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Abstract 

Source parameters represent key factors in seismic hazard assessment and understanding source physics of earth-
quakes. In addition to conventional grid search approach to estimate source parameters, other approaches have 
been used recently. This study uses a Bayesian framework, the Markov Chain Monte Carlo method, to estimate source 
parameters including uncertainty assessment with inter-parameter correlations. The Bayesian calculation method 
requires to select a probability density function for estimating likelihood and the function can influence calculation 
reliability. While most studies use a normal distribution, we select an F-distribution due to its suitability for the data in 
ratio form. Using synthetic data and real observations from induced earthquakes in Oklahoma, we compare the calcu-
lation steps for spectral fitting and source parameter estimation using the two probability density functions. The sam-
pling distribution and estimated parameters support the assumption that the F-distribution is well-suited for spectral 
ratio analysis. Results further show that a sampling distribution can effectively reveal trade-offs and uncertainty 
among parameters. Sampling distribution trends also reveal data quality criteria that can be used to refine results.
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Main text
Introduction
As a critical factor in seismology, earthquake stress 
drops have been estimated in various areas in the 
world. In seismic hazard assessment, the stress drop of 
an earthquake can constrain ground motion predictions 
for future earthquakes (e.g., Cotton, et  al. 2013; Bal-
tay et  al. 2019). Estimation of future earthquake shak-
ing requires the stress drop value in the target region 
that is investigated from the past earthquakes. Because 
stress drop depends on seismic source characteristics, 
it is also important for deepening our understanding 
of how earthquakes are generated (e.g., Goebel et  al. 
2015; Chu et  al. 2019; Yoon et  al. 2019). Some studies 
have suggested the possibility of a depth dependency 
in stress drop (e.g., Oth 2013), while other studies have 
searched for other mechanisms or dependencies (e.g., 
Allmann and Shearer 2009) by analyzing many small 
earthquakes within a target region. Some studies have 
proposed that the depth dependency of the stress drop 
is an artifact of calculation (e.g., Abercrombie et  al. 
2021). If stress drops of small earthquakes estimated 
in a target region show a significant relationship with 
parameters that reflect crustal conditions, this could 
advance understanding of the relationship between 
crustal characteristics and seismic behavior. Estimation 
uncertainty, however, can obscure characteristics in 
source parameters. Stress drop estimates in the target 

region sometimes fluctuate three or more orders (e.g., 
Hanks 1977). Numerous studies have sought the better 
estimation and utilization of stress drop.

Stress drop, seismic moment, and corner frequency are 
called source parameters since they are primarily derived 
from characteristics of the seismic source. Stress drop 
is obtained from estimates of seismic moment and cor-
ner frequency (Eshelby 1957). Seismic moment and cor-
ner frequency are obtained through comparison with a 
source spectrum that derives from the theoretical model 
and the observed data (Abercrombie 1995). The observed 
spectra bear the influence of seismic wave propagation 
through the earth medium and amplification within near-
surface sediments. Estimation methods typically use a 
spectral ratio of two co-located earthquakes to cancel out 
the path and instrumental effects (Hough 1997). Recent 
studies have proposed the use of coda waves in source 
parameter analysis. Coda waves represent the later part 
of the seismic waveforms that are generated by scattering 
of the direct waves and interpreted as having lost infor-
mation of the source radiation pattern and directivity 
(Mayeda et  al. 2007). These analyses are conventionally 
performed by grid-search methods.

Bayesian statistics are increasingly used in various 
types of data analysis as the different approach from 
the conventional method. Bayesian approaches evalu-
ate the estimation quality through probabilistic analy-
sis of parameters relative to expectations. Monte Carlo 
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methods have been used in geophysics since the 1960s 
(Sambridge and Mosegaard 2002). Markov Chain Monte 
Carlo methods (MCMC) use an algorithm that samples 
probability distributions using Markov chains to gener-
ate a high-dimensional random sampling in a Bayesian 
framework (Metropolis et  al. 1953). A Markov Chain is 
a stochastic process that describes a sequence of possible 
events whose probability depends only on the state of the 
previous event. Geophysicists have begun to use MCMC 
in seismological analysis (e.g., Lomax et al. 2000; Roy and 
Romanowicz 2017; Berg et  al. 2020), and several previ-
ous studies have demonstrated successful use of MCMC 
in estimating seismic source parameters including 
stress drop. A recent study by Godano et al. (2015) used 
MCMC to estimate source parameters for seismic activ-
ity in western areas of the Corinth Rift. Another study, 
Wu and Chapman (2017) also used this method to esti-
mate the stress drop of earthquakes in Mineral, Virginia.

Conventional grid-search techniques sequentially eval-
uate all combinations of possible source parameter values 
to find the best value for explaining the model (e.g., Yam-
ada et  al. 2007; Kwiatek et  al. 2011). In spite of its sim-
plicity and easy implementation, this method may sample 
regions far the best estimation points. Inversions in high-
dimensional spaces necessary for producing satisfactory 
solutions may become computationally infeasible when 
using a coarse grid. The MCMC approach uses a selec-
tive search that prioritizes higher probability results so 
as to search only the regions around the high probability 
points. This reduces computational overhead and real-
izes calculation efficiencies in high-dimensional spaces. 
The process can exclude cases where the target posterior 
distribution is multimodal thereby causing the MCMC to 
converge around a local probability maximum. Because 
MCMC methods sample a stationary distribution, they 
allow for evaluation of trade-offs among source param-
eters and other results including uncertainty terms.

