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Abstract 

Recent laboratory friction experiments on large rock samples revealed that dynamic weakening, a remarkable reduc-
tion in the friction coefficient at elevated slip rates, occurs at lower slip rates in larger samples. There is a large differ-
ence between the sizes of natural faults and those in laboratory experiments. Therefore, it is crucial to understand the 
effect of size on rock friction. In the field of tribology, the interaction between frictional heating and thermoelastic 
effect has long been investigated. It was shown that higher slip rates than the critical value Vcr causes growth of 
temperature and normal stress heterogeneity (thermoelastic instability), and Vcr is proportional to the wavenumber 
of the heterogeneity. Severely heterogeneous normal stress may cause concentration of frictional power, thus locally 
activating dynamic weakening and leading to macroscopic weakening. Because a larger sample hosts a perturba-
tion of a smaller wavenumber, it is expected to weaken at a lower slip rate than a smaller sample. In this study, a new 
numerical method was developed for analysis of thermoelastic instability based on the definition of memory variables 
and numerical approximation to the integration kernel, for the 2-dimensional problem of a planar fault embedded in 
an infinite medium. This method was advantageous over the standard integral equation method in terms of numeri-
cal costs. Numerical solutions with the new method on sinusoidal perturbations in the normal stress were compared 
with previously derived steady-state solution and its stability for validation. The typical thermoelastic properties of 
gabbro yield Vcr in a range of experimentally adopted slip rates, indicating that the thermoelastic effect may play an 
important role in high-velocity friction experiments. Because the temperature rise and the resulting normal stress 
change smear out after the friction experiments, measurement of the temperature distribution in a sample during a 
friction experiment is important for further understanding the dynamic weakening and scale effect of rock friction.

Keywords Thermoelastic instability, Frictional heating, Friction experiment, Size effect, Simulation, Dynamic 
weakening

*Correspondence:
Hiroyuki Noda
noda.hiroyuki.7z@kyoto-u.ac.jp
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-023-01820-9&domain=pdf
http://orcid.org/0000-0001-7201-2578


Page 2 of 13Noda  Earth, Planets and Space  2023, 75(1):71

Graphical Abstract

Introduction
One of the most important discoveries in fault mechanics 
over the past quarter-century is the dynamic weakening 
of a fault at coseismic slip rates (Tsutsumi and Shimam-
oto 1997a). Frictional heating and associated temperature 
rise along a fault activate various weakening mechanisms 
(Di Toro et  al. 2011 and references therein). Although 
the thermal properties of host rocks have been shown 
to affect dynamic weakening (Yao et al. 2016), frictional 
power density (i.e., the product of slip rate V  and shear 
traction τ ) is the source of the temperature rise and a 
good proxy for the on-fault temperature at steady state 
(Di Toro et al. 2011).

Experiments which provided the basis for the notion of 
dynamic weakening were typically conducted on centime-
ter-scale samples. However, whether these can be extrapo-
lated to larger scales, such as a natural fault or kilometer- or 
meter-scale subfaults, remains unclear. Otsuki and Matsu-
kawa (2013) argued that the macroscopic friction coeffi-
cient of a spring–slider system decreases with the length 
of the slider owing to heterogeneous fault motion consist-
ing of small nucleation and dynamic rupture propagation. 
A similar effect was reported in the dynamic earthquake 
sequence simulations for a fault embedded in an elastic 
space incorporating dynamic weakening (e.g., Noda and 
Lapusta 2010; Noda et  al. 2011). In their simulation, the 
shear stress supported by the fault during an interseismic 
period was controlled by the coseismic friction strength.

Recent friction experiments on meter-scale rock 
samples by Yamashita et  al. (2015) revealed a sample 
size effect at the onset of dynamic weakening. A small 
rock sample with outer 4.0cm and inner 1.7cm diam-
eters shows dynamic weakening at a frictional power 
density of approximately 10−1MJm−2s−1 , whereas a 
large sample of 1.5m length and 0.1m width weakens 

at a smaller frictional power density of approximately 
10−2MJm−2s−1 . Yamashita et  al. (2015) explained this 
discrepancy by the concentration of frictional power due 
to heterogeneous normal stress σn , modeled on the basis 
of the measurements of shear stress heterogeneity and 
fault surface observations. In their model, fault gouge 
production increased the local σn , and dynamic weak-
ening reduced the gouge production rate. These effects 
were all local, and the development of the heterogeneity 
was due to prescribed parameters, such as the propor-
tion of the area of high σn to the nominal fault area. Thus, 
careful preparation of the fault surface might rule out 
size effects. In addition, the absence of such an effect in 
centimeter-scale samples remains unexplained.

