) was 
then truncated at ℓ = 100 in 2000.5 to restart the Kalman 
filter between 2000.5 and 1900.0. Beyond ℓ = 100 only 

(17)
z
e
k−1|d = E[zk−1|dk−1

] +Gk−1

(

z
e
k|d − E[zk|k−1]

)

+ ζ e,

(18)�
E
zk−1|d

= �zk−1|dk−1
−Gk−1

(

�zk|k−1

)

G
T
k−1 .
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the mean and variance were kept from the CHAMP and 
Swarm solution. This part was finally extrapolated with a 
zero mean and the prior variance of equation 7 between 
ℓ = 150 and ℓ = 1000 . The second reason for splitting 
the assimilation process was motivated by the fact that 
the older the measurements, the lower their accuracy and 
spatial coverage. Yet, before assimilating any measure-
ment an outlier detection is performed. The latter process 
consists in checking that the measurements do not exces-
sively deviate from their predicted values, in particular 
that each vector field or intensity measure lies within the 
95.6% confidence interval of the model prediction. On 
top of this selection, the misfit of the sequentially assimi-
lated tracks was evaluated. Whenever the misfit value 
exceeded the imposed threshold of 3, the correspond-
ing track was dismissed. The algorithm to detect outliers 
performs better when the model accuracy is high, which 
occurs when the data quality and coverage are good. This 

is why starting with a very well constrained solution in 
2000.5 and assimilating data backward in time enabled us 
to optimize the detection process.

Over the entire time span of the model, each source, 
except the one associated with field-aligned currents, is 
stored every 0.1 year, setting up the temporal resolution 
of the model to this time step. However, to better track 
the evolution of rapidly evolving sources, such as the 
close and fluctuating magnetospheric fields or the resid-
ual ionospheric/induced fields, the latter were stored 
every 3 hours during the CHAMP and Swarm eras and 
every 5 days between 1900 and 2000.5.

Results
Main field and secular variation
The Kalman filter and smoothing algorithms provide a 
model in terms of mean solution and associated covariance 
matrix. Combining these two quantities gives a precise 

Fig. 2  Standard deviation associated with the radial component at the Earth’s surface of the sum of the core field and the lithospheric field 
expanded up to spherical harmonics degree ℓ = 20 . Each panel corresponds to a different epoch which is displayed on their bottom left. 
Isocontours show the mean Br = 0 solution. White triangles represent the locations of ground-based observatories available at the presented 
epochs. On the bottom right of each map is indicated the r.m.s standard deviation σ̄ in nT
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knowledge of locations where the solution is reliable and 
where it is not. As an illustration for the main field, i.e., 
the sum of the core field and the lithospheric expanded 
up to SH degree ℓ = 20 , Fig.  2 shows at different epochs 
the radial component of the mean field (isocontours) and 
its associated standard deviation (color maps). Locations 
where the maps are red correspond to locations where the 
mean solution is likely to deviate strongly from the true 
field. On the opposite, within blue and purple areas the 
model predicts that the true and the mean predicted field 
are close. These maps are complemented on their bottom 
right by a global measure of the predicted uncertainty. It 
corresponds to the r.m.s. standard deviation given in nT 
and expressed as:

where σ is the standard deviation associated with the 
radial component of the field and � is the Earth’s surface.

Until the 1960s, uncertainty maps exhibited a strong 
dichotomy between the Northern and Southern hemi-
spheres. Whereas in the North, the standard deviation 
associated with the radial component of the field does not 
globally excess 25 nT, it reaches and even exceeds 50 nT 
in the South. The difference of predicted uncertainties is 
particularly important between land and oceanic surfaces 
reflecting the lack of measurements taken over the latter, 
the location where the field is best resolved is Europe. This 
is a benefit of the high density of ground-based observa-
tories operating at this place and during this time period. 
When looking at the r.m.s. standard deviation, the year 
1920 slightly stands out with σ̄ = 44 nT, whereas this 
value oscillates around σ̄ ∼ 50 nT in 1910, 1930 and 1940. 
This phenomenon can be explained by the multiple land 
and marine surveys occurring at and around this epoch 
and which are offering a large data coverage of the globe 
(see Fig. 1). In 1960, the global resolution of the model is 
improved and the North–South dichotomy mostly dis-
appears. Two reasons explain this gain of accuracy. The 
first one is the dense spatial coverage of survey data at 
this epoch (see Fig. 1). The second one is the time prox-
imity of the POGO mission which started in 1965. One 
can also observe that observatories still play an important 
role to reduce the posterior variability as it is the case in 
and around Europe and Japan. In 1970, the jump in accu-
racy of the model is striking. At this period lying within 
the POGO era, the standard deviation associated with the 
Kalmag solution is strongly reduced. However, the model 
predicts a higher possible variability around the magnetic 
dip equator. This phenomenon is the transcription of the 

