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Abstract 

In subduction zones, slip deficit monitoring along the plate interface is important for understanding the seismogen-
esis of megathrust earthquakes. In the last two decades, aseismic slip transients, such as slow slip events (SSEs), which 
are usually synchronized with tectonic tremors, have been detected in subduction zones worldwide. Frequent SSEs 
are particularly important for releasing slip deficits during the inter-seismic periods of megathrust earthquakes. In 
southwest Japan, deep short-term SSEs have been primarily monitored with strain and tilt records because the SSEs 
in this region are small. However, strain and tilt records are so sensitive that they record not only SSEs, but also rainfall 
and local groundwater movements, which temporally affect the quality of data making it difficult to apply an auto-
mated detection algorithm. Therefore, previously reported short-term SSE catalogs, based on strain and tilt records, 
were created by visual inspections, although they are not suitable for generating a long-term catalog. In this study, a 
quantitative detection algorithm was developed to detect short-term SSEs using strain and tilt records. The problem 
of temporally varying data quality was solved by introducing the prior probability of log-normal distributions in the 
fitting variance. This method was applied to an 8-year (2013–2020) dataset of strains and tilts from southwest Japan. 
A total of 96 events were detected, among which, 78 corresponded with SSEs previously reported by the Geological 
Survey of Japan (GSJ). Although the GSJ catalog contained more events with smaller magnitudes, such events were 
difficult to distinguish from noise using the developed method. Three of the remaining 18 events were considered 
SSEs that were not reported in the GSJ catalog. Others could be artifacts because there were no obvious signals in the 
global navigation satellite system records (with events of magnitude > 6.0). Previous studies have suggested the exist-
ence of aseismic transients deeper or shallower than regular short-term SSEs in southwest Japan. However, detection 
results from this study did not confirm such events.
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Graphical Abstract

Introduction
In subduction zones, megathrust earthquakes have 
been repeatedly occurring, causing disasters in society 
(Ando 1975; Ammon et al. 2005; Ide et al. 2011). They 
release strain which has been accumulated through 
plate subduction. Monitoring slip deficit accumula-
tion in subduction zones is crucial, and there are many 
previous studies on this (e.g., Yoshioka and Matsuoka 
2013; Loveless and Meade 2016; Yokota et  al. 2016; 
Noda et  al. 2018). The accumulated strain is released 
through seismic ruptures as well as through aseismic 
phenomena (Ozawa et  al. 2001; Wallace and Beavan 
2010; Villegas-Lanza et  al. 2016). One of the impor-
tant aseismic phenomena is “slow earthquake”. Slow 
earthquakes were discovered at the beginning of the 
twenty-first century in southwest Japan and Cascadia 
(Dragert et al. 2001; Obara 2002). Seismic and geodetic 
signals of slow earthquakes are termed differently: low 
frequency earthquakes (LFEs) or tectonic tremors in 
2–8 Hz (Obara 2002); very low frequency earthquakes 
in 0.005–0.05 Hz (Ito et al. 2007), and slow slip events 
(SSEs) in the geodetic range (Hirose et al. 1999; Dragert 
et al. 2001). These signals are often temporary and spa-
tially correlated (Rogers and Dragert 2003; Obara et al. 
2004) and are considered to represent narrow-band 
signatures of broadband slow earthquakes (Kaneko 

et al. 2018; Ide & Yabe 2019; Masuda et al. 2020). That 
is, high LFE or tremor activities imply large seismic 
moment release in accompanying SSEs (Maeda and 
Obara 2009; Frank et  al. 2018). In subduction zones, 
focal mechanisms of tectonic tremors, very low fre-
quency earthquakes, and SSEs are estimated to be 
low-angle thrusts, consistent with subducting plate 
interface (Ide et  al. 2007a; Ito et  al. 2007; Ide & Yabe 
2014). However, slow earthquakes have a longer dura-
tion than regular earthquakes with the same moment 
(Ide et al. 2007b). Slow earthquakes have been detected 
globally in various tectonic settings (Behr and Burg-
mann 2021), such as subduction zones (Wallace and 
Beavan 2010; Radiguet et al. 2012), collision zones (Liu 
et al. 2009), transform faults (Nadeau and Dolenc 2005; 
Wech et  al. 2012), and inland faults (Chao and Obara 
2016). Slow earthquakes may play an important role in 
the nucleation process of large earthquakes (Ando and 
Imanishi 2011; Kato et  al. 2012; Ruiz et  al. 2014; Yabe 
and Ide 2018), and slow earthquakes studies have been 
conducted worldwide.