As a Bayesian algorithm, MCMC provides probabilis-
tic estimates of parameters and their uncertainties. Cal-
culation of MCMC requires an initial input probability 
density function which can influence results. Accurate 
uncertainty estimates require selection of an appropri-
ate probability density function. Previous studies using 
MCMC method selected a normal distribution to esti-
mate seismic source parameters and stress drops (e.g., 
Wu and Chapman 2017). While the normal distribution 
is the most popular probability density function, phe-
nomena under investigation may not follow a normal 
distribution. The present study, we use a novel probabil-
ity density function in the source parameter estimation 
that is theoretically more appropriate than the conven-
tional normal distribution. The next section describes the 

concept of the probability density function choice, and 
we compare results with those generated by a normal dis-
tribution and a proposed distribution.

Stress drop estimation with MCMC calculation
Source parameters of seismic moment ( M0 ) and cor-
ner frequency ( fc ) are calculated from the displacement 
spectrum of seismic records. The term M0 indicates the 
size of the seismic event which relates to the spectral 
amplitude of the low-frequency asymptote. The cor-
ner frequency, fc , is inversely proportional to the fault 
dimension. Stress drop ( �σ ) is estimated from M0 and fc 
using the following equation (after Eshelby 1957):

A seismic waveform is represented by a convolution of 
source, path, and instrumental effects. Recent studies on 
stress drops use spectral ratios of co-located earthquakes 
to cancel out the path and instrumental effects (e.g., 
Imanishi and Ellsworth 2006; Huang et al. 2017). The far-
field S-wave amplitude spectrum (U) of an earthquake is 
expressed as follows (Aki and Richards 1980):

where �0 is the amplitude of the low-frequency asymp-
tote, f is frequency, fc is the corner frequency of the S 
wave spectrum, t is the propagation time, Q is the qual-
ity factor, n is the high-frequency fall-off rate, and γ is a 
constant that controls the sharpness of the spectra cor-
ner. Previous studies have proposed several types of seis-
mic source models and here we use the most commonly 
adopted Brune model (Brune 1970, 1971). This model 
assumes a circular crack of the finite dimensions, and 
the spectral shape estimated from this model describes 
the shape of the observed spectra in wide region of the 
world. The Brune model assumes n = 2 , γ = 1 in Eq. (2), 
and the proportional constant k = 0.37 between the crack 
radius and S-wave velocity divided by fc . Then, the spec-
tral ratio for a pair of earthquakes is described as follows:

Subscripts of 1 and 2 in the equation, respectively, indi-
cate the larger and smaller earthquake. Using the pro-
portional relationship between �0 and M0 , Eq. (3) can be 
simplified to:
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To calculate a stress drop, the seismic moments 
(M01andM02) , the corner frequency of a large earthquake 
(fc1) , and the corner frequency of a small earthquake (fc2) 
in Eq.  (4) need to be estimated. As we described in the 
introduction, MCMC methods depend on selection of 
probability density function used as input. Here, we pro-
pose the use of an F-distribution due to its suitability in 
dealing with ratios of the two data series expressed in 
Eq. (4). In general, the power spectrum of a seismic wave-
form ( P = U2 ) is represented by the real part ( a ) and 
imaginary part ( b ) of the Fourier spectrum:

In this expression, Pdata represents the observed 
power spectrum and T indicates the time window of 
the signal. We suppose that the real part of the spec-
trum a(f) and the imaginary part of the spectrum b(f) 
are independent of each other and follow a Gaussian 
distribution. At this point, we set the model-predicted 
power spectrum ( Pmodel) that is the square of the ampli-
tude spectrum U(f ) in Eq. (4) and not a random varia-
ble. Here, we assume a = σd × A , b = σd × B where A 
and B follow a standard normal distribution. Then, 
Pdata
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= σd
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 . If the variance σd 
adheres to the relationship σd = T • Pmodel
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 , 
Pdata
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(
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)

 approximates a Chi-distribution. 
The Chi-square distribution represents the sum of 
squared standard Gaussian variables, where the num-
ber of Gaussian variables is referred to as degrees of 
freedom. Then, the ratio between observed ( Pdata) and 
the model-predicted power spectrum ( Pmodel) obeys 
the Chi-square (χ2) distribution:

The ratio between two independent Chi-square ran-
dom variables which indicate different events is called 
an F-distribution (e.g., Casella and Berger 2002):

Both degrees of freedom k1 and k2 are equal to two, in 
keeping with the real and imaginary parts of a seismic 
wave. Equation (7) is simplified to the ratio of two dif-
ferent events such that the denominator and numerator 

(4)
U1

(

f
)

U2

(

f
) =

M01

M02

[

1+
(

f /fc2
)2
]

[

1+
(

f /fc1
)2
] .

(5)Pdata
(

f
)

=
1

T

(

a
(

f
)2 + b

(

f
)2
)

.

(6)χ2 =
Pdata

(

f
)

Pmodel

(

f
) .

(7)F(k1, k2) =
χ2
1 (k1)/k1

χ2
2 (k2)/k2

.

are expressed by the power spectral ratio between 
model prediction and observed data by Eq. (6):

Here, Pimodel represents power spectrum whose ratio 
is explicitly written using Eq. (4) as follows:

Thus, the ratio between observed power spectrum ratio 
P1data/P2data and E2 obeys the F(2, 2) distribution. Equa-
tion (8) resembles spectral ratios typically used for source 
parameter estimation and takes the form of an F-distri-
bution. This study further compared results generated 
by both F-distributions and normal distributions used as 
probability density function.