(19)σ̄ =

√

∫

�

σ 2d�/

∫

�

d� ,

Backus effect, or more generally the “perpendicular error” 
effects within the model. Indeed, as first recognized by 
Backus (1970), to be then generalized by Lowes (1975), 
when constructing a geomagnetic field model with inten-
sity measurements alone, larger errors will contaminate 
the model near the equator. This effect is surely affect-
ing our mean solution, but covariance information ena-
bles us to quantify it. With MagSat observations, which 
cover less than a year ( 1979− 1980 ), the model precision 
is equivalent to the one obtained with POGO data except 
around the dip equator where vector field measurements 
eliminate the “perpendicular error” effects induced by the 
assimilation of intensity data. The map in 1990 highlights 
the importance of low-orbiting satellites to recover the 
Earth’s magnetic field. Lying between MagSat and Oer-
sted missions, in the middle of almost 20 years without 
satellite measurements, the solution obtained at this time 
is strongly degraded. It presents levels of uncertainties 
equivalent to the 1960 ones except in Northern America 
and Russia where the coverage with ground-based obser-
vatories has since been increased. The situation is ame-
liorated with Oersted measurements and becomes even 
better with CHAMP and Swarm observations. With the 
high-quality instrumentation of CHAMP and Swarm sat-
ellites, the model is extremely precise and this is almost 
everywhere at the Earth’s surface. It is however worth not-
ing that the constellation of Swarm satellites permits to 
obtain a slightly more accurate solution than the unique 
CHAMP spacecraft.

When looking at the mean secular variation (SV) and 
its associated standard deviation as displayed at similar 
epochs in Fig.  3, one can observe that the dichotomy in 
accuracy between the North and the South is also present 
for this quantity. The dichotomy persists until the year 
2000, but with a lower contrast after 1960. Ground-based 
observatory data are of particular importance to constrain 
the secular variation, as locations where their density is 
high always coincide with areas of low posterior variabil-
ity. Globally, uncertainties are decreasing with time except 
between 1970 and 2000, where the r.m.s. standard devia-
tion fluctuates due to the lack of persistent low-orbiting 
satellite missions. In addition, the distribution of uncertain-
ties over the different spatial scales is not homogeneous. 
Instead, small scales typically exhibit a higher posterior var-
iability relatively to their mean signal than large scales. This 
effect can be observed in Fig. 4 where time series between 
1900 and 2022 of the 68.2% confidence interval associated 
with some selected SH coefficients are displayed in red. In 
this figure, it is clearly visible that the larger the degree of 
the coefficient (from left to right and top to bottom), the 
larger its posterior standard deviation relatively to its mean 
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values. The COV-OBS.x2 model of Huder et  al. (2020), 
exhibits a similar behavior as its predicted 68.2% confi-
dence intervals (blue areas) show. Although the two models 
are mostly consistent with one another, small differences 
can nevertheless be distinguished, in particular in the pre-
dicted standard deviations. Until ∼ 1920 their level is lower 
for COV-OVS.x2, they become equivalent between COV-
OVS.x2 and Kalmag until ∼ 1960 to be lower for Kalmag 
afterwards.

To precisely characterize the spatio-temporal resolution 
of the secular variation over the model time span, we com-
puted the ratio Cġ (ℓ, k) between the Fourier power spectra 
of the mean secular variation and its associated standard 
deviation for 20 years time periods. This quantity, which 
was proposed by Gillet et al. (2015), can be expressed as:

(20)
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where ˆ̇gc,ℓ,m(k) is the Fourier transform of the secular 
variation, and σ ˆ̇gc ,ℓ,m

(k) is its associated standard devia-
tion. To estimate the latter quantity, we used an ensemble 
of 1024 Fourier transform of secular variation time series. 
In Fig.  5, Cġ (ℓ, k) is displayed for 6 different time win-
dows. The blue and red areas correspond to spatio-tem-
poral scales which are, respectively, well resolved and not 
resolved. At early times, between 1900 and 1920, only 
some limited amount of temporal scales of the SV up to 
SH degree ℓ = 4 are resolved. The situation slightly 
improves between 1920 and 1960 where some signal up 
to SH ℓ = 6 can be accurately recovered, and this down 
to a few years for the largest spatial scales. The emer-
gence of satellite missions and the increase of ground-
based observatory and survey data helps improving the 
model resolution between 1960 and 2000. During this 
time interval some spherical harmonics coefficient up to 
degree ℓ = 5 are either partially or fully resolved down to 

Fig. 3  Same as Fig. 2 for the secular variation. Each quantity is expressed in nT/yr
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time periods lower than a year. Reaching such a temporal 
resolution is impossible with the secular variation data 
derived from annual differences of observatory measure-
ments. It can therefore only be achieved thanks to the 
high temporal coverage of satellite and survey data. In 
agreement with our previous results and with the study 

of Gillet (2019), the secular variation is best resolved dur-
ing the CHAMP and Swarm eras, where spatial scale up 
ℓ = 15 can be partially resolved down to periods of 
approximately 5 years, and 2-year fluctuations can be 
very well captured up to ℓ = 10.

