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Abstract 

We conducted seismic tomography for entire Japanese Islands including the Sea of Japan and the Pacific Ocean 
using arrival times from reflection survey as well as the routine seismic network. We successfully imaged the shallow 
zone along the Sea of Japan from offshore Yamagata to the Noto Peninsula by using air gun data. An extremely low-V 
shallow zone is imaged between Sado Island and Noto Peninsula. We also obtained detailed seismic velocity struc-
ture beneath the Pacific Ocean at depths of 20–50 km using S-net data. The 2007 Noto Peninsula, the 2007 offshore 
Chuetsu, and the 2019 offshore Yamagata earthquakes occurred at the boundary between high-Vp and low-Vp zones. 
The west side of the hypocenter of the 2019 offshore Yamagata earthquake at depths of 10–30 km has high-V corre-
sponding to the Mogami Trough. This high-V zone passes through Awa Island and reaches Sado Basin between Sado 
Island and Honshu. A major rift zone in the Tohoku Arc extending from the Akita region to the Niigata region along 
the coast of Sea of Japan corresponds to high-V lower crust and a shallow Moho.
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Introduction
The seismic velocity structure beneath the Japanese 
Islands is extremely complex because the Japanese 
Islands consist of the Eurasian (EUR), the North Ameri-
can (NA), and the Philippine Sea (PHS) plates where 
the PHS and the Pacific (PAC) plates subduct beneath 
the EUR and the NA plates (Fig. 1, tectonic setting). The 
National Research Institute for Earth Science and Disas-
ter Resilience (NIED) deployed a nation-wide high-sen-
sitivity seismograph network (Hi-net) according to the 
Special Measure Law on Earthquake Disaster Prevention 
after the Kobe earthquake in January 1995 since NIED 
had already accumulated experience from the Tokyo 
metropolitan deep borehole array and had operated 
the Kanto-Tokai seismic network since 1979 (National 
Research Institute for Earth Science and Disaster Resil-
ience 2019a). NIED started operation of Hi-net in 2000 
(Okada et  al. 2004; Obara et  al. 2005). The Japan Mete-
orological Agency (JMA), the National Universities, and 
other institutes operate other seismic networks for the 
detection of microseismicity. An ocean bottom seismic 
network is operated in Sagami Bay by NIED, off Tokai 
and Boso by JMA, offshore Sanriku by the Earthquake 
Research Institute, the University of Tokyo, offshore 
Kushiro and Muroto by the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC). JAMSTEC 
constructed the Dense Oceanfloor Network System for 
Earthquakes and Tsunamis (DONET) (National Research 
Institute for Earth Science and Disaster Resilience 2019b) 
offshore Kii peninsula and Point Muroto near the Nankai 
Trough, and they started operation of DONET offshore 
Kii (in 2014) and Muroto (in 2016) Peninsulas. NIED 
deployed the Seafloor Observation Network for Earth-
quakes and Tsunamis along the Japan Trench (S-net) 

(National Research Institute for Earth Science and Dis-
aster Resilience 2019d) after the 2011 offshore Tohoku 
Earthquake (the Tohoku-oki event) and began operating 
in 2016 (Kanazawa 2013; Uehira et  al. 2016). DONET 
was transferred to NIED from April 2016. NIED started 
operation of Monitoring of Waves on Land and Sea-
floor (MOWLAS) consisting of Hi-net, the full range 
seismograph network (F-net), S-net, DONET, Strong-
motion Seismograph Networks (K-NET and KiK-net), 
and Volcano Observation Network (V-net) (National 
Research Institute for Earth Science and Disaster Resil-
ience 2019c). These seismic networks contributed to the 
analysis of three-dimensional (3D) seismic velocity struc-
ture (e.g., Matsubara et al. 2005, 2008, 2017b, 2019; Mat-
subara and Obara 2011). Matsubara et al. (2017b, 2019) 
combined the arrival time data of the NIED Hi-net and 
centroid moment tensor data of the NIED F-net data and 
those using tiltmeters that accompany NIED Hi-net sta-
tions (Asano et al. 2011). Because the about 2-year period 
of S-net data is too short to analyze seismic tomogram; 
however, we only used the arrival time data at the per-
manent land stations such as the NIED Hi-net, NIED 
S-net, JMA, national universities, and the other organiza-
tions since the NIED S-net data have been collected for 5 
years.