In this study, the study area is southwest Japan, where 
short-term SSEs are difficult to monitor owing to their 
small sizes. Here, slow earthquake zones and locked 
zones for the anticipated megathrust earthquakes are dis-
tributed separately in depth (Obara and Kato 2016). In 
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the Nankai subduction zone, deep short-term SSEs and 
tremors are located at 30–40  km depths, referred to as 
“regular SSE regions” in this study, and the plate interface 
is locked at shallow depth. The maximum magnitude of 
deep short-term SSEs is less than 6.5 (Sekine et al. 2010; 
Hirose et al. 2020). Such small signals were difficult to be 
detected using global navigation satellite system records 
(GNSS) during the early stages of slow earthquake studies 
in southwest Japan, unlike in Cascadia, where short-term 
SSEs with magnitude greater than 6.5 often occur (Sze-
liga et al. 2008). Instead, tiltmeters, which were deployed 
in the seismic network by the National Research Institute 
for Earth Science and Disaster Resilience (NIED), were 
used to detect short-term SSE signals (Obara et al. 2004). 
Tilt (i.e., spatial gradients of displacement) is sensitive 
enough to detect small SSE signals. A rectangular single 
fault was usually assumed for estimating the fault mod-
els of SSEs to reveal temporal and spatial synchronization 
of tremors and SSEs as well as along-strike variations of 
slow earthquake activities (Obara et al. 2004; Hirose and 
Obara 2006; Sekine et  al. 2010). Recently, detailed slip 
distributions of short-term SSEs were estimated using 
tilt records, by dividing the faults into smaller sub-faults 
(Hirose and Kimura 2020a, b). The minimum magni-
tude of SSEs, detected using tilt records, was 5.7 (Sekine 
et al. 2010; Hirose and Kimura 2020a, b). However, many 
tectonic tremor activities have been reported when any 
SSEs were not reported from the tilt records (Hirose & 
Kimura 2020a, b). Considering the spatial and temporal 
synchronization of tremors and SSEs, small SSEs, which 
are difficult to be detected with tilt records, are expected 
to occur during these times.

The Geological Survey of Japan (GSJ), National Insti-
tute of Advanced Industrial Science and Technology 
constructed a strain observation network in southwest 
Japan for the purpose of improving the short-term SSE 
detection (Itaba et  al. 2010). The Japan Meteorologi-
cal Agency (JMA) also constructed a strain observa-
tion network in the Tokai region (Suyehiro 1979; Furuya 
and Fukudome. 1986; Miyaoka and Yokota 2012; JMA 
2022a, b). Although the original purpose of JMA strain 
network was to detect preslip of the anticipated Tokai 
earthquake, they are now used for SSE monitoring. SSE 
monitoring by GSJ is conducted using observation data 
from GSJ, JMA, and NIED and are reported monthly to 
governmental committees as well as the Coordinating 
Committee for Earthquake Prediction, Japan (CCEP-J). 
According to the short-term SSE catalog of GSJ in the 
CCEP-J reports, the minimum magnitude of SSE was 
5.2, which is lower than detections using only tilt records 
(Itaba et  al. 2013, 2014a, 2014b, 2015; Ochi et  al. 2015, 
2016a, 2016b, 2017a, 2017b, 2018a, 2018b, 2019a, 2019b; 
Yabe et al. 2020a, 2020b, 2021a, 2021b).

Short-term SSE signals are now detectable in GNSS 
records by applying a geodetic-matched filter technique 
(Nishimura et  al. 2013; Nishimura 2014). Using a dura-
tion of 180  days, a linear function is fitted to the GNSS 
data along the dip direction, with and without an offset 
in the middle of the duration. Akaike’s Information Cri-
teria (AIC) are calculated for the two models to deter-
mine which model fits the observed data better. When 
the former model is found to be superior, the estimated 
offset value is considered to be the amount of deforma-
tion caused by the SSEs. Differences in AICs between 
the two models are stacked for nearby stations and used 
for SSE detection with quantitative criteria. Okada et  al. 
(2022) modified the methodology to include duration 
information in the estimated source parameters. Kano 
et  al. (2019) and Kano and Kato (2020) used different 
approaches to study short-term SSEs using GNSS data. As 
it is difficult to obtain detailed slip distributions of indi-
vidual events using GNSS records, GNSS data are stacked 
during periods when tectonic tremors are active, and slip 
distributions of stacked SSEs are estimated. Consequently, 
the slip invading the shallow locked zone was estimated, 
in addition to the large slips in regular SSE regions.

In the GSJ catalog, short-term SSE detections or their 
periods were determined by visual inspection (Itaba et al. 
2013), similar to the analysis of the NIED tilt data (Hirose 
et al. 2020). An automated detection algorithm for strain 
and tilt data was difficult because of data quality. These 
data were sufficiently sensitive to detect small SSE sig-
nals. However, they are so sensitive that they capture 
signals from non-tectonic causes as well, such as local 
deformation caused by rainfall and groundwater move-
ment (e.g., Jahr 2018; Canitano et  al. 2021). Therefore, 
the quality of strain and tilt data for SSE detection is vari-
able not only among stations, but also temporally. How-
ever, similar to the GNSS data, quantitative detection is 
needed to construct a uniform short-term SSE catalog 
for the region (Nishimura et  al. 2013; Nishimura 2014). 
If not, detection results may be influenced by differences 
in the subjective detection criteria (such as different ana-
lysts and/or different periods).