In every sampling iteration, we calculate likelihood 
using probability density functions by substituting sample 
parameters for the ratio of the squared observed amplitude 
spectrum and the squared theoretical amplitude spectrum. 
To obtain one likelihood for records from all stations, we 
use the product of likelihood from each station. The gen-
eral expression of the probability density function for an 
F-distribution using gamma function Ŵ is as follows:

where x is calculated as the power spectral ratio of the 
observed spectrum divided by the theoretical spectrum. 
After substituting the degrees of freedom, Eq.  (10) sim-
plifies to:

This likelihood function makes sense when it has a mode 
at x = 0 because the model parameter also appears in the 
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Jacobian factor. The likelihood function is then represented 
with the probability density function as follows:

In these expressions, Os ∼
√
P1data/P2data represents the 

amplitude spectral ratio between two earthquakes 
observed at the s-th station, MR ≡ M01/M02 is the 
moment ratio, and fj is discretized frequency. The factor 
1/E2

(

fj
)

 in Eq.  (12) is the Jacobian derived from variable 
transformation x = O2

s

(
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)

/E2
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)

 on the probability den-
sity function. The probability density function is 
qy
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y
)

= qx(x)|dxdy | , where y denotes O2
s

(
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)

 . The Jacobian is 
required to unify the integrals with respect to O2

s  of the 
likelihood function.

For comparison, we also perform the analysis assuming 
a normal distribution. In this case, the probability density 
function is expressed as:

where μ is the mean and σ is the standard deviation. The 
term x in Eq.  (13) indicates the logarithm of the ampli-
tude spectral ratio calculated as the observed spectrum 
divided by the theoretical spectrum. While conventional 
studies that often use a smoothed amplitude spectrum, 
this analysis does not use smoothed or stacked spectra in 
order to avoid violating distribution assumptions.

We use the Metropolis algorithm as a MCMC algo-
rithm (Metropolis et al. 1953), which updates the likeli-
hood function (Eq. (12)) in each iteration. The algorithm 
requires a proposal density that indicating the probabil-
ity density function of the transition probability from the 
current condition to the new status. The proposal density 
is expressed as Q(θ∗|θ) = Q(θ |θ∗) , where θ and θ∗ are 
the current value and candidate values, respectively. We 
use the normal random variable θ∗ = θ + N (0, σ 2) as the 
candidate value. Standard deviations ( σ ) is used to con-
trol the transition rate in the MCMC algorithm. We set 
the standard deviation to 0.5 for the moment ratio, 0.01 
for fc1 , and 0.01 for fc2.

Calculations are performed under the assumption 
of a uniform prior distribution. The prior distribution 
ranges from 0 to 100 for the moment ratio, from 0 to 15 
for fc1 , and from 0 to 30 for fc2 . The initial inputs for the 
MCMC algorithm are 70.0 forM01/M02 , 1.0 for fc1 , and 
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7.0 for fc2 . The candidate value is accepted with prob-
abilitymin(1, Lnew/L) , where L and Lnew are the likelihood 

function evaluated at the current and candidate values, 
respectively. Each iteration generates a random number 
r(0 < r < 1) from the uniform distribution:

If Eq.  (14) is valid, we renew the source parameters, 
moment ratio, fc1 , and fc2 . Otherwise, the previous value 
remains. This procedure runs for 200,000 iterations 
using the latter half of 100,000 results for analysis. After 
all iterations, parameters giving the highest likelihood 
values are adopted as the best values. After we obtained 
the moment ratio, we calculate the seismic moment of a 
small event, M02 . We trust the moment magnitude (Mw) 
of a larger earthquake provided on the website of Saint 
Louis University Earthquake Center. We could then con-
vert the moment magnitude to M01 according to the rela-
tionship M01 = 101.5Mw1+9.1 . We then estimate M02 by 
using the estimated moment ratio and M01.

Before applying the method to observational data, we 
perform MCMC analysis on synthetic data. We assume 
a large Mw1 = 4.0 earthquake and a smaller Mw2 = 3.0 
earthquake to give a moment ratio of 31.6 in generating 
synthetic spectral ratios. We set fc1 =1.3  Hz from the 
previous study (Yoshimitsu et al. 2019) for the corner fre-
quency of the large event and fc2 = 4.1 Hz for the corner 
frequency of the smaller event. These parameters give a 
stress drop of about 0.66 MPa. We then calculate a base 
spectral ratio by using these values. We assume Green’s 
function of all stations cancel out perfectly by introducing 
base spectral ratio. This assumption helps isolate source 
effects. To introduce noise, we generate two random 
number sequences. Two values selected from each noise 
sequence are used to generate two Chi-square distribu-
tions and calculate an F-distribution with two degrees of 
freedom. This noise is added to the base spectral ratio, 
and we are treated as a synthetic spectral ratio. One hun-
dred sets of 17 spectral ratios are generated to simulate 
100 seismic events recorded by 17 different stations. For 
the calculation, both an F-distribution and normal distri-
bution are used as the probability density function. The 

(14)r <
Lnew

L
.
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Fig. 1  a Center of the event cluster and station locations. The red star indicates the centroid of the cluster. Squares indicate the location of stations 
used in this study. The bottom left image indicates the contiguous United States (light gray) and the area of the State of Oklahoma (black). b 
Example of a waveform from a large event (top) and a small event (bottom). The top waveform represents the event in Table 1b, and the bottom 
waveform represents the no.1 event in Table 1a. Both were recorded at station OK025. The rectangle in the middle portion of seismograms indicates 
the window used in the analysis

Table 1  (a) Event list in a cluster. Rows list year, month, day, hour, minute, second, latitude (degrees), longitude (degrees), depth (km), 
and magnitude. Event numbers with thin characters indicate an event not selected. (b) Event information of a large earthquake