Fig. 4  Time series between 1900 and 2022 of selected spherical harmonics coefficients (indicated on the top of each panel) of the secular variation 
at the Earth’s surface. 68.2% confidence interval of the Kalmag solution (red areas) and the COV-OBS.x2 solution (blue areas) of Huder et al. (2020)

Fig. 5  Ratio between the Fourier power spectra of the mean secular variation and its associated standard deviation for the 20-year time periods 
displayed on the top right of each panel
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Lithospheric field
As previously mentioned, the lithospheric field model 
was built in multiple steps. During the CHAMP and 
Swarm eras, it was fully modeled up to SH degree 
ℓ = 150 . After applying the smoothing algorithm, the 
lithospheric in 2000.5 was divided in three parts. In the 
first one, between ℓ = 1 and ℓ = 100 , the full smoothing 
solution (mean and associated covariance matrix) was 
kept. In the second part, between ℓ = 101 and ℓ = 150 , 
only mean and variance information were considered. 
Finally, between ℓ = 151 and ℓ = 1000 a zero mean and 
the variance derived from equation 7 with parameters of 
Table  3 were a priori imposed. The Kalman filter algo-
rithm was then launched backward in time with this 
prior lithospheric field between 2000.5 and 1900.

Keeping only variance information within the Kalman 
filter algorithm is a strong approximation. Before imple-
menting it, this approximation was tested during the 
CHAMP and Swarm eras. For this evaluation phase, 
the lithospheric field was fully modeled up to ℓ = 30 
and partially modeled (keeping only variance informa-
tion) between ℓ = 31 and ℓ = 150 . The remaining part 
of the model was simulated normally and the dataset 
used is the one described in "Data" section. The result-
ing model is referred as the PR model. With this setup, 
comparisons with the solution obtained at full resolution 
(FR model) can be performed. In a first simulation, it was 
observed that the posterior variance associated with the 

approximated solution had a tendency to be underesti-
mated. In particular, the transition between the degree 
variance (the sum of the variances at a given degree) at 
SH degree ℓ = 30 and ℓ = 31 exhibited a pronounced 
discontinuity. To partially correct this effect, variances 
beyond the transition were increased by a multiplica-
tion factor. The latter was imposed to vary linearly with 
the degree of the SH expansion, and forced a smooth 
transition as well as a level of variance at the last mod-
eled degree corresponding to stationary state variance 
of equation  7. Because of the latter operation, the lith-
ospheric field resolution was increased to ℓ = 200 , a 
degree at which the signal at satellite altitude becomes 
very low as shown by Olsen et al. (2017).

The results of this evaluation phase are displayed in 
Fig.  6. On the left panels, the mean downward compo-
nent of the lithospheric field at the Earth’s surface is 
shown for both the solution obtained at full resolution 
(top) and the one obtained at partial resolution (bottom). 
These two maps look very similar and most features 
which can be recovered by the FR model are present in 
the PR model. This aspect is confirmed by the map which 
exhibits the difference between the two mean solu-
tions (top right). Only at the level of Antarctica, Eastern 
Europe and Western Russia, discrepancies become quite 
intense. These discrepancies coincide with relatively 
large-scale errors (up to ℓ = 70 ) as shown with crosses 
by the energy spectrum at the Earth’s surface of the 

Fig. 6  Lithospheric field at the Earth’s surface expanded up to spherical harmonics degree ℓ = 150 . Left: mean downward component solution 
for the FR model estimated with full covariance information (top) and for the PR model estimated with variance only information from ℓ = 30 
(bottom). Top right: difference between FR and PR models mean downward components. Bottom right: energy spectra of the means (solid lines), 
the standard deviations (dashed lines) and the difference (crosses) between the FR model (black lines) and PR model (blue lines)
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difference between the two mean models (bottom right 
panel). Beyond ℓ = 70 , the level of error decreases. The 
computation of the degree correlation between the two 
models, as introduced by Langel and Hinze (1998) reads:

also highlights their proximity. The latter reaches a mini-
mum of 0.915 at ℓ = 66 and stabilizes around the mean 
value of 0.979 beyond ℓ = 100 . The energy spectra asso-
ciated with the standard deviations show that the model 
where only variance information was updated, had a 
tendency to underestimate the level of predicted uncer-
tainties. Although the technique previously mentioned 
to rescale the variance was applied, it did not completely 
resolve this issue. Nevertheless, the fact that the small-
scale lithospheric field was only marginally affected by 
the proposed modeling approximation comforted us to 
implement it for the complete model derivation.

The lithospheric field resulting from the assimilation of 
the entire dataset is first analyzed through energy spectra 
at the Earth’s surface. In the left part of Fig. 7, the spec-
tra of the mean, the standard deviation and the prior 
standard deviation of the lithospheric field are displayed 
with black lines. In this solution, energy populates the 
entire range of modeled scales. However, the mean field 
is predicted to be globally reliable only up to SH degree 
ℓ ∼ 450 , where the spectrum of the mean and the spec-
trum of the standard deviation cross one another. In 
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addition, the discontinuity in the spectrum of the mean 
at SH degree ℓ = 150 indicates that even up to ℓ ∼ 450 
a non-negligible portion of the crustal signal remains 
unmodeled. Nevertheless, comparisons with the FR 
model previously discussed (blue lines and dots) demon-
strate that the assimilation of survey data helps to better 
constrain the large-scale lithospheric field. Indeed, the 
mean signal of the final solution has gained in intensity, 
and its standard deviation has decreased. In the same 
figure, the spectra of the difference with two other lith-
ospheric models, the WDMAM model by Lesur et  al. 
(2016) (red dots), and the LCS-1 model by Olsen et  al. 
(2017) (green dots), are also shown.