Kimura et  al. (2011) constructed an automated short-
term SSE detection algorithm with tilt data using the 
Kalman filter algorithm and grid search for estimating 
fault location, geometry, size, and slip direction of SSEs. 
Models with and without SSEs were compared and used 
for the detection of possible SSEs. Robustness tests were 
then conducted to remove false detections. The study 
detected four SSEs over 2 years in the Shikoku region, 
and ~ 400 false detections were removed during the 
robustness tests. A constant variance was assumed for 
noise in the model; subsequently, detection could be eas-
ily affected by temporally variable data quality.
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This study proposes a method to estimate crustal 
deformations, possibly caused by slip on the plate inter-
face, using strain and tilt data from the GSJ, JMA, and 
NIED. Problems due to the instabilities in data qual-
ity were solved by introducing prior distributions in the 
data fitting. Section  "Data and preprocessing" explains 
the data used, preprocessing of data to remove tidal and 
barometric responses, and slow earthquake activities 
during the analysis period. In Section  "Method", meth-
odologies for automatically detecting the possible short-
term SSEs from strain and tilt data and for estimating the 
final fault model for the detected events are provided. 
Section  "Results and discussion" presents the detection 
results and a comparison with existing catalogs based 
on strain and tilt data and GNSS data. Additionally, the 
possibilities of shallow SSEs, as identified by Kano et al. 
(2019) and Kano and Kato (2020), based on stacked 
GNSS data, are discussed. Section  “Conclusions” pre-
sents conclusions.

Data and preprocessing
Strain and tilt observations
This study used the strain and tilt data observed by GSJ, 
JMA, and NIED. The station distributions are shown in 
Fig.  1. The GSJ observation network consists of 17 sta-
tions located at regions from Tokai to Shikoku. Strain-
meters and tiltmeters were deployed at each station. Two 
types of strainmeters were used in the network. Glad-
win tensor strainmeters (GTSMs, Gladwin 1984) were 
deployed at four stations and Ishii-type strainmeters 
(Ishii et  al. 2002; Asai et  al. 2009) at the other stations. 
The data quality of GTSMs was poor compared with 
that of Ishii-type strainmeters; therefore, GTSM data 
were not used in this analysis. Ishii-type strainmeters 
measure the horizontal strain along the four azimuths. 
The data were converted to horizontal strain tensors by 
multiplying with the calibration matrices. Twenty-four 
stations from the observation networks in the JMA and 
Shizuoka Prefectures were used. Volumetric strainme-
ters were deployed at 13 stations. One set of Ishii-type 
strainmeters was deployed at five stations, and two sets 

Fig. 1  Station map and tectonic settings of the southwest Japan. Red triangles are GSJ stations, where Ishii-type strainmeter and tiltmeters were 
deployed. Green triangles are GSJ stations, where Gladwin Tensor Strainmeter (GTSM) and tiltmeters were deployed. Green squares are NIED 
tiltmeters. Dark blue octagons are JMA stations, where one Ishii-type strainmeter is deployed. Light blue octagons are JMA stations, where two 
sets of Ishii-type strainmeters were deployed. Gray octagons are JMA stations, where volumetric strainmeters were deployed. Orange curves are 
the location of trench and iso-depth contours of subducting plate interface by Baba et al. (2002), Nakajima and Hasegawa (2007), and Hirose et al. 
(2008)
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of Ishii-type strainmeters were deployed at six stations. 
Calibration coefficients (scalar) and matrices were mul-
tiplied by the observed volumetric and horizontal strain 
data during preprocessing, respectively. The NIED tilt-
meters were collocated with Hi-net seismometers. The 
data used in this study were originally sampled at 20 Hz, 
and they were resampled with a sampling interval of one 
hour. Subsequently, the data were preprocessed. The 
study period was 2013 to 2020.

Preprocessing
Strain and tilt data contain not only crustal deforma-
tion due to tectonic events, but also local deformation 
due to tides, barometric pressure changes, rainfall, 
and groundwater movement. The BAYTAP-G program 
(Tamura et al. 1991) was used to remove the tidal and 
barometric responses from observations. BAYTAP-
G assumes that crustal deformations are slow and can 
be represented by the Brownian motion. Based on this 
assumption, BAYTAP-G disassembled the observa-
tional data into trend terms, including signals of crus-
tal deformations, tidal response terms, barometric 
response terms, and noise terms. The tidal response 
term was represented by the summation of sinusoidal 
curves with 15 tidal periods (diurnal and semidiurnal 
tides as well as M3 tidal component as listed in Tamura 
et  al. (1991)). The barometric response term was rep-
resented by the summation of instantaneous and 
time-delayed linear responses to barometric pressure 
changes. A time delay of up to three data points (3  h) 
was permitted. The time delay was determined by try 
and error. Barometric pressure changes were measured 
at the GSJ and JMA stations. For the NIED stations, 
the barometric pressure changes observed at the clos-
est GSJ or JMA stations were used. As the noise term 
was assumed to follow a normal distribution, the disas-
sembling of observation data was conducted based on 
least-square fitting.