Rows list year, month, day, hour, minute, second, latitude (degrees), longitude (degrees), depth (km), and magnitude. Event numbers with bold indicate an event not 
selected

Event num Y M D H M S Lat Lon Dep Mag

1 2015 5 29 11 8 41 35.99 − 96.8 3.7 2.7

2 2015 6 13 9 26 14 35.98 − 96.81 3.5 2.3

3 2015 9 16 2 30 2 35.99 − 96.81 3.6 3.7

4 2015 9 16 6 20 4 35.99 − 96.8 3.2 2.6
5 2015 9 18 9 33 0 35.99 − 96.8 3.5 3
6 2015 9 19 5 16 27 35.99 − 96.8 3.6 3
7 2015 9 19 5 20 3 35.99 − 96.8 3.9 3.1
8 2015 9 19 19 15 26 35.99 − 96.8 3.7 2.7
9 2015 9 25 1 59 4 35.99 − 96.79 4.4 3.1

10 2015 9 27 21 59 43 35.99 − 96.8 4.3 3.6
11 2015 9 27 21 59 43 35.99 − 96.8 4.2 3.2
12 2015 10 8 2 45 30 35.99 − 96.8 4 3

13 2015 10 10 23 41 21 35.98 − 96.81 3.8 2.5
14 2015 10 12 4 1 24 35.98 − 96.81 4.4 2.9
15 2015 10 12 8 59 20 35.98 − 96.81 3.9 2.9

16 2015 10 31 6 14 5 35.99 − 96.8 3.7 3.5
17 2015 12 11 8 22 41 35.99 − 96.8 3.3 2.7

18 2015 12 18 2 3 25 35.99 − 96.81 4 3.7
19 2016 2 4 1 43 18 35.99 − 96.81 3.5 2.5

20 2016 2 4 2 16 39 35.99 − 96.81 3.5 2.6

(b)
Y M D H M S Lat Lon Dep Mag

2015 9 18 12 35 17 35.99 − 96.80 3.9 4.1
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frequency range and the dataset size resemble those of 
the observed dataset.

Data
We use a cluster of the seismic events referred to ‘clus-
ter 0038’ occurring in Oklahoma, United States, and 
reported in Yoshimitsu et  al. (2019). Seismic data con-
sisted of broadband velocity records sampled at 100-Hz 
frequency. The events in the cluster occurred from May 
1, 2013, to November 30, 2016, and are recorded by sta-
tions operated by the U.S. Geological Survey (USGS), 
Oklahoma Geological Survey (OGS), and from the Nano-
metrics Research Network in Oklahoma (Fig.  1a). To 

cancel out the path, site, and instrumental effects, we 
use a coda spectral ratio for two events. We select event 
pairs of a larger event (Mw1 = 4.1) and smaller events (2.3 
≤ ML ≤ 3.7) located within 2 km radius of the large event 
(Table 1). We use a magnitude difference of greater than 
0.4 to differentiate larger and smaller events. A time win-
dow is 5.12 s starting from twice the S wave travel time 
(Fig. 1b). S wave velocity is assumed as 3300 m/s in this 
region (e.g., Huang et al. 2017). We use data recorded by 
more than six stations with a signal-to-noise ratio greater 
than two within a 0.5 to 30 Hz frequency range. Analy-
sis used as many stations as possible. A total of 20 events 
forms the cluster advanced to further analysis.

Fig. 2  Source parameters estimated from synthetic data. This calculation is performed for the 8th events in Table 1. a Sampling distribution 
projected onto a 2D plane. Relationship between moment ratio and fc1 , b fc1 and fc2 , and c moment ratio and fc2 . The dark blue areas indicate 
results assuming an F-distribution, and the yellow areas indicate results assuming a normal distribution. Cyan dot and orange circles indicate the 
highest likelihood estimates for F- and normal distribution approaches, respectively. d Histogram of the sampling in fc1 , e fc2 , and f moment ratio. 
g Synthetic spectral ratios. Gray, black, red curves, respectively, indicate simulated spectral ratio for each seismic station, an average of all spectral 
ratios, and the theoretical spectral ratio estimated from the best value. h Estimated stress drops for 100 trials assuming an F-distribution. Red circles 
indicate the results obtained from large earthquakes, and blue triangles indicate results from small earthquakes. The thin bars indicate a 95% 
confidence interval obtained from the variation of the accepted sampling. i Estimated stress drops for 100 trials assuming a normal distribution. Red 
circles indicate the results obtained from large earthquakes, and blue triangles indicate results from small earthquakes.
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Results
Initial analysis address synthetic spectral ratios. Fig-
ure  2a–g shows an example of this calculation using 
event number 8, as listed in Table  2. The best-fitting 
spectral ratios obtained by MCMC calculations are 
then compared with results derived from probability 
density functions assuming F- and normal distribu-
tions. As shown in Fig. 2g, fitted curves obtained from 
both types of distributions show good agreement with 
the synthetic records. The sample distribution rendered 
in three-dimensional (3D) space exhibits a spheroid 
shape with maximum values at the center indicating the 
trade-offs between parameters. Histograms of the sam-
pling distribution exhibit the posterior probability dis-
tribution. The unimodal distribution of the histogram 
on the F-distribution in Fig.  2e indicates the uniform 
posterior probability distribution, which is better than 
the multimodal sampling distribution of the histogram 
for the normal distribution. A multimodal sampling 

distribution gives the calculation results including mul-
tiple possible results making it difficult to interpret.