In the field of tribology, interaction of frictional heat-
ing and thermal expansion has long been studied. Barber 
(1967; 1969) proposed positive feedback in heterogene-
ity in temperature T  and normal stress σn on the sliding 
surface through thermal expansion. Frictional heating 
increases T  and causes thermal expansion, resulting in a 
dynamic concentration of σn if conductive heat transfer is 
not efficient enough. This process is called thermoelastic 
instability. Dow and Burton (1972) looked for a separable 
form of perturbation with sinusoidal dependency along 
a frictional surface in a thermoelastic thin blade slid-
ing perpendicular to it on a substrate. They showed that 
there was a critical slip rate Vcr such that the perturba-
tion grows at higher slip rates V > Vcr . In the limit of an 
adiabatic substrate, Vcr is proportional to the wavenum-
ber of the perturbation. Burton (1980) showed a steady-
state amplitude of the normal stress perturbation, which 
diverges at V = Vcr . These previous findings may be rel-
evant to fault mechanics and the dynamic weakening at 
high slip rates, but rarely discussed in interpretation of 
rock friction experiments. Spontaneous concentration 
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of σn and thus frictional power due to the thermoelastic 
instability may lead to local activation of dynamic weak-
ening in laboratory rock friction experiments.

The aim of the present study was to investigate if the 
thermoelastic instability occurs under conditions of typi-
cal rock friction experiments, and if it explained the sam-
ple size effect. For this purpose, a simple 2-dimensional 
thermoelasticity problem is analyzed and evolution of a 
Fourier-mode perturbation is calculated. In the analy-
sis, an integral equation was solved numerically with a 
new efficient method developed using memory variables 
(Noda 2022). This new method of thermoelasticity can 
be implemented in future dynamic earthquake sequence 
simulations (e.g., Lapusta et al. 2000). Finally, we discuss 
the implications of the analyses on sample-size effect of 
friction experiments and on natural fault behavior.

Model setting
Fault planes are rough, anisotropic, and typically show 
lineations which are referred to as slickenlines (e.g., 
Renard et  al. 2006). The local height of the fault plane 
may correlate with the local σn (e.g., Schmittbuhl et  al. 
2006), and thus the distribution of σn may be idealized to 
be 1-dimensional. Estimation of the distribution of σn on 
the experimentally slid surfaces using pressure-sensitive 
sheets (Supplementary Fig.  5b in Yamashita et  al. 2015) 
also supports the correlation between σn and slickenlines. 
The geometry of the system is shown in Fig. 1. The fault 
lies normal to the y-axis at y = 0 , and the slip is in the z
-direction. The compressional normal stress on the fault 
at the initial state of a uniform temperature is denoted as 
σn0(x) . Frictional heating was treated as a planar concen-
trated heat source at y = 0.

For the sliding surfaces used in laboratory experiments, 
a significant lineation may be absent in the initial state. 
However, linear 3-dimensional thermoelasticity under 
the assumption of small deformation or negligible Péclet 
number can be treated with a spectral method using Fou-
rier transformation, and the idealization of the 2-dimen-
sional problem (Fig.  1) corresponds to the investigation 
of Fourier modes whose wavenumber vector is in the 
xy-plane. The analyses presented in this paper are on 
the evolution and stability of these modes and are thus 

useful in discussing the experimental sliding surfaces 
even before the development of slickenlines. The distri-
bution σn0 may have a length scale in the z-direction, and 
if a much longer slip than the length scale is considered, 
convective heat transport may become significant. In 
addition, high-stress patches may migrate relative to the 
host rocks (Ettles 1986). These effects were not included 
in the present model, as they may be of minor signifi-
cance after the development of slickenlines.