Raw strain data are affected by material heterogene-
ity around the sensor, such as the cement used to hold 
the sensor in the borehole. Hence, the raw strain data 
must be calibrated for conducting the crustal deforma-
tion analysis. This study used the method described by 
Matsumoto et al. (2010) and Matsumoto and Kamigai-
chi (2021), where the calibration matrix or coefficient 
is estimated based on a comparison of observed and 
synthetic strains of M2 and O1 tidal constituents at 
each station (Hart et al. 1996; Roeloffs 2010). The ocean 
tidal loading effect of the synthetic strains was deter-
mined using Green’s functions at the deployment depth 
of the borehole strainmeters (Kamigaichi et  al. 2021). 

For volumetric strain, the scalar calibration coefficients 
were multiplied by the raw values. For the horizon-
tal strain, raw observation data along four horizontal 
azimuths were converted to a horizontal strain tensor. 
In this step, three components were selected from the 
four azimuth angles. The corresponding 3 × 3 calibra-
tion matrix was multiplied by the raw data to obtain the 
horizontal strain tensor. These calculations were done 
for all possible combinations of components, and the 
averages for the calibrated horizontal strain tensors 
were used.

Slow earthquake activity during 2013–2020
Slow earthquakes occurred repeatedly during the analy-
sis period (Fig.  2). The LFE catalogs (Fig.  2a) were con-
structed by JMA and Kato and Nakagawa (2020). The 
number of events in the JMA catalog increased signifi-
cantly from March 2018, owing to the changes in detec-
tion methodology. From this date, JMA started detecting 
LFEs using a matched filter technique (Shelly et al. 2007), 
in addition to the previous manual inspections con-
ducted since 1999 (Nishide et  al. 2000; Katsumata and 
Kamaya 2003; Nakamura 2006). Kato and Nakagawa 
(2020) constructed LFE catalogs prior to August 2015 
using matched filter analysis. The short-term SSE cata-
logs were constructed by: (i) GSJ (Fig.  2b) (Itaba et  al. 
2013, 2014a, 2014b, 2015; Ochi et al. 2015, 2016a, 2016b, 
2017a, 2017b, 2018a, 2018b, 2019a, 2019b; Yabe et  al. 
2020a, 2020b, 2021a, 2021b); (ii) NIED (Fig. 2c) (Kimura 
2013, 2014, 2015a, 2015b, 2016a, 2016b, 2017a, 2017b, 
2018a, 2018b, 2019a, 2019b, 2020a, 2020b, 2021; Kimura 
and Kimura 2014); (iii) Nishimura et  al. (2013) and 
Nishimura (2014) (Fig.  2d). The SSE catalog of Hirose 
and Kimura (2020a, b) is based on the SSE catalog of the 
NIED. GSJ uses the strain and tilt data of GSJ, strain data 
of JMA, and tilt data of NIED, whereas NIED uses only 
tilt data of NIED, resulting in differences in the detected 
number of SSEs. Nishimura et  al. (2013) detected SSEs 
using only GNSS data prior to 2013 in southwest Japan, 
and Nishimura (2014) detected SSEs using a method 
modified from Nishimura et  al. (2013) in the Ryukyu 
Trench. The catalog presented here was analyzed using 
the method of Nishimura (2014) and updated up to 
2020. Figure  2e shows the time plots of these catalogs 
for 2013–2020. Many SSEs were correlated with LFEs, 
though this has not been the case in the Ise-Bay region 
as noted by Obara and Sekine (2009). The timing of the 
SSEs detected by NIED coincides with those detected by 
the GSJ, whereas some SSEs detected by GNSS do not 
coincide with those detected by GSJ and NIED.
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Fig. 2  LFE and SSE catalogs during 2013–2020. a LFE catalogs by JMA (gray) and Kato and Nakagawa (2020) (black). b SSE catalog by GSJ. c SSE 
catalog by NIED. d SSE catalog based on GNSS records (Nishimira et al. 2013; Nishimura 2014). e Time plots of events shown in a–d 
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Method
This section presents a methodology to quantitatively 
detect possible short-term SSE signals from the strain 
and tilt data. We developed a geodetic-matched filter 
technique for strain and tilt data based on Nishimura 
et al. (2013) and Nishimura (2014). It was assumed that 
tectonic events occurred at some locations on the plate 
interface, and data fitting was conducted for the slip 
amount and linear trends in the data. Comparing the AIC 
between the models with and without the assumed tec-
tonic deformation, possible SSEs were detected when the 
ΔAIC falls below a threshold value. Owing to the nega-
tive effects of temporal variations in the strain and tilt 
data quality, prior information on the variance in data fit-
ting was introduced. This enabled temporal variations in 
data quality at individual stations to be treated.