Additional file  1: Fig. S1 shows all estimates of the 
three seismic parameters, seismic moment, fc1 , and fc2 , 
with synthetic data. (The subscripts 1 and 2 indicate 
the larger and smaller earthquake, respectively.) The 
F-distribution input give source parameter means of 
32.60 for moment ratio, 1.30 Hz for fc1 , and 4.12 Hz for 
fc2. Standard deviations associated with these param-
eters are 5.8, 0.19, and 0.33, respectively. The normal 
distribution gave source parameter means of 32.56 
for moment ratio, 1.31 Hz for fc1 , and 4.13 Hz for fc2. 
Standard deviations associated with these values are 
6.8, 0.21, and 0.35, respectively. The mean of the esti-
mated parameters show good agreement with input 
parameters (moment ratio of 31.6, fc1 = 1.3 Hz, and fc2 
= 4.1 Hz) for both distributions. While corner frequen-
cies show small variation, the seismic moments exhibit 
relatively larger variance. The variation of estimates 
associated with the normal distribution also exceeds 

Table 2  (a) Estimated parameters for the first ten events in the synthetic data assuming a F-distribution. Rows list (from left to right) 
event number, estimated moment ratio, estimated corner frequency of the large earthquake (Hz), the estimated corner frequency of 
the small earthquake (Hz), stress drop estimated for a large earthquake (MPa), and the stress drop estimated for a small earthquake 
event (MPa). Thin characters indicates the selected event presented in Fig. 2. (b) Estimated parameters for synthetic data assuming a 
normal distribution

Rows list (from left to right) event number, estimated moment ratio, estimated corner frequency of the large earthquake (Hz), the estimated corner frequency of 
the small earthquake (Hz), stress drop estimated for a large earthquake (MPa), and the stress drop estimated for a small earthquake event (MPa). Bold indicates the 
selected event presented in Fig. 2

Event num Mo ratio fc1 fc2 Stress drop1 Stress drop2

1 35.7 1.2 4.1 0.7 0.8
2 26.8 1.4 4.2 1.3 1.2
3 33.0 1.2 3.8 0.7 0.7
4 32.0 1.4 4.3 1.1 1.1
5 24.2 1.6 4.4 1.7 1.5
6 36.3 1.2 4.0 0.7 0.8
7 28.7 1.4 4.3 1.2 1.1
8 30.4 1.3 4.2 1.0 1.0

9 38.4 1.1 3.7 0.5 0.6
10 29.6 1.4 4.3 1.1 1.1

(b)
Event num Mo ratio fc1 fc2 Stress drop1 Stress drop2

1 34.8 1.2 4.0 0.7 0.8
2 25.2 1.5 4.2 1.4 1.3
3 28.2 1.4 4.2 1.2 1.1
4 33.4 1.3 4.3 1.0 1.0
5 23.5 1.6 4.4 1.9 1.6
6 35.7 1.2 3.9 0.7 0.7
7 28.6 1.4 4.1 1.2 1.1
8 29.3 1.4 4.3 1.2 1.2

9 38.0 1.1 3.8 0.6 0.6
10 34.8 1.2 4.0 0.7 0.8
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that associated with the F-distribution. The estimated 
source parameters, Mo and fc , are converted into stress 
drops by using Eq. (1). Since we fix the seismic moment 
value of the larger event, the smaller seismic moment 
is indirectly estimated from the moment ratio and the 
larger moment. Figure  2h, i shows the stress drops 
estimated from the selected source parameters. The 
estimates for large earthquakes range from 0.5  MPa 
to 1.7 MPa for the F-distribution and from 0.6 MPa to 
1.9  MPa for the normal distribution. The results show 
good agreement with the given stress drop value of 
0.66  MPa. Stress drop estimates for small earthquakes 
exhibit similar variances as for the larger earthquakes. 
Comparison of stress drop estimates obtained with 
the F- and normal distributions show no significant 
differences in their values. The size of the error bars, 
which reflect the extent of the sampling distribution, is 
slightly larger for the normal distribution results. Fig-
ure 3 shows histograms for stress drops estimated using 
the F- and normal distribution. These indicate poste-
rior distribution for the stress drop. Figure 3b shows a 
multimodality of the stress drop with normal distribu-
tion that may include larger uncertainties on the stress 
drop while Fig. 3a shows a unimodal distribution. These 
characteristics of the stress drop distribution reflect the 
sampling distributions in Fig. 2d–f.

Table 3 lists observed data parameters. Figure 4g shows 
an example of a spectral ratio from the cluster. Similar to 
calculations based on synthetic spectral ratios, best-fit 
curves obtained with F- and normal distributions show 
good agreement with observed spectral ratios. How-
ever, the sampling distributions produced by the two 
different probability density functions exhibits different 
shapes (Fig. 4a–f). The best sampling point (the highest 

likelihood value) occur in the center of the sample for the 
F-distribution and at the edge of the sample for the nor-
mal distribution. The shape of the sampling distribution 
derived from a normal distribution is also coarser than 
that derived from the F-distribution. Histograms show 
multimodal distribution for the sampling based on the 
normal distribution while histograms for the F-distribu-
tion show a unimodal shape. All best-fit curves in a clus-
ter show good agreement with theoretical spectral ratios 
for both types of input probability density function, but 
their sampling distributions are different.

Figure  4h, i shows stress drops estimates for a 95% 
confidence interval obtained from variation in sampling. 
The majority of the stress drops range from 0 to 1 MPa 
in both probability density functions. Because all spec-
tral ratios in the cluster refer to the common large event, 
stress drops for large events in the cluster should have 
similar values. Red circles in Fig.  4h, i indicating stress 
drops estimated for large events show variation among 
event pairs. Some event pairs show unusually large stress 
drops (> 100  MPa) relative to other event pairs. Stress 
drop estimates based on a normal distribution input 
exhibit more significant variation and errors than those 
based on F-distributions.