Data and methods
Data for seismic tomography
In this study, the target region is 20–48°  N and 120–
148°  E. It covers the entire Japanese Islands from Hok-
kaido (Kuril Islands) to Okinawa (Ryukyu Islands) and the 
Pacific Ocean where the seismic stations of onshore Hi-
net and offshore the S-net and the DONET are deployed. 
JAMSTEC conducted the reflection survey in the Sea of 
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Japan from 2007 to 2011 (Fig.  2) under “Multidiscipli-
nary research project for construction of fault model in 
the high strain rate zone” and from 2014 to 2020 under 
“Research project for earthquake and tsunami in the Sea 
of Japan” by Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT) Japan (Shinohara et  al. 
2008; No et al. 2009, 2014). In this study, we used the trav-
erse lines near Sado Island and offshore Yamagata prefec-
ture since the traverse lines are surrounded with inland 
stations and near the source regions of the 2007 offshore 
Chuetsu Earthquake and the 2019 offshore Yamagata 
earthquake. JAMSTEC conducted the reflection survey 
using the air gun shots with an interval of 50 m or 200 m 
(No et al. 2014). The original intervals of air gun shots are 

50  m or 200  m. We superimposed the signals from five 
or nine consecutive shots to create an interval of 1  km 
for shot points (Fig. 3). The superposition of nine signals 
increases the S/N ratio by a factor of three. The reflected 
seismic signals reach the stations around 150–200  km 
(Fig. 4). For earthquake data, we selected the hypocenter 
with the maximum number of phase picks from each box 
with the size of a horizontal 0.01 degree (approximately 
1 km) and 1 km in vertical direction at depths of 0–10 km 
to match the interval of air guns. At depths greater than 
10 km, we similarly selected the earthquake hypocenter 
from a box with the size of a horizontal 0.1 degree and 
2.5 km in vertical direction at depths deeper than 10 km. 
The number of hypocenters beneath the Pacific Ocean is 
smaller than the number beneath Japanese Islands since 
the S-net observation began from 2017. Beneath the 
Pacific Ocean, we chose the earthquake hypocenter with 
the maximum number of phase picks from a box with 
the size of a horizontal 0.01° (approximately 1  km) and 
1 km in vertical direction at all depths beneath the Pacific 
Ocean. We used 14,850,442 P- and 12,278,029 S-wave 
arrival time data from 294,865 natural sources and 11,089 
P-wave arrival time data from 482 air gun shots to con-
strain the seismic tomography (Fig. 5).   

Seismic tomography
We applied these data to the grid-type tomographic 
method (Zhao et  al. 1992) with spatial velocity correla-
tion and station corrections added to the original code 
(Matsubara et  al. 2004, 2005). We calculated station 
corrections for P- or S-wave for each seismic station to 
account for the average residuals for P- or S-wave from 
all earthquakes. The spacing of grid nodes equals to the 
resolution size in the original method (Zhao et al. 1992), 
however, denser grid nodes with the spacing as half of the 
resolution size were placed (Matsubara et al. 2004, 2005). 
More grid nodes increase both the ability to match the 
smallest resolvable size of heterogeneity and the instabil-
ity of solution. A spatial velocity correlation is introduced 
to stabilize the solution. We used the LSQR algorithm 
(Paige and Saunders 1982) extended to an arbitrary 
damping matrix by Nolet (1987) with a combination of 
diagonal and smoothing matrices for the stable solution 
during the inversion, since we placed approximately eight 
times as many grid nodes compared to the resolution size 
for the inversion. The pseudo-bending method for ray 
tracing (Koketsu and Sekine 1998) is used within the 3D 
structure among the grid nodes.

We used travel-time residuals of less than 0.5  s for 
P-wave and 0.6 s for S-wave for the inversion of seismic 
velocity structure. We simultaneously inverted for the 
3D seismic structure and the relocated the hypocent-
ers of natural sources. We conducted the inversion of 
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the seismic structure and relocation of natural sources 
20 times. We finally used 12,597,329 P- and 7,950,656 
S-wave arrival time data for inversion. The inversion 
reduces root-mean-square of the P-wave travel time 
residual from 0.471 to 0.165 s and that of the S-wave data 
from 0.761 to 0.206 s after 20 iterations.

We set up the 3D grid nodes to construct the velocity 
(slowness) structure with a grid spacing of 0.1° (approxi-
mately 10 km) in the horizontal direction. The grid inter-
val in the vertical direction is described in Table. 1. The 
resolution for the horizontal direction is 0.2° (approxi-
mately 20  km), twice of grid interval (0.1°, 10  km), and 
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that for the vertical direction is also twice the grid 
interval.