Data selection
Additional file 2: Figure S1 shows the histograms of dif-
ferential strain and tilt data after BAYTAP-G preproc-
essing. The strain and tilt data processed by BAYTAP-G 
occasionally included large steps due to local seismic 
events, heavy rainfall, or instrument maintenance. These 
steps may cause misdetection in geodetic-matched filter 
analysis for SSEs. Therefore, the stations in each time 

window were removed if they had steps > 10–8 strain for 
horizontal and volumetric strain, or 10–8 rad for tilt.

Prior distribution for variances
It was assumed that the strain and tilt data were com-
posed of linear trends, signals of crustal deformations, 
and noise. Hence, when signals of crustal deformation 
are absent, the data are expected to be fitted by a linear 
function. In a typical geodetic-matched filter analysis, the 
variance of this linear fitting is assumed to be constant 
over time. However, in strain and tilt data, this variance 
can temporally change, owing to time-dependent data 
quality. The prior distributions of variance were adopted 
to include these temporal variations.

Two-week time periods separated by one week in 
between were used, same as that used in our geodetic-
matched filter analysis. For each station and component, 
1,000 time periods were randomly selected. A linear 
function was fitted to the data at each station and com-
ponent. Figure  3 shows the histograms of the variances 
for different stations and components. The histograms 
of the variances are represented by log-normal distribu-
tions. Hence, a log-normal distribution was adopted for 
the prior distribution of the fitting variance. The averages 
and variances for the prior distributions of each station 

Fig. 3  Histograms of residuals for fitting a linear function to strain and tilt data. Each panel shows an example of histogram for different stations and 
components. Black curves represent log-normal distributions fitted for the histogram. Values in the panels are the means and standard deviations of 
the fitted log-normal distributions
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and component were calculated based on the histogram 
in Fig. 3.

Geodetic‑matched filter analysis for short‑term SSE 
detection
This study developed a geodetic-matched filter analysis 
technique for strain and tilt data based on Nishimura 
et  al. (2013) and Nishimura (2014). They used a step 
function in the middle of the time windows to repre-
sent the occurrences of SSEs. The GNSS data contained 
one sample per day, which did not record the detailed 
SSE slip evolution. However, in this study, using one 
sample per hour, the strain and tilt data should contain 
detailed SSE slip evolution. Therefore, using simple step 
or ramp functions is not appropriate for representing 
SSEs in time periods. Therefore, in this study, 2-week 
time periods were used, with a 1-week interval in the 
middle. It was assumed that SSEs occurred within one 
week in the middle, and data of which were not used in 
the fitting. One week data before and after the assumed 
SSEs were considered to include only common linear 
trends and static offsets owing to the assumed SSEs. 
Hence, the proposed method was formulated as fol-
lows. The observed data for the ith station and jth com-
ponent of data, xij can be written as:

where k = 1, . . . ,N , 2N + 1, . . . , 3N  , with N = 168 (i.e., 
one week of data with one sample per hour), which repre-
sents the data point in the time domain; tk represents the 
time (days); aij and bij represents coefficients for a linear 
trend in data; Gij is the static deformation due to SSEs; 
H() is the Heaviside step function, and t1.5N represents 
the timing of the middle of time windows; eijk represents 
Gaussian noise with variance σ 2

ij . The deformation was 
calculated using Okada (1992) code, assuming a rigid-
ity of 41 GPa and a Poisson ratio of 0.25. The fault was 
assumed to be on the plate interface based on Baba et al. 
(2002), Nakajima and Hasegawa (2007), and Hirose et al. 
(2008). This results in detecting the crustal deformation 
only caused by faulting on the plate interface. The fault 
size was assumed to be 20 km along both the strike and 
dip directions. The strike and dip of the fault were cal-
culated based on the interpolation of the plate interface 
model. The slip direction (i.e., rake) was assumed to be 
parallel to the subduction direction of the Philippine 
Sea Plate (Miyazaki and Heki 2001). The fault searching 
location grid size was 0.1º in latitude and longitude. The 
depth of the fault location was constrained to 15–50 km. 
The slip quantity was also grid-searched from 0–100 mm 
at 10 mm intervals.

(1)xijk = aijtk + bij + GijH(tk − t1.5N )+ eijk ,

The conditional probability P
(

xij|σ 2
ij

)

 can be written 
by the normal distribution as:

Hence, the coefficients for the linear trend were esti-
mated in the least-squares sense. The prior distribution 
for the variance P

(

σ 2
ij

)

 was assumed to be a log-normal 
distribution, as follows:

where µij and τ 2ij are the average and variance of the log-
normal distribution, respectively. The log likelihood is 
then calculated by:

For the model without crustal deformation (i.e., zero 
slip), the AIC was calculated by considering all stations 
and all components as:

For the model with crustal deformation (i.e., positive 
slip), the AIC was calculated in the same manner as:

For every time window and spatial grid for the fault 
location, grid searches were conducted for the slip 
amount. Then, the model with the minimum AIC value 
was selected as the best model. The time windows were 
shifted every 24  h during the analysis period between 
2013 and 2020.