Although our solution is apparently closer at any 
degree to the LCS-1 model than to the WDMAM model, 
the examination of the degree correlation (right panel of 
Fig. 7) indicates that this aspect is only true up ℓ = 150 . 
Beyond this value, even if ρℓ is relatively low, the correla-
tion between Kalmag and WDMAM (red line) is higher. 
Contrary to the degree correlation between LCS-1 and 
Kalmag which decays smoothly, the one associated with 
Kalmag and WDMAM presents two transitions. One of 
them is at SH degree ℓ = 100 , the spatial scale delimit-
ing the satellite data solution ( ℓ ≤ 100 ) from the survey 
data solution ( ℓ > 100 ) of the WDMAM model. The 
other transition occurs at ℓ = 150 , the degree beyond 
which our model is only constrained by survey data. This 
second drop in ρℓ may be explained by the lower spatial 
resolution that our solution exhibits in certain areas. This 
phenomenon can be observed in Fig. 8 where the down-
ward components of WDMAM (top left) and Kalmag 

Fig. 7  Left: energy spectra at the Earth’s surface of the mean (continuous lines), the standard deviations (dashed lines), and the prior standard 
deviation (dash dotted line) for the Kalmag lithospheric model (black lines) and the FR model (blue lines). Dots represent the spectra of the 
difference between the Kalmag model and the WDMAM model by Lesur et al. (2016) (red), the LCS-1 model by Olsen et al. (2017) (green), and the 
FR model (blue). Right: degree correlation ρℓ between the Kalmag lithospheric field model and the WDMAM model (red lines), and the LCS-1 model 
(green lines)
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Fig. 8  Downward component of the lithospheric field at the Earth’s surface expanded up to spherical harmonics degree ℓ = 450 for the WDMAM 
model by Lesur et al. (2016) (top left), the Kalmag model (bottom left), and the difference between the WDMAM and the Kalmag model (top right). 
The color scale for these three maps is displayed below the mean Kalmag solution. Bottom right: standard deviation associated with the Kalmag 
mean downward component expanded up to ℓ = 100

Fig. 9  Lithospheric field update at the level of Afghanistan. Top left: prior mean downward component in 2006.0 expanded up to ℓ = 1000 . 
Bottom left: locations of airborne intensity measurements taken in 2006 (blue dots) and 2008 (red dots). The second to the fourth map on the top 
show different models of the downward component of the lithospheric field. These are, respectively, from from left to right, the posterior mean 
expanded up to ℓ = 2000 , the EMM model by Maus (2010) taken up to ℓ = 790 and posterior mean truncated at ℓ = 790 . Under each solution, 
the absolute value of the difference between measured intensities and predicted ones is shown. For predictions, the Kalmag mean core field was 
included. The values given on the bottom left of these maps correspond to the r.m.s. values of the differences between the model and the data
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(bottom left) expanded up to ℓ = 450 (the resolution up 
to which we predict a globally well-resolved solution) are 
displayed.

The intense signals predicted by WDMAM in the 
Southern parts of the Pacific, the Atlantic and the Indian 
oceans, or on large portions of continental areas are 
mostly absent in our solution. It is however worth noting 
that WDMAM does not only derive from direct measure-
ments of the geomagnetic field, but also from the com-
bination of ocean floor age map, relative plate motions 
and geomagnetic polarity time scale (see Dyment et  al. 
(2015)). Logically, the difference between the downward 
component of both models (top right of Fig. 8) is larger 
at these oceanic and land locations than anywhere else. 
On the opposite, discrepancies are reduced in most areas 
where the standard deviation associated with the large 
scale part of the field (up to ℓ = 100 ) is low (map on the 
bottom right). These uncertainty predictions which are 
tied to data coverage (see Fig. 1) therefore provide a good 
approximation of locations where the Kalmag model is 
likely to be well resolved.

The model being expressed in terms of posterior distri-
butions, it can be used as a prior information to assimi-
late new data when some of them become available, 
and therefore be updated accordingly. To illustrate this 
aspect, airborne intensity measurements taken above 
Afghanistan in 2006 and 2008 were put aside from the 
dataset serving the model derivation. They are now used 
to update the lithospheric field following the method 
detailed in Appendix  C. The locations at which each 
measure was taken during these surveys are shown with 
colored dots (blue for 2006 red for 2008) in the bot-
tom left panel of Fig.  9.  The downward component of 