We checked the resolution with the checkerboard reso-
lution test and the restored resolution test. We assumed 
the ± 5% checkerboard pattern for 0.2° in horizontal and 
5–50 km in vertical direction same as the resolution size 
(Table 1) for the checkerboard resolution test. We calcu-
lated the theoretical travel times using the checkerboard 
pattern and inverted from the initial model for the check-
erboard resolution test. We also assumed the final model 
and calculated the travel times and inverted from the ini-
tial model for the restored resolution test. We used only 
ray paths with residuals less than 0.5  s for P-wave and 
0.6 s for S-wave for the final 3D seismic structure used in 
the inversion in these two resolution tests. We fixed the 
hypocenters relocated with the final 3D Vp and Vs struc-
tures during these tests.

Initial velocity structure
We adopted the one-dimensional (1D) velocity struc-
tures for P- and S-waves used in the NIED Hi-net routine 
processing as the initial seismic velocity models (Fig.  6; 
Ukawa et al. 1984). Previous studies assumed the veloc-
ity discontinuities as the Moho or the upper boundary 
of the Pacific Plate (e.g., Zhao et  al. 1992, 2011, 2015); 
however, we can find zones with high velocity gradients 
without the assumption of velocity discontinuities since 
many earthquakes occur and many ray paths cross in this 
region.

Results
Results of checkerboard resolution test
Figures 7 and 8 show the results of the checkerboard test 
for P- and S-waves, respectively. Resolution beneath the 
four main islands is good at depths of 10–60  km based 
on the checkerboard resolution test (Figs. 7a–g and 8a–
g). The resolution beneath the Pacific Ocean improves 
at depths greater than 10  km (Figs.  7c–g and 8c–g). 
We focus on the area of northern central Honshu from 
Yamagata prefecture to Noto Peninsula with the addi-
tional data of reflection survey. Figure 9 shows the check-
erboard resolution test results using only natural sources 
compared to the results including seismic reflection data. 
We can obtain much better resolution at depths of 0, 5 
and 10 km beneath this region (Fig. 9) with the seismic 
reflection data (with an interval of ~ 1 km) compared to 
that obtained with only natural sources.

Map views at depths of 0–60 km for the entire Japanese 
Islands
Figures 10, 11, 12, 13, 14 show the map views of Vp per-
turbation, Vs perturbation, and Vp/Vs, restored resolu-
tion test for Vp, and that for Vs at depths of 0–400 km, 
respectively. We calculated the average 1D model from 
the final 3D velocity structure (Fig. 6). We also show the 
perturbation of the final 3D velocities from these average 
velocities (Figs. 10, 11).    

At a depth of 5  km, low-Vp zones are located along 
the Pacific Ocean from Hokkaido to northeastern Kanto 
region and beneath the southern Kanto region, southern 
Kii peninsula to southern Shikoku Island. Low-Vp zones 
are located between the Sado Island and Honshu Island. 
At a depth of 10 km, low-V zones are located beneath the 
Kanto region and region between Sado Island and Noto 
Peninsula, and the southern side of the Median Tectonic 
Line (MTL). At a depth of 20  km, P-wave and S-wave 
seismic velocity structures beneath the Pacific Ocean are 
resolved especially off the eastern Japan. High-V zone is 
located along the coast of the Pacific Ocean beneath the 
eastern Japan and low-V zone are located on the east side 
of the previous high-V zone beneath the Pacific Ocean. 

Table 1 Grid interval and resolution size

Depth Grid interval Resolution/
checkerboard pattern

Horizontal Vertical Horizontal Vertical

0–10 0.1° 2.5 km 0.2° 5 km

10–40 5 km 10 km

40–60 10 km 20 km

60–180 15 km 30 km

180–300 20 km 40 km

300– 25 km 50 km
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Fig. 6 Initial and average of final 3D seismic velocity structure
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Fig. 8 Result of checkerboard resolution test for S-wave
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Fig. 10 Map views of Vp perturbation beneath Japanese Islands
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Low-V zones are located at the MTL beneath southwest-
ern Japan and at the northern Kinki region. A high-V 
zone is located between Sado Island and Noto Peninsula.