The developed method can detect crustal deforma-
tion similar to that caused by known short-term SSEs 
in this region. For example, we constrained source 
locations of possible events on the plate interface. If 
the crustal deformation occurs by other tectonic rea-
sons (for example, aseismic creep on crustal faults), 
they are rejected as noises or projected onto the arti-
ficial sources on the plate interface. We also assumed a 
duration of less than one week for the possible events, 
based on the past short-term SSE and LFE activities in 
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this region. According to the GSJ catalog, durations of 
typical short-term SSEs are usually less than one week. 
For larger events with significant source migration, 
although the entire durations of such events are some-
times longer than one week, slip on the particular fault 
plane is usually less than one week. If there are aseismic 
slip on the plate interface with long duration (unknown 
aseismic transients or long-term SSEs), such events are 
difficult to be detected with this method. Therefore, to 
explore the possibilities of other tectonic events, it is 
necessary to conduct grid searches for source location 
and geometry and event duration.

Event selection and final fault model estimation
Using the temporal and spatial distributions of the cal-
culated ΔAIC, possible SSEs were detected. First, the 
minimum ΔAICs of certain locations and times were 
selected; these were among those values within ± three 
days and ± 0.3º in latitude and longitude. Among these 
selected points, if less than three stations contributed to 
more than 90% of the likelihood differences, they were 
rejected, because we considered that tectonic events 
should be recorded at more than two stations. Finally, 
only the points with a ΔAIC less than − 6.0 were consid-
ered candidates of short-term SSE events.

The final fault models for the detected short-term SSE 
candidates were constructed. In the detection algorithm, 
the duration of the SSEs was fixed to one week. The 
appropriate duration of the event was defined by grid 
search around the detection time with one day interval. 
The fault sizes were estimated by grid searching around 
the detected location using the defined SSE duration. The 
search was within a length of 10–100 km along the strike 
and a width of 10–50  km along the dip, and both were 
at 10 km intervals. Finally, the slip amount was detected 
by grid search (1–100 mm, at 1 mm intervals) using the 
defined SSE duration and fault sizes.

Results and discussion
This study developed an objective method to detect 
possible short-term SSEs from tilt and strain records. 
This method was previously used for GNSS records to 
construct long-term catalogs (Nishimura et  al. 2013; 
Nishimura 2014); however, there are no such catalogs 
using tilt and strain records. As subjective detection cri-
teria can vary, according to different analysts and/or dif-
ferent times, it is more suitable to use objective detection 
methods to construct long-term event catalogs.

In this study, 130 events were detected over a period 
of eight years using the quantitative detection method of 
SSEs from tilt and strain data. Additional files 3, 4, 5, 6, 
and 7: Figures S2–S6 show examples of data and detected 

events in different regions. Strain and tilt data showed 
transient deformation when LFE activities occurred in 
nearby regions. No heavy rainfall was observed at nearby 
Automated Meteorological Data Acquisition System sta-
tions (AMEDAS). The source locations of the detected 
SSEs coincided with the LFE hypocenters. The spatio-
temporal coincidences with LFE activities suggest that 
the detected crustal deformations are caused by SSEs. 
Transient deformation signals during the middle one 
week fluctuated with time, suggesting that they repre-
sent spatio-temporal distribution of SSE slips. Detailed 
studies on such features are left for the future. Additional 
file 1: Movie S1 shows the spatio-temporal distributions 
of calculated −  ΔAIC values. Figure  4 shows the calcu-
lated −  ΔAIC values projected on a longitudinal axis. 
The detected events were usually followed by active 
LFEs, suggesting that a large portion of these detections 
are SSEs. Some large − ΔAIC values are not marked as 
detections, indicating that these values were caused 
by a residual reduction at less than three stations. The 
removed events may represent small SSEs which were 
observed only at a few stations or noise signals whose 
deformation patterns were similar to those due to slip on 
the plate interface. Figure  5 shows the spatial distribu-
tions of negative ΔAIC values stacked for spatio-tempo-
ral grids. Large stacked values were observed along the 
tremor zone (Fig. 2), which also suggests that a large por-
tion of the detections are SSEs. The final fault models of 
130 detected events were estimated, as summarized in 
Tables S1 and S2. Figure 6 shows the spatial distribution 
of the estimated final fault models. More than 80 events 
were located along the tremor zone, although some 
events were located up-dip or down-dip of the tremor 
zone. Timings of such irregular events occasionally corre-
sponded to periods with heavy rainfall (> 50 mm/d). Fig-
ure 6 shows 23 events in gray rectangles, which represent 
the events in which heavy rainfall (> 50 mm/d) occurred 
during event periods at the AMEDAS stations close to 
the tilt or strain stations, with the largest log-likelihood 
reduction. Additional file 8: Figure S7 shows an example 
of the data and detected events during such heavy rainfall 
periods. Transient changes occurred in strain data when 
heavy rainfall was observed. Detection was not coinci-
dent with LFE activities. Therefore, we interpreted that 
such events are not tectonic signals, but artificial detec-
tion due to heavy rainfalls. Figure  7 shows the spatio-
temporal distribution of detected events. Events detected 
during the period of heavy rainfall were removed in the 
following analysis.