the mean prior lithospheric field, which comes from the 
smoothing solution taken up to ℓ = 1000 in 2006.0, is 
shown on the top left panel. Its resolution was increased 
to ℓ = 2000 before the Kalman filter simulation was 
launched. The result of the assimilation process is shown 
through the downward component of the mean poste-
rior field in 2009.0 in the second panel of the top row of 
Fig. 9. On this map, it can be seen that structures which 
were completely invisible in the prior model appear in 
the posterior one. In particular, high-intensity anoma-
lies could be detected along the Southern and Western 
border of Afghanistan. The field in the central part of the 
land is globally weaker. Such patterns are also predicted 
by the EMM 2017 model of Maus (2010) as shown on the 
third panel of the top row. They are nevertheless of lower 
magnitude, and less detailed due to the resolution of the 
model which is limited to ℓ = 790 . To make the compari-
son with the EMM solution possible, the posterior mean 
was truncated at SH degree ℓ = 790 . The resulting down-
ward component is shown in the top right of the figure. 
Now the two models are looking more alike. Neverthe-
less, discrepancies in predicted intensity still remain. In 
order to assess the degree of compatibility of the differ-
ent models with the observations, the absolute value of 
the difference between a subset of the measurements and 
the intensities predicted by the sum of the core and the 
different lithospheric field solutions was computed. The 
results are shown on the bottom panel below each cor-
responding downward components. The model exhib-
iting the higher degree of freedom, displayed on the 
second column, is without surprise the model which can 
better explain the data. As shown on the bottom of the 
map, the r.m.s. difference between the model and the 

Fig. 10  Left: annual average of the mean dipole component in magnetic coordinates associated with the remote magnetospheric field grm (line 
with circles), the sum of the remote grm , close gm , and fluctuating gfm magnetospheric fields (black line), and the COV-OBS.x2 model by Huder et al. 
(2020) (dashed line). The gray area represents the confidence interval predicted by E[grm + gm + gfm] ± σ . Right: azimuthal component of the 
geomagnetic field taken during night-time and averaged over 10 days time periods at the level of four ground observatories, Niemegk (top left), 
Kakioka (top right), Hermanus (bottom left), and Canberra (bottom right). Red lines correspond to observatory data, black lines to the full Kalmag 
model predictions and blue lines to the Kalmag core field predictions
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measurements is of 18nT. Globally the predictions of the 
truncated model (right column) are closer to the data 
than the EMM predictions (third column). Of course 
Afghanistan is a particular location and no claim is made 
here that the Kalmag model would be globally more 
accurate than the EMM model since this is certainly not 
the case. However, this example shows that the method 
proposed in this study is well suited to construct regional 
high-resolution models of the lithospheric field and this 
even when data coverage is not optimal.

Magnetospheric and induced fields
With the proposed approach, magnetospheric and 
induced fields are jointly estimated with the rest of the 
model. A priori, the field generated by the currents flow-
ing in the outer magnetosphere ( grm ) is predicted to 
evolve slowly with time ( τgrm = 10.3 years) in comparison 
to other external sources. A posteriori, such a behavior 
is confirmed as illustrated by the evolution of the annual 
mean dipole component of E[grm] projected in magnetic 
coordinates and shown in the left panel of Fig.  10 with 
circles. Note that prior to 1953, our model cannot cor-
rectly extract this field and the latter oscillates around 0 
with a large posterior variance. However, grm alone can-
not explain decadal variations of external sources as they 
can be detected at the Earth’s surface or at the altitude 
of low-orbiting satellites. The rapidly evolving magne-
tospheric components also exhibit long-term trends 
whenever the latter can be captured. This effect can be 
observed when comparing the annual mean dipole com-
ponent of E[grm] to the one of E[grm + gm + gfm] shown 
with a continuous line in Fig.  10. During satellite eras, 
the latter is always found to be more intense than the 
former, meaning that the ring current can generate some 
persistent annual signal as already documented by Lühr 
and Maus (2010). With our current method, this signal 
can only be recovered when temporal data coverage is 
high enough due to the fact that E[gm] and E[gfm] exhibit 
very low memory timescales. A possible way to improve 
the AR processes characterizing these sources would 
be to consider some extra timescales accounting for the 
slow varying part of the field generated by the ring cur-
rent. The cycle of approximately 10.5 years highlighted by 
Huder et al. (2020) with the COV-OBS.x2 model (shown 
with dashed lines in Fig. 10) is also present in our solu-
tion. Although the mean solutions of both models slightly 
differ from one another, the COV-OBS.x2 dipole always 
lies within the 68.7 confidence interval predicted by our 
model (gray areas in Fig. 10).

To evaluate the model over short periods of time and 
when all sources are predicted to be well separated, we 
now compare predictions of the azimuthal component of 
the model with ground based observatory measurements 

taken at four different locations, Hermanus, Niemegk, 
Canberra and Kakioka. Observatory data being only 
assimilated to constrain the core field secular variation, 
they can be considered as independent measurements for 
external and induced fields. In order to make visual com-
parisons possible and to remain within the conditions the 
model was built in, only hourly night-time measurements 
and predictions were kept to be then averaged over 10 
days time periods. The results are reported in the right 
panel of Fig. 10 with red lines for observatory data, black 
lines for the full model predictions and blue lines for the 
predictions of the core field alone. Globally, monthly and 
annual variations of Bθ are well captured by the model. 
Only during the time gap between the CHAMP and 
Swarm missions, when external sources are not updated 
anymore, predictions and observations differ strongly. 
One can also notice that the core field does not seem to 
be contaminated by external or induced fields, as its evo-
lution does not reproduce the rapid variations observed 
in the data. The largest discrepancies between predic-
tions and observations are in the magnitude of the sig-
nals. Intense excursions are not predicted by the model. 
The reason for this is that the model was trained on a 
dataset selected for very quiet magnetic conditions [see 
Baerenzung et  al. (2020)]. Therefore, the selection algo-
rithm of the Kalman filter prevents the assimilation of 
data containing a too strong signal from external sources. 
A recalibration of the model for more general conditions 
would certainly solve this issue.