At a depth of 30  km, low-V zones are located at lon-
gitudes of 142–143° E off the eastern Japan beneath the 
Pacific Ocean. This low-V zone corresponds to the oce-
anic crust at the uppermost part of the subducting Pacific 
plate. The low-V zone is distributed beneath the Japanese 
Islands broadly at this depth. At the region along the Sea 
of Japan, high-V zones are imaged at the western side of 
the Hokkaido, around Sado Island, and around the Noto 
Peninsula.

At a depth of 40 km, a NNE–SSW low-V zone off the 
eastern Honshu coast corresponding to the low-V oce-
anic crust of the Pacific plate approaches Honshu. Low-V 
zones beneath Honshu correspond to the active vol-
canoes. Low-V zones from western Honshu to eastern 

Kyushu Islands correspond to the low-V oceanic crust 
of the subducting Philippine Sea plate. High-V zones 
located on the south side of the low-V zone beneath the 
southwestern Japan are mantle of the subducting Philip-
pine Sea plate.

At a depth of 60  km, high-V subducting Pacific and 
Philippine Sea plates and low-V oceanic crust at the 
uppermost parts of the Pacific plate are clearly imaged. 
A low-V zone exists beneath the central Honshu Island at 
the mountainous region and the collision zone of Honshu 
Island and the Izu-Bonin Arc.

Results of restored resolution test
We show the results of restored resolution test in Figs. 13 
and 14. Comparisons between Figs.  10 and 13 and 
Figs.  11 and 14, show that we obtain the similar results 
with the final ray paths used in the inversion.
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Fig. 17 WNW–ESE cross section of seismic velocity structure and restored resolution test around the 2019 offshore Yamagata earthquake. Red 
circles denote the hypocenter of the 2019 offshore Yamagata Earthquake determined with the 3D velocity structure
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Map views beneath the regions along the Sea of Japan
We image a quite low-V zone beneath the Sea of Japan 
between the Noto Peninsula and Sado Island; however, 
we cannot image that extremely low-V zone where we 
lack air gun data (Fig.  15). This shallow low-V zone is 
clarified first in this study because of the use of air gun 
data. The velocity structures including air gun data below 
the depth of 20 km are almost same as those without the 
air gun data. These results indicate that the shallow low-V 
zone is owing to the existence of the air gun data pass-
ing through the shallow sedimentary zone of the seafloor. 
This study only used the air gun data offshore Yamagata 
and between the Sado Island and Noto Peninsula. There 
are many air gun shots in the Sea of Japan by JAMSTEC 
and national universities. We may be able to image the 

shallow low-V zone near the shore of oceans surrounding 
Japan if we use other offshore air gun data.

Velocity structure beneath the large events along the Sea 
of Japan in the past 20 years
We relocated the all events determined by NIED Hi-net 
and NIED S-net from October 2000 to December 2019 
with magnitudes equal to or larger than 1.5.

The 2019 offshore Yamagata earthquake
Figures 16 and 17 show the NNE–SSW and ESE–WNW 
cross sections below the 2019 offshore Yamagata earth-
quake, respectively. The red circle denotes the main-
shock with magnitude larger than 6.0. The mainshock 
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Fig. 18 Seismic velocity structure and restored resolution test around the 2007 offshore Chuetsu earthquake. Red circle denotes the hypocenter of 
the 2007 offshore Chuetsu earthquake determined with 3D structure
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is located at the boundary between northwestern high- 
and southeastern low-Vp zone (Fig. 17a, d) between the 
upper and lower low-Vs zones (Fig.  17b, e) with low-
Vp/Vs zone (Fig.  17c). Aftershocks are located at the 
west side of the mainshock, dipping eastward (Fig. 16). 
Results of restored resolution tests show the similar 
results with those from the inversion (Figs. 16f, g, and 
17f, g).

The 2007 offshore Chuetsu earthquake
Figure  18 shows the ENE–WSW cross sections below 
the 2007 offshore Chuetsu earthquake. The main-
shock is located at the boundary of the upper low-Vs 
and lower high-Vs zone within the high-Vp zone with 
1.82 Vp/Vs zone (Fig.  13a–c). The aftershocks are dis-
tributed in the high-Vp zone with Vp/Vs of 1.79–1.86. 
Results of restored resolution tests show the similar 
results with those from the inversion (Fig. 18f, g) such 
as high-Vp zone around the hypocenter and two low-Vs 
zones on the southwest side of the hypocenter.