Discussion
Probability density functions in a Bayesian framework
When used as input functions for the methods described 
above, an F-distribution gives different results from a 
normal distribution. Variation in the sampling distribu-
tion relates to uncertainties estimated from the 95% con-
fidence interval. Confidence intervals in Fig. 4h, i indicate 
a large estimation error in results based on normal distri-
bution assumptions. The distorted and coarse shape of the 

Fig. 3  Histogram of stress drop estimates of a large earthquake with synthetic data a assuming an F-distribution and b normal distribution
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Table 3  (a) Estimated parameters for observational data assuming a F-distribution. From left to right, rows list event number, 
estimated moment ratio, corner frequency (Hz), stress drop estimated for a large earthquake (MPa), and the stress drop of a small 
earthquake (MPa). Events with thin characters mean that the event is not selected. (b) The estimated parameters for observational data 
assuming a normal distribution

From left to right, rows list event number, estimated moment ratio, corner frequency (Hz), stress drop estimated for a large earthquake (MPa), and the stress drop of a 
small earthquake (MPa). Events with bold mean that the event is not selected

Event num Moment ratio Fc1 Fc2 Stress drop1 Stress drop2

1 325.3 0.3 1.4 0.02 0.003

2 24.4 8.3 8.6 241.3 11.1

3 1.0 3.5 3.4 18.4 16.4

4 27.7 1.2 1.9 0.7 0.1
5 28.4 1.1 2.0 0.6 0.1
6 70.5 0.9 2.1 0.3 0.1
7 44.1 1.0 2.4 0.5 0.1
8 21.7 1.0 1.5 0.4 0.1
9 2.8 3.6 3.4 19.7 5.9

10 29.8 0.7 1.8 0.1 0.1
11 31.4 0.7 1.8 0.1 0.1
12 24.2 1.1 2.1 0.6 0.2

13 43.4 0.8 1.6 0.3 0.04
14 74.7 0.9 2.1 0.3 0.1
15 20.9 8.8 14.0 290.7 56.0

16 21.0 0.8 1.9 0.2 0.1
17 21.2 13.4 18.6 1030.2 129.8

18 14.4 0.9 1.9 0.3 0.2
19 42.6 6.2 8.0 101.3 5.2

20 78.6 1.6 3.2 1.8 0.2

(b)
Moment ratio fc1 fc2 Stress drop1 Stress drop2

1 28.8 3.7 4.5 22.0 1.3
2 24.6 5.7 5.8 78.4 3.5
3 0.9 4.3 3.9 33.0 27.3
4 15.6 3.7 4.3 21.0 2.2
5 25.9 1.1 1.8 0.5 0.1
6 53.1 0.9 2.0 0.3 0.1
7 43.5 0.9 2.1 0.4 0.1
8 12.4 2.6 3.2 7.7 1.1
9 2.4 4.9 4.1 49.2 12.4
10 23.1 0.7 1.6 0.1 0.1
11 26.4 0.6 1.5 0.1 0.1
12 32.8 0.9 2.0 0.3 0.1
13 16.7 5.1 6.4 56.1 6.6
14 82.4 0.8 1.9 0.2 0.03
15 50.8 1.1 2.3 0.5 0.1
16 14.8 0.9 1.8 0.3 0.2
17 20.3 5.6 6.8 76.6 6.6
18 11.0 1.0 1.9 0.4 0.3
19 74.9 2.0 3.6 3.3 0.3
20 92.0 1.1 2.4 0.6 0.1
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sampling based on normal distribution assumptions may 
arises from an insufficient number of iterations generat-
ing unstable results. We therefore increase the number of 
iterations from 200,000 to 400,000 and run the MCMC 
steps again (Fig. 5). The characteristics of the sampling dis-
tribution, stress drop estimates, and errors for the 400,000 
iteration runs indicate similar tendencies to the results 
obtained from the 200,000 iterations runs. Thus, calcula-
tions based on F-distribution assumptions gave denser 
sampling distribution relative to those based on normal 
distribution assumptions. Several best parameters appear 
within tail areas of the sampling distribution for the calcu-
lation based on normal distribution assumptions.

F-distribution assumptions are appropriate for the 
spectral ratio data and appear to perform robustly 
when the shape of spectra is disturbed from its ideal 
form. When we use an F-distribution to interpret the 
observed spectral ratio, the log-likelihood function is 
approximated by −|x −m| where x is the logarithm of the 
observed spectral ratio and m is the logarithm of the the-
oretical spectral ratio. For a normal distribution, the log-
likelihood function is proportional to −(x −m)2 and thus 
becomes more sensitive to outliers. Along with charac-
teristics of a sampling distribution and the error of the 
estimated stress drops, these factors make F-distribution 