Finally, our model contains a source for induced/
residual ionospheric fields. The latter is a priori uncor-
related from magnetospheric fields. Yet rapid variations 
of external fields generate currents within the Earth’s 
interior, which in return induce a secondary magnetic 
field (e.g., Schmucker 1985; Langel and Estes 1985b; 
Olsen et al. 2005; Finlay et al. 2020). The intensity and 
temporal evolution of the induced field depends on 
the conductivity of the crust, the mantle and the core. 
Under the assumption that conductivity only depends 
on depth, each spherical harmonics coefficient of the 
induced field will be linked the same coefficient of the 
external field through the relation:

where ι is the induced field, ǫ the external fields, and Q 
is referred as the Q-response. In our model, ι = gii and 
ǫ = grm + gm + gfm , where grm is projected in magnetic 
coordinates.

In the particular case discussed by Olsen et  al. 
(2005), where the mantle is assumed to be insulat-
ing until a given depth d followed by a supercon-
ductor, Qm

l (t − t ′) = Q̃m
l δ(t − t ′) and therefore 

(22)ιl,m(t) =

∫ ∞

-∞

Ql,m(t − t ′)ǫl,m(t
′)dt ′ ,
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ιl,m(t) = Q̃l,mǫl,m(t) . Focusing on the dipole compo-
nent of induced and external fields, and assuming a 
depth of d = 1200 km, leads to ι1,0(t) = Q̃1,0ǫ1,0(t) with 
Q̃1,0 = 0.27 as estimated by Langel and Estes (1985b) 
with POGO data. In the left panel of Fig. 11, the evo-
lution of, respectively, ǫ1,0 and ι1,0(t)/Q̃1,0 is displayed 
between 2019.45 and 2019.65 with, respectively, red 
and black lines. In order to concentrate on rapid vari-
ations only (we recall that external and induced field 
were stored every 3 hours during the CHAMP and 
Swarm eras), temporal scales larger than 15 days have 
been filtered out from both time series. Furthermore, 
we chose the [2019.45,  2019.65] time period because 
temporal coverage of Swarm data is optimal during 
this interval. The two time series in Fig. 11 follow one 
another quite closely and Q̃−1

1,0 seems appropriate to 
rescale the induced field. Over the current Swarm time 
span, induced and external fields exhibit a Pearson cor-
relation ρ = Cov(ǫ, ι)/(σǫσι) , calculated here with the 
mean Kalmag solutions, of ρ = 0.79 . It is of ρ = 0.84 
over the time interval of Fig.  11 and of ρ = 0.73 over 
the CHAMP era. This lower correlation value is prob-
ably caused by the uncertainty level of external and 
induced fields which are higher during the CHAMP 
mission than during the Swarm one. However, the par-
ticular 1-D conductivity model leading to Q̃1,0 is known 
to be imperfect. More complex conductivity profiles are 
required to better model induction processes within 
the Earth’s interior.

We now investigate the Q-response predicted by our 
model when keeping the assumption that the conductivity 

within the Earth is only depth-dependent, but relaxing the 
constraint about its profile. For this evaluation, we operate 
in spectral space. Considering only dipole components of ι 
and ǫ and applying a Fourier transform to equation 22 the 
latter becomes:

From this equation, the real and imaginary parts of Q̂(k) 
are, respectively, given by:

To evaluate these two quantities we considered induced 
and external fields during the [2015.0, 2021.0] time inter-
val when the model reaches its peak accuracy. In the right 
panel of Fig.  11, Re{Q̂(2π/k)} and Im{Q̂(2π/k)} aver-
aged at period Ti = 2π/ki over [Ti, 2Ti] are, respectively, 
displayed with red and black continuous lines. For com-
parisons, the real and imaginary parts of ˆ̃Q1,0 as well as 
the Q-response (referred as QO ) estimated by Olsen et al. 
(2005) with a realistic conductivity model are, respec-
tively, shown with dashed and dotted lines. The general 
behavior of the Q-response we recover is coherent with 
our prior knowledge about it. Indeed, for short periods 
of time the real part of Q̂ is much more intense than its 

(23)ι̂1,0(k) = Q̂1,0(k)ǫ̂1,0(k) .

(24)

Re{Q̂(k)} =
Re{ǫ̂(k)}Re{ι̂(k)} + Im{ǫ̂(k)}Im{ι̂(k)}

Re{ǫ̂(k)}2 + Im{ǫ̂(k)}2
,

(25)

Im{Q̂(k)} =
Re{ǫ̂(k)}Im{ι̂(k)} − Im{ǫ̂(k)}Re{ι̂(k)}

Re{ǫ̂(k)}2 + Im{ǫ̂(k)}2
.