Figure  2 presents the detection results of the other 
catalogs. The GSJ, NIED, and GNSS catalogs con-
tained 265, 53, and 87 SSEs, respectively, during the 
study period. However, their SSEs sometimes represent 
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Fig. 4  Temporal–spatial distributions of the calculated ΔAIC. Background colors represent the calculated ΔAIC. White stars represent the timings 
and locations of events detected in this study. Gray dots are LFEs by JMA and Kato and Nakagawa (2020)
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Fig. 4  continued
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Fig. 5  Spatial distributions of stacked − ΔAIC values

Fig. 6  Spatial distributions of detected events in this study. Orange squares are detected possible SSEs. Gray squares are events detected in the 
period of heavy rainfalls (> 50 mm/d)
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Fig. 7  Temporal distributions of detected events in four catalogs. Red, green, blue, and orange rectangles represent events in catalogs of GSJ, NIED, 
GNSS, and this study, respectively. Gray and black dots represent LFE catalogs of JMA and Kato and Nakagawa (2020), respectively
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Fig. 7  continued
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subevents of large, single SSEs. Therefore, each catalog 
was summarized by focusing on the main events, as 
shown in Additional file  10: Table  S1. The GSJ, NIED, 
and GNSS catalogs contained 148, 39, and 85 main 
events, respectively. The NIED and GSJ catalogs were 
very similar; 37 of 39 events in the NIED catalog were 
also listed in the GSJ catalog. The two missing events 
are SSEs in the eastern Shikoku region (event numbers 
26 and 38 in Additional file  10: Table  S1). The NIED 
is based on tilt records only, while the GSJ catalog 
is based on strain and tilt records. Therefore, the GSJ 
catalog detected more events than the NIED catalog. 
On the other hand, the GNSS catalog overlapped with 
the GSJ catalog; 49 of 85 events in the GNSS catalog 
were also listed in the GSJ catalog. This study detected 
96 events, of which 78 events are also listed in the GSJ 
catalog. The method introduced in this study can detect 
more events in the GSJ catalog than in the NIED and 
GNSS catalogs. The estimated moments of overlapping 
events among the four catalogs were compared and the 
results showed consistency (Fig.  8). Figure  9 summa-
rizes the cumulative number of events in each catalog 
as a function of event size. This shows that the NIED 
and GNSS catalogs saturated at approximately Mw 5.8–
6.0, whereas the catalog of this study saturated at a low 
magnitude of approximately Mw 5.6–5.8. The GSJ cata-
log saturated at an even lower magnitude of Mw  5.3–
5.5. Although less than the detection threshold, our 
method sometimes results in a peak of − ΔAIC values 
during periods of small events (for example, the end of 
October, 2013 at western part of Kii Peninsula). Crus-
tal deformation signals of such small events are small, 
and only a few stations can capture their signals. There-
fore, − ΔAIC values tend to be smaller for such events. 

However, we did not decrease the detection threshold 
value as it increases the number of artificial detections.

Among the events listed in this study and the GNSS 
catalog, 18 and 36 events were not listed in the GSJ cata-
log, respectively. Figure  10 shows the spatial distribu-
tion of these events. From this study’s catalog, the timing 
of events that overlapped with the GSJ catalog did not 
almost correspond to heavy rainfall (Fig. 10a). However, 
a large portion of events which corresponded with heavy 
rainfall did not overlap with the GSJ catalog (Fig.  10b). 
Several events detected in the Eastern Shikoku regions 
and not listed in the GSJ catalog are synchronized with 
tremor activities (Figs. 10b and S3; event numbers 38, 50, 
and 103 in Additional file  10: Table  S1) and sometimes 
detected by the GNSS or NIED catalogs, suggesting that 
these events could be genuine SSEs.

Several studies (Kano et al. 2019; Kano and Kato 2020; 
Kita et al. 2021) suggest the possibility of aseismic events 
shallower than regular SSEs. Our detection results 
include several such candidates at shallow depths (Figs. 6 
and 10b). Although most of them corresponded to heavy 
rainfall, some events are not coincident with heavy rain-
falls. Additional file  9: Figure S8 shows an example of 
such data and detected events; transient changes in data 
are coincident with moderate rainfall but not with LFE 
activities. The GNSS records were also examined for 
events with magnitudes > 6.0, to confirm the existence 
of such events. As GNSS catalog of short-term SSEs can 
detect mainly events with magnitude ~ 6.0 or larger as 
discussed earlier, we expect that such events are visible 
in GNSS records. However, there were not any obvious 
indications of these events in the GNSS records (Addi-
tional file 9: Figure S8). Therefore, many such events may 
not be tectonic deformations, but rather the artificial 

Fig. 8  Comparisons of seismic moments in different catalogs. a Comparisons between GSJ catalog and a catalog of this study. b Comparisons 
between NIED catalog and a catalog of this study. c Comparisons between GNSS catalog and this study’s catalog
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detection owing to other causes, regardless of introduc-
ing log-normal fittings prior distributions in the devel-
oped method.