The 2007 Noto Peninsula earthquake
Figure  19 shows the ENE–WSW cross sections along 
the 2007 Noto Peninsula earthquake. The mainshock 
is located at the boundary of shallow high-Vp and 
deeper low-Vp zone and at the boundary of northern 

low-Vs and southern high-Vs zone within the low-Vp/
Vs zone (Fig.  19c–e). Aftershocks are located within 
the high-Vp and high-Vs and surrounding the low-Vp/
Vs zone (Fig.  19c–e). Results of restored resolution 
tests show the similar results with those from the inver-
sion (Fig. 19f, g) such as hypocenter at the boundary of 
low-V and high-V zones.

Station corrections
We calculate the station correction using the difference 
between the observed travel time and the calculated 
(theoretical) travel time (O-C). Figure 20 shows the sta-
tion corrections for P- and S-wave for the final model. 
Red stations denote positive O-C travel times. The cal-
culated travel time is smaller than the observed travel 
time. This means that the modeled velocity is too high 
due to the presence of thick sediment or other low-V 
materials. The Hi-net seismometers are deployed at the 
bottom of boreholes typically 100–200 m deep. Some of 
them have depths of over 1000 m. The positive O-C sta-
tions for both P- and S-wave are located along the Sea 
of Japan and the Ou Backbone Range in the northeast-
ern Japan for onshore seismic stations.

The S-net stations on the east side of the Japan Trench 
have negative O-C for both P- and S-wave due to the 
presence of high-velocity bedrock. Those between 
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Fig. 19 Seismic velocity structure and restored resolution test around the 2007 Noto Peninsula earthquake. Red circles denote the hypocenter of 
the 2007 Noto Peninsula earthquake determined with 3D structure
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Honshu and Japan Trench have positive O-C since the 
most of them are just laid on the seafloor with thick 
sediments.

The DONET stations also have positive O-C except 
those in the southeast offshore Kumano. Positive O-C 
stations are located on the sediments; however, the nega-
tive O-C stations are on the bedrock.

Discussion
Comparison of velocity structure beneath central Japan 
with previous studies
Our analysis only used the permanent seismic station 
data and did not include the temporary seismic sta-
tions. The Vp structures at depths of 10–25  km are 
almost same as those by Nakajima et  al. (2010); how-
ever, unlike their results, our Vs structure does not 
have a low-Vs zone at depths of 15–25  km. Our Vp 
structure has extremely low-Vp beneath the Hida and 
Akaishi mountain range at depths of 40–60 km; how-
ever, Nakajima et  al. (2010) did not resolve a simi-
lar feature. Our Vs structure at depths of 40–50  km 
beneath the Hida and Akaishi mountain range is 
consistent with those by Nakajima et  al. (2010). They 
used the temporary seismic stations and their resolu-
tion size is about 10 km (half of our analysis) and they 
assumed the Conrad and Moho discontinuities in the 
inversion. We did not assume those discontinuities 
because the dense seismic data can image the seismic 
velocity structure without assuming the uncertain 
velocity discontinuities. The difference of structure 
may derive from their assumption of seismic disconti-
nuities. Low-Vp at the uppermost mantle between the 
2004 Chuetsu Earthquake and 2007 offshore Chuetsu 
Earthquake without the assumption of Moho discon-
tinuity is consistent with the Vp structure by Nakajima 
and Hasegawa (2008) with the assumption of Moho 
discontinuity.

Focusing on the offshore Chuetsu earthquake region, 
high-Vp structure on the southeastern side of the 
aftershock region of the offshore Chuetsu earthquake 
is consistent with that by Kato et al. (2008a). A shallow 
low-Vp zone and a high-Vp zone on the southeastern 
side of the 2007 Noto Peninsula earthquake are con-
sistent with those by Kato et al. (2008b). They used the 
temporary seismic stations and resolved more detailed 
seismic velocity structure; however, the region of good 
resolution is limited to the vicinity of the aftershock 
region.

Coseismic slip region of the 2019 offshore Yamagata 
earthquake between low‑V and high‑V zone
Figure 21 shows the velocity structure on the coseismic 
slip region estimated by National Research Institute 

for Earth Science and Disaster Resilience (2020). This 
zone is located between the southern low-Vp and the 
northern high-Vp and between the deeper low-Vs and 
the shallower high-Vs zones with 1.72–1.76 Vp/Vs. The 
large slip zone is at a distance of 4–10  km along dip 
with Vp between 6.0 and 6.5 km/s.