Fig. 4  Seismic parameters estimated from observational data subjected to 200,000 iterations of MCMC analysis. a Sampling distribution projected 
onto a 2D plane. Relationship between moment ratio and fc1 , b fc1 and fc2 , and c moment ratio and fc2 . Dark blue areas indicate results assuming an 
F-distribution, and yellow areas indicate results assuming a normal distribution. Cyan and orange dots indicate the best point of the calculation, 
respectively. d Histogram of the sampling in fc1 , e fc2 , and f moment ratio. g Spectral ratios of the 7th event in Table 1. Gray, black, and red curves, 
respectively, indicate spectral ratio for each seismic station, average of all spectral ratios, and the theoretical spectral ratio based on the maximum 
likelihood value. h Estimated stress drops for 20 events from a cluster assuming an F-distribution. Red circles indicate the results obtained from large 
earthquakes, and blue triangles indicate results obtained from small earthquakes. The thin bars indicate 95% confidence interval obtained from the 
variation of the accepted sampling. i Estimated stress drops for 20 events from a cluster assuming a normal distribution. Red circles indicate results 
obtained from large earthquakes, and blue triangles indicate results obtained from small earthquakes
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Fig. 5  Source parameters calculated from observational data subjected to 400,000 iterations of MCMC analysis. a Sampling distribution projected 
onto a 2D plane. Relationships between moment ratio and fc1 , b fc1 and fc2 , and c moment ratio and fc2 . The dark blue areas indicate results assuming 
an F-distribution, and the yellow areas indicate results assuming a normal distribution. Cyan and orange circle indicate the highest likelihood values 
from the F- and normal distribution calculations, respectively. d Histogram of the sampling in fc1 , e fc2 , and f moment ratio. g Spectral ratios of the 
7th event in Table 1. Gray, black, and red curves, respectively, indicate spectral ratios for each seismic station, an average of all spectral ratios, and the 
theoretical spectral ratio according to the highest likelihood values. h Estimated stress drops for 20 events in a cluster assuming an F-distribution. 
Red circles indicate results obtained from large earthquakes, and blue triangles indicate results obtained from the smaller earthquake. The thin bars 
indicate a 95% confidence interval obtained from the variation of the accepted sampling. i Estimated stress drops assuming a normal distribution. 
Red circles indicate results obtained from large earthquakes, and blue triangles indicate results obtained from smaller earthquakes.

Fig. 6.  2D histogram based on sampling distribution. Color scales indicate the density of the sample. Pink circles indicate the highest likelihood 
values from the F-distribution. The value displayed on each panel indicates the correlation coefficient
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assumptions more suitable than normal distribution 
assumptions for the methods under consideration.

Calculations with observational data assuming the 
two different types of probability density functions 
gave different sampling distributions and histograms 
after 400,000 iterations, whereas results from synthetic 
data show only small differences. Differences in results 
between observational and synthetic data may arise from 
several sources. First, synthetic data in this study assume 
that events occurred at identical locations, whereas 
observed events occurred at similar but slightly differ-
ent locations. Secondly, observed waves, including the 
coda part of the waveform, record anisotropic radia-
tion patterns and directivity effects. Thirdly, variations 
in the amplitude of the spectral ratio for each station 
(gray curve in Figs.  2g and   5g) differ for synthetic and 
observed data. Since we use the raw spectral record of all 
stations instead of smoothed, stacked data, the amplitude 
and shape of the original data will contribute to variation 
in the results.

Figure  6 shows the two-dimensional (2D) histogram 
indicating a marginal distribution (e.g., Supino et  al. 
2019). While Fig. 6 exhibits dense sampling in the central 
part of the distribution, multiple peaks appear in the high 
density sampling. It is interesting to note that the posi-
tion of the peak sampling density is not the same as the 
position of the highest likelihood. This arises from differ-
ences between the sampling density in different dimen-
sions as a dense sampling region in 3D space may not 
transpose when integrated into 2D space.

Trade‑offs among parameters
Sampling distributions obtained from all 100 synthetic 
spectral ratios and most of the observed spectral ratios 
show similar relationships among parameters (Fig.  2 
a–c). The sampling distributions for both fc1 and Mo , and 
fc2 and Mo show negative correlations, while fc1 and fc2 
show a positive correlation. These relations indicate the 
trade-offs among parameters. The term fc1 exhibits a 
lesser degree of variation in its distributional range rela-
tive to that of fc2 . Similar to relations reported by previ-
ous studies, the spectrum covering the higher frequency 
range is less stable than that covering the lower frequency 
range. This high frequency disturbance arises from high-
frequency radiation of smaller magnitude events, obser-
vation noise, and tremor-like noise. This contributes to 
larger estimation errors for corner frequency param-
eter fc2 relative to that for fc1 . The seismic moment also 
shows a relatively wide distribution.

Trade-offs between source parameters also influence 
the stress drop. Figure 7a shows the sampling distribution 
for the stress drop converted from a sampling of source 
parameters. The sampling distributions for the stress 
drop derived from synthetic data show a strong positive 
relationship between large and small earthquakes. Obser-
vational data also show a similarly strong positive corre-
lation between samples of two stress drops (Fig.  7b). In 
the case of observational data, the stress drop of smaller 
earthquakes shows smaller values than that of larger 
earthquakes. In this study, we set M01 as a known value 
and indirectly estimate M02 from MR . When we calculate 

Fig. 7  Sampling distribution of stress drop with a synthetic data and b observational data (7th event in Table 1). The horizontal axis indicates stress 
drop estimated from large earthquakes, and the vertical axis indicates stress drop estimated from small earthquakes
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the stress drop from the spectral ratio, the stress drop of 
the larger event, �σ1 , is proportional to M01f

3
c1 and the 

stress drop of the smaller event, �σ2 , is proportional to 
(M01/MR)f

3
c2 . This study uses only one large event, thus 

M01 is a constant. The pronounced trends of MR ’s inverse 
proportionality to fc1 , and fc1 ’s proportionality to fc2 
(Fig.  2a) indicate that �σ2 ’s estimation quality exhibits 
larger estimation bias than that of �σ1 and depends on 
both MR and fc1.