Fig. 11  Left: mean dipole component in magnetic coordinates and evaluated at a radius r = 6371.2 km of the sum of all magnetospheric sources 
(red line) and of the induced field rescaled by the inverse Q-response Q̃−1

1,0 discussed in the manuscript (black line). Components associated with 
time periods larger than 15 days have been filtered out. Right: real (red) and imaginary (black) parts of the Q-response. Full lines: Kalmag solution 
estimated during the [2015, 2021] time interval and averaged over [Ti , 2Ti] period intervals. Lines with circles: Q-response estimated by Olsen et al. 
(2005) with a 1-D model of the conductivity within the Earth’s interior. Dashes: Q-response associated with a simplified 1-D conductivity model of 
the Earth’s interior (see text)



Page 19 of 22Julien et al. Earth, Planets and Space          (2022) 74:139 	

imaginary part and its decay pattern is close to the one 
predicted by Olsen et al. (2005). However, in comparison 
to Re{Q̂O} , Re{Q̂} is globally underestimated. This effect 
might be due to the fact that induced fields vary rap-
idly with time, and when no data is feeding the model, 
its mean value tends quickly toward 0 contrary to the 
remote and close magnetospheric fields which evolves 
slower. The behavior of the imaginary part of Q̂ , which 
reflects the temporal lag of the induced field response, is 
on the contrary very similar to the one predicted by the 
direct model of Olsen et al. (2005).

Conclusion
In this study, we proposed a method to assimilate dif-
ferent types of geomagnetic data in order to construct 
a high spatio-temporal model of the Earth’s magnetic 
field. The model being expressed in terms of posterior 
distribution, it reflects the quality and spatial coverage 
of the measurements it is derived from. At the begin-
ning of the twentieth century, the main field and the 
secular variation are quite uncertain in the Southern 
hemisphere and more particularly in oceanic areas 
and in Antarctica. With the first data collected by low-
orbiting satellites, these two fields gain in precision and 
become very reliable during the CHAMP and Swarm 
eras. We demonstrated that the rapid dynamics of the 
core field could be captured by the model. However, the 
spatial resolution at which short timescale fluctuations 
are recovered is not constant over time and strongly 
depends on the spatial scale considered. Typically, rapid 
variations can only be accurately modeled at large spa-
tial scale. On the opposite, fluctuations of the secular 
variation at high spherical harmonics degree can only 
be resolved for long periods of time. The model reaches 
its peak accuracy both spatially and temporally during 
the CHAMP and Swarm eras. It is therefore mandatory 
that such satellite missions are perpetrated in the future 
to better understand the nonlinear and wave dynamics 
occurring within the Earth’s outer core (see Aubert and 
Gillet (2021), Gillet et al. (2021)).

To be able to consider land, airborne and marine 
survey observations, which contain an intense con-
tribution of the small-scale lithospheric field, the lat-
ter was modeled up to spherical harmonic degree 
ℓ = 1000 . However, this operation could not be per-
formed directly, since the dimension of the associated 
covariance matrix would have forbidden any numerical 
computation. We therefore introduced, and conclu-
sively evaluated, a statistical approximation where only 
mean and variance information were updated beyond 
ℓ = 100 . The resulting mean solution exhibits highly 
detailed structures on every areas where data coverage 

was dense enough. Furthermore, the part of the covari-
ance which is still fully modeled (up to ℓ = 100 ) pro-
vides a rough estimation of locations where the mean is 
likely to be well resolved.

An important aspect of the proposed approach is that 
whenever new observations become available, the model 
can be updated accordingly without restarting the entire 
assimilation process. The example presented with the 
dataset taken above Afghanistan demonstrates the flex-
ibility of the method.

As for the core field, the accuracy of external and 
induced fields is not constant over the model time span. 
While signal of the remote magnetospheric field could 
be extracted from 1953 on, rapidly evolving sources such 
as the close and fluctuating magnetospheric fields or 
the induced field, could only be separated from the data 
when the latter exhibit a high temporal coverage. In gen-
eral, optimal solution for such field was obtained during 
satellite eras and in particular during the CHAMP and 
Swarm ones. The global behavior of external fields is in 
agreement with previous studies of it (see Lühr and Maus 
(2010); Huder et al. (2020)). However, the training of the 
model under very quiet magnetic conditions forbids the 
reproduction of most intense external field variations. 
A recalibration of the model under more general condi-
tions appears therefore as necessary. Although magne-
tospheric and induced fields were a priori assumed to be 
independent, their connection revealed itself a posteriori. 
Through the proposed approach we showed that exter-
nal and induced fields could be jointly estimated from 
direct measurements of the geomagnetic field although 
the process characterizing their evolution remain quite 
simplistic. A refined parametrization of their dynamical 
behavior would certainly enhance the ability of the algo-
rithm to extract such sources from the data.

The model will be frequently updated (at least once 
every 2 months), in particular with Swarm and observa-
tory data. Furthermore, it can be accessed through dif-
ferent physical and statistical properties on a dedicated 
website at: https://​ionoc​ovar.​agnld.​uni-​potsd​am.​de/​
Kalmag/.