For the GNSS catalog, events not overlapping with the 
GSJ catalog were concentrated in two regions (Fig. 10d; 
the Eastern Shikoku region near the Kii Channel, and the 
Eastern Tokai region, which is shallower than the regular 
SSE region). Only a few events were detected in the East-
ern Shikoku region in the GSJ catalog (Fig.  2b) and the 
catalog developed in this study (Fig. 6). In this region, the 
detectability of SSEs using strain and tilt records could be 
low because Ishii-type strainmeters were not deployed; 
additionally, the quality of tilt records was poor. In con-
trast, the detectability of SSEs in the Eastern Tokai 
region (shallower than regular SSE regions) should be 
high because there are many volumetric and horizontal 

strainmeters deployed in this region. According to Okada 
et  al. (2022), the typical duration of SSEs in this region 
is longer (> 15  days) than that of regular SSEs, with a 
low slip rate, which may make it difficult to detect such 
events using strain and tilt data.

Figure 11 shows the time evolution of moment release. 
The cumulative moment release in the 8-year study 
period appears different among the four catalogs referred 
to in this study. In the Shikoku region, the GSJ and GNSS 
catalogs showed large cumulative moment release, 
whereas the other two catalogs showed low cumula-
tive moment release (approximately half of the GSJ and 
GNSS catalogs). In the Kii region, the GSJ catalog and 
results of this study showed a similar time evolution of 
moment release; however, the NIED catalog showed very 
low values. In the Tokai region, the GSJ catalog showed 

Fig. 9  Cumulative number of events against moment magnitude. Red, green, blue, and orange curves represent the catalogs of the GSJ, NIED, 
GNSS, and this study, respectively



Page 17 of 21Yabe et al. Earth, Planets and Space           (2023) 75:13 	

Fig. 10  Spatial distributions of fault models of events in the catalogs of this study and GNSS. a Fault models of events in the catalogs of this study 
and GSJ. b Fault models of events in this study’s catalog, but not listed in the GSJ catalog. c Fault models of events in the GNSS and GSJ catalogs. d 
Fault models for events in the GNSS catalog, but not in the GSJ catalog

Fig. 11  Time evolution of moment release listed in catalogs. Red, green, blue, and orange lines represent catalogs of the GSJ, NIED, GNSS, and this 
study, respectively. Three panels show results for the Shikoku regions, Kii region, and Tokai region, respectively
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the largest cumulative moment release. The GNSS cata-
log and results of this study showed a similar time evolu-
tion of moment release at the start of the study period. 
However, they deviated approximately half-way through 
the period (~ May 2017). The NIED catalog had the low-
est value in this region. Therefore, it should be noted 
that short-term SSE catalogs have such uncertainties. 
Detailed comparisons of short-term SSE catalogs should 
be conducted in future studies.

Conclusions
This study monitored the short-term SSEs in southwest 
Japan to understand the spatial and temporal distribu-
tions of slip deficit accumulation at the plate interface. 
Due to the small magnitude events in southwest Japan, 
the detectability of SSEs with GNSS records is limited, 
and strain and tilt records have been used as an alter-
native. Although SSE catalogs have been constructed 
by GSJ using strain and tilt records, their detection of 
events is based on subjective criteria because of spatial 
and temporal changes in data quality, which are not suit-
able for constructing a unified long-term catalog. In this 
study, we developed a quantitative method for detect-
ing SSEs from strain and tilt records and constructed a 
long-term catalog for the period 2013–2020. This catalog 
detected 96 candidate SSEs over 8 years. Comparing the 
catalogs of this study and GSJ, SSEs with a magnitude 
of > 5.8 in the GSJ catalog are included in our catalog. 
However, many small events in the GSJ catalog are not 
included in our catalog, suggesting that small events are 
difficult to distinguish from noise, which synchronize 
with tremor activities by chance. This study’s catalog also 
included events deeper and shallower than those of the 
tremor zones, which were not included in the GSJ cata-
log. Although the existence of such deeper or shallower 
slips was also suggested by previous studies, the timing of 
such events mostly corresponded to heavy rainfall. This 
suggests that they are artificially detected, regardless of 
the introduction of log-normal prior distribution in the 
developed method. Such differences in the short-term 
SSE catalogs indicate that short-term SSE catalogs have 
such uncertainties and we should be aware of them.
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