Stress drop estimates
Some seismic events in our study exhibit unusually large 
stress drops even after a sufficient number of iterations. 
Because we use a single large event to calculate the spec-
tral ratio with different small events, the stress drop 
estimates for larger earthquakes should give similar val-
ues for event pairs. The raw spectral ratios with unusu-
ally large stress drop values, however, do not exhibit 
theoretical stair-like spectral ratios. In spite of the care 
taken, data selection sometimes included disordered 
waveforms. Among the irregular shapes observed, one 
consists of an almost flat plateau across the entire fre-
quency range (Fig.  8a), while another of many ups and 
downs (Fig.  8b, c). Previous research with conventional 
grid search analysis has also reported similar problems 
wherein irregularly shaped spectral ratios influence the 
quality of stress drop estimates (Prieto 2007; Uchide and 
Imanishi 2016; Yoshimitsu et al. 2019).

As shown in Additional file  1: Fig S2, distorted sam-
pling distributions appear in association with irregu-
lar stress drops. To remove the results with irregularly 
shaped spectral ratios and irregular stress drops, we 
evaluate the shape of the sampling distribution. Calcu-
lations assuming an F-distribution give a relatively tight, 
unimodal histogram, whereas irregular stress drop events 
give a more sparsely sampled, multimodal histogram. 
As described in the trade-off section, sampling distri-
butions for typical stress drop events exhibit a negative 

correlation between fc1 and seismic moment, positive 
correlation between fc1 and fc2 , and negative correlation 
between seismic moment and fc2 for synthetic spectral 
ratios. Sampling distributions with contrasting correla-
tion patterns or distorted shapes, give estimated stress 
drops with irregular values. Thus, the correlation pat-
terns in the sampling distribution can help distinguish 
irregular stress drop events.

We assume that correlations in results derived from 
synthetic data represent ideal trends and examine the 
agreement of the positive or negative trend in sampling 
distribution among each parameter pair in the observed 
data. Following Supino et al. (2019), we calculate corre-
lation coefficients of the sampling with two parameters 
shown in Fig.  6. We select events that adhered to the 
correlation trend described above and which gave high 
correlation (> 0.5) coefficients. Figure 5a–c shows obser-
vational data filtered according to these criteria gives 
sampling trends similar to those derived from synthetic 
results. Figure  9 shows cluster stress drop estimates 
after using this selection process. Exclusion of irregular 

Fig. 8  Example of spectral ratios. a Spectral ratio removed according to selection criteria. b, c Spectral ratios show unusually large stress drop

Fig. 9  Stress drops within an earthquake cluster after event selection. 
Red circles indicate the results obtained from large earthquakes, and 
blue triangles indicate results obtained from smaller earthquakes. The 
original figure before the event selection is Fig. 5h



Page 15 of 16Yoshimitsu et al. Earth, Planets and Space           (2023) 75:33 	

sampling distribution yields stress drop estimates for 
large events that, for most cases, vary almost within one 
order. The relatively small size of this parameter demon-
strates that these steps can consistently achieve precise 
results.

Comparison of stress drop estimates with the F-dis-
tribution in Fig.  5h and   9 demonstrates the effects of 
this selection strategy. Very high or low estimates disap-
peared after selection. We conclude that probability den-
sity function selection influences both calculation results 
and posterior evaluation of event quality. As noted above, 
irregular stress drops in Fig.  5h give irregularly shaped 
spectral ratios. Tables  1 and 3 show the selected/unse-
lected events list. These document the absence of tem-
poral or spatial characteristics for selected events. Given 
the use of events occurring in similar locations there may 
relate to differences in the individual source processes 
instead of the path effect.

Concluding remarks
This study uses an F-distribution as a probability den-
sity function for MCMC calculation of seismic source 
parameters. The F-distribution is well-suited for data 
that take the form of ratios. The study evaluates sam-
pling distributions and obtains source parameters to 
find that the F-distribution generates more accurate 
results than a normal distribution. Using the sampling 
distribution obtained from MCMC iterations, we eval-
uate trade-offs between estimated source parameters. 
Most event pairs in the cluster show similar sampling 
distribution trends if the form of their spectral ratio 
resembles that estimated from theoretical inputs. The 
correlation coefficient of the sampling pattern permits 
identification and exclusion of results derived from the 
irregularly shaped spectral ratios. Estimate quality of 
source parameters improves with a number of itera-
tions. Calculations using a large number of iterations 
and event selection based on the sampling trend give 
stress drop estimates with a relatively small degree of 
variation in a cluster.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40623-​023-​01770-2.

Additional file 1: Figure S1. Estimates of seismic parameters calculate 
from synthetic spectral ratios, assuming (a) an F-distribution and (b) a nor-
mal distribution. Top panels indicate the result of seismic moment, middle 
panels indicate the result of fc1 , and the bottom panels indicate the 
result of fc2 . Figure S2. Sampling distribution of project onto a 2D plane 
with irregular spectral shape. (a), (b), and (c) represent the sampling distri-
butions obtained from the event in Fig. 8(a). (d), (e), and (f ) are obtained 
from the event in Fig. 8(b). (g), (h), and (i) are obtained from the event in 
Fig. 8(c). (a), (d), and (g) indicate the relationships between moment ratio 
and fc1 . (b), (e), and (h) indicate the relationships between fc1 and fc2 . 

(c), (f ), and (i) indicate the relationship between moment ratio and fc2 . 
Figure S3. Stress drops within an earthquake cluster after event selection. 
Red circles indicate the results obtained from large earthquakes, and blue 
triangles indicate results obtained from smaller earthquakes. Dark color 
obtained from the source model proposed by Brune (1970) and light color 
obtained from the source model proposed by Madariaga (1976).
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