The 2007 offshore Chuetsu earthquake region 
with high‑Vp
Aftershocks determined using data from ocean bot-
tom seismometer are located on the SE-dipping plane 
(Shinohara et al. 2008). The hypocenter of the 2007 off-
shore Chuetsu earthquake is located at the bottom of the 
extremely high-Vp and high-Vp/Vs zone (Yukutake et al. 
2008). Large coseismic slip region is shallow zone (Aoi 
et al. 2008) with Vp of 6.0–6.3 km/s and Vp/Vs of 1.72–
1.76 (Fig. 22). JAMSTEC conducted the reflection survey 
(No et al. 2009) and Nakahigashi et al. (2012) estimated 
the seismic velocity structure with refraction seismol-
ogy. Their result shows a low-Vp zone less than 3.0 km/s 
at depths shallower than 3 km and high-Vp between 7.0 
and 7.2  km/s at depths of 13–24  km. Our result shows 
5.5  km/s Vp zone at depths below 10  km depth and 
6 km/s Vp zone at depths of 12–13 km and 6.5 km/s Vp 
at depths around 15  km beneath the Sea of Japan, and 
7.0–7.2 km/s Vp at depths of 20–25 km (Fig. 23). Seismic 
tomography is not good at estimating a precise veloc-
ity boundary; however, low-Vp upper crust and high-V 
lower crust beneath the Sea of Japan and high-V upper 
crust and low-V lower crust beneath the Honshu is con-
sistent with their result (Fig. 23). 

The 2007 Noto Peninsula earthquake region with high‑Vp 
and Vs
The hypocenter of the 2007 Noto Peninsula earthquake 
is located within a high-Vp and high-Vs region (Hira-
matsu et  al. 2008). The coseismic slip region by Pulido 
et al. (2008) is also located within a high-Vp and high-Vs 
zone surrounding hypocenter. The largest slip region is 
the shallowmost zone; however, the seismic tomography 
clarified the seismic velocity structure below a depth of 
3–5 km for Vp since there is neither reflection nor refrac-
tion seismic data on the west side of the Noto peninsula.

Starting in July 2021, microseismicity became active 
at the northeastern tip of the Noto Peninsula. This zone 
has a high-Vp and slightly high-Vp/Vs (1.74–1.78) zone 
between the low-Vp and low-Vp/Vs (1.65–1.70) zones 
(Fig. 19).

High‑V zone beneath the Mogami Trough and Sado Ridge
The region from the Sado Ridge to Mogami Trough 
was formed by uplift of a half-graben owing to the 
inversion tectonics (Okamura 2000). We used the air 
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gun data along Mogami Trough. The west side of the 
hypocenter of the 2019 offshore Yamagata earthquake 
at depths of 10–30  km has high-V corresponding to 
the Mogami Trough (Fig.  24). This high-V lower crust 
passes through Awa Island and reaches Sado Basin 
between Sado Island and Honshu. A major rift zone in 
the Tohoku Arc runs from the Akita to Niigata region 
along the coast of Sea of Japan (Sato 1994) and corre-
sponds to high-V lower crust and a shallow Moho cor-
responds to the failed rift zone (Matsubara et al. 2017a, 
2019).

Conclusion
We conducted the seismic tomography for entire Japa-
nese Islands including the Sea of Japan and the Pacific 
Ocean using arrival times from reflection seismology. 
We can image the shallow zone along the Sea of Japan 
from offshore Yamagata to Noto Peninsula by using the 

air gun data. The extremely low-V shallow zone is imaged 
between Sado Island and Noto Peninsula. We also obtain 
detailed seismic velocity structure beneath the Pacific 
Ocean at depths of 20–50 km owing to the S-net data.

The 2007 Noto Peninsula, the 2007 offshore Chuetsu-, 
and the 2019 offshore Yamagata earthquakes occurred at 
the boundary between high-Vp and low-Vp zones. Low-
Vp upper crust and high-V lower crust beneath the Sea 
of Japan and high-V upper crust and low-V lower crust 
beneath Honshu are imaged by reflection seismology 
near the offshore Chuetsu earthquake.

The west side of the hypocenter of the 2019 offshore 
Yamagata earthquake at depths of 10–30  km has high-
V corresponding to the Mogami Trough. This high-V 
zone passes through Awa Island and reaches Sado Basin 
between Sado Island and Honshu. A major rift zone in 
the Tohoku Arc from Akita to Niigata region along the 
coast of Sea of Japan corresponds to high-V lower crust 
and a shallow Moho.
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