Appendix A: Sequentialization
Describing the evolution of a given g quantity by continu-
ous first and second-order auto-regressive processes can 
be preformed through the following relations:

(A.1)∂t g +
1

τ
g = σ ω̇,

https://ionocovar.agnld.uni-potsdam.de/Kalmag/
https://ionocovar.agnld.uni-potsdam.de/Kalmag/
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where ω̇ is a Gaussian white noise scaled by the factor σ . 
Introducing z = g for first-order ARP and z =

(

g , ∂tg
)T 

for second-order ARP, equations (A.1) and (A.2) can be 
written as:

with A = 1/τ and ζ = σ ω̇ for first-order ARP and:

for second-order ARP.
The homogeneous solution of equation A.3 is given by:

where F = exp(−A�t) is the parameter of the ARP as 
expressed in equations  4 and  5. The general solution of 
equation A.3 is simply z(t +�t) = Fz(t)+ ξ , where the 
white noise ξ characterized by the distribution N (0, �̃) is 
chosen here to force the process to remain stationary. 
Under such a constraint, one can write that 
�(t) = E

[

(z(t)− E[z(t)])(z(t)− E[z(t)])T
]

= �(t = ∞) = �∞   . 
Therefore, calculating the spatial covariance of both sides 
of the solution z(t +�t) = Fz(t)+ ξ and rearranging the 
result gives �̃ = �∞ − F�∞FT.

Appendix B: Smoothing and merging
The model being constructed in multiple steps, the 
smoothing algorithm had to be adapted. In particular, 
information gained with the assimilation of data prior to 
2000.5 had to be propagated to the model constructed after 
this date with CHAMP, Swarm and ground-based observa-
tory data. To do so, the solution in 2000.4 of the smooth-
ing algorithm running between 1900 and 2000.4 was taken 
as a reference model. Its is referred as zr , with mean E[zr] 
and covariance �zr . Information accumulated within this 
snapshot is then transferred to the first smoothing solution 
(the one running from 2022.2 to 2000.5). The algorithm to 
perform this task proceeds iteratively in time through the 
relations:

(A.2)∂2t g +
2

τ
∂t g +

1

τ 2
g =σ ω̇,

(A.3)∂t z = −Az + ζ ,

(A.4)A =

(

0 1

1/τ 2 2/τ

)

, ζ =

(

0
σ ω̇

)

(A.5)z(t +�t) = z(t) exp(−A�t) = Fz(t),

(B.1)Gk =�zk
F
T
k �

−1
zr

,

(B.2)E[zk |zr] =E[zk ] +Gk(E[zk ] − FkE[zr]),

(B.3)
�zk |zr =�zk

+Gk

(

�zk
− Fk�zrF

T
k − �̃zr

)

G
T
k ,

where zk is a snapshot taken at iteration k of the 
2000.5− 2022.2 smoothing model, Fk is the parameter of 
the ARP enabling to forecast zr to the k iteration, and �̃zr 
is the covariance of the ARP white noise derived from Fk.

Appendix C: Lithospheric field update
Whenever new survey data become available, one may 
wish to assimilate them to improve the lithospheric field 
model. A possibility would be to merge this new dataset 
with the global one and to relaunch the entire Kalman fil-
ter/smoothing algorithm. Yet this operation is extremely 
time consuming. A better option would be to use the pos-
terior model resulting from the smoothing algorithm as a 
prior information to assimilate the new dataset and then 
to propagate the information gained on the lithospheric 
field to the entire model. To perform this task lets assume 
that new data become available within the time interval 
[k − 1, k + 1] , where k corresponds to a stored snapshot of 
the smoothing solution. Assimilating data between k − 1 
and k is straightforward. One can simply simulate the 
Kalman filter algorithm with the smoothing solution zk−1 
taken as a restart file. Arriving at k, if the new dataset offers 
only a limited coverage of the Earth’s surface, the accuracy 
the core field and other sources exhibit will likely be lower 
than the accuracy of the smoothing solution at this epoch. 
It would therefore be beneficial to use this solution zk as a 
prior model. At the same time nevertheless, information 
gained on the lithospheric field between k − 1 and k needs 
to be transferred to it. To perform this operation we pro-
ceeded as following:

where guk  and gsk are the vectors of SH harmonics com-
ponents associated with the lithospheric field for, respec-
tively, the Kalman filter and the smoothing solution and 
�zk ,g

s
k
 is the smoothing cross-covariance matrix between 

zk and gsk . These updated smoothing solutions at epoch k 
are then used as a prior information for the Kalman fil-
ter running between k and k + 1 . Such operation is then 
repeated every 0.1 year, as constrained by the chosen 
temporal resolution of the model.

Once the entire new dataset has been assimilated, the 
Kalman filter solution in 1900 is updated with the new 
lithospheric field through equations C.1 to C.3 and the 
smoothing algorithm between 1900 and 2022 is simu-
lated again.

(C.1)Gk =�zk ,g
s
k
�−1

guk
,

(C.2)E[zk |g
u
k ] =E[zk ] +Gk

(

E[guk ] − E[gsk ]
)

,

(C.3)�zk |g
u
k
=�zk

+Gk

(

�guk
−�gsk

)

G
T
k ,
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SH: Spherical harmonics; SV: Secular variation; SD: Standard deviation; ARP: 
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