The system of governing equations for the 2-dimen-
sional, plane-strain uncoupled thermoelasticity con-
sists of the following equilibrium equations:

the following stress–strain relations,

and the Fourier’s law,

where σ is the component of the stress tensor positive in 
tension, u is the component of the displacement vector, t 
is the time, T  is the temperature change, � is the Lamé’s 
constant, µ is the shear modulus, α is the change in pres-
sure per change in temperature under fixed-displacement 
boundary condition, D is the diffusion coefficient of tem-
perature, C is the specific heat capacity, and ω is the heat 
source of frictional heating. In plane-strain problems, 
α = β/K  , where β and K  are volumetric thermal expan-
sion coefficient and bulk modulus, respectively. The side 
rocks between the fault are assumed to be identical, and 
thus the fault plane works as a rigid and adiabatic bound-
ary. Therefore, the present problem is identical to the 
limit of an adiabatic substrate of the problem analyzed by 
Dow and Burton (1972) and Burton (1980). They consid-
ered a thin blade treated as a plane-stress problem, which 
is mathematically analogous to a plane-strain problem 
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Fig. 1 Schematic diagram of the system analyzed in this study. 
Distribution of normal stress on a fault at y = 0 is indicated by colors
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with the only difference in the expression of α in terms of 
elastic moduli.

If the initial state is selected as a reference from 
which the displacement is measured, the compressional 
normal stress change on the fault is expressed as:

and the frictional heating is expressed as:

where q is the frictional power density which converts 
into heat, τ is the shear traction, V  is the slip rate, and f  is 
the friction coefficient. For typical rocks, f  is in the range 
of Byerlee’s law (Byerlee 1978) and does not vary much 
before the onset of dynamic weakening. V  may change 
spatially and temporally, but the long-term average was 
controlled in laboratory experiments. The focus of the 
present study is on the evolution of σn over the timescale 
of an entire experiment rather than individual stick–slip 
events so that f  and V  are assumed to be constant during 
fault slip.

Dow and Burton (1972) and Burton (1980) assumed a 
separable form of the temperature field having sinusoi-
dal dependency on x and exponential dependency on y 

(7)�σn(x, t) = −σyy(x, 0, t),

(8)ω = qδ(y), q = τV = (σn0 +�σn)fV ,

and t . In the present study, �σn was expressed in terms 
of spatio-temporal convolution of the frictional power 
density and Green’s function, and the full solution 

was calculated. This expression is useful in consider-
ing variable V  and f  and thus applicable to simulations 
of earthquake sequences. Xiao et  al. (2021) derived 
Green’s function for a concentrated line heat source:

where δ is Dirac’s delta function and H is the Heaviside 
step function. The relevant component of Green’s func-
tion for the normal stress change on fault σyy can be 
expressed as:

where G is the response in the compressional normal 
stress on the fault for the concentrated heat source and γ 
is a function of Poisson’s ratio ν,

(9)ω = δ(x)δ
(
y
)
H(t),

(10)
σyy(x, 0, t) = 2α

πγC

[
1
x2

−
(

1
x2

+ 1
2Dt

)
e−x2/4Dt

]
= −G(x, t),

 Using G , �σn is expressed with a spatio-temporal convo-
lution as follows:

Fourier transformation with respect to x,

leads to

where k denotes the angular wavenumber along the fault. 
The Fourier transforms of G , G̃ can be expressed analyti-
cally in a simple form as:

Equations (8), (14), and (15), and the assumptions of con-
stant f  and V  yield

If it is assumed that the fault slip starts at t = 0 , the 
expression of the Fourier-transformed normal stress 
change becomes:

Steady‑state solution
The integral equation Eq.  (16) has a steady-state solu-
tion �σ̃nss(k) . Substitution of �σ̃n(k , t) = �σ̃nss and 
definite integral

yields

where v is a nondimensionalized slip rate

The steady-state solution (Eq.  (19)) was previously 
reported as Eq. (11) in Burton (1980), the critical slip rate 
(Eq. (20)) is the limit of an adiabatic substrate of Eq. (10) 
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in Dow and Burton (1972). Equation  (19) indicates that 
for fixed k there are two different velocity regimes: “low 
velocity” ( v < 1 ) and “high velocity” ( v > 1 ). �σ̃nss has 
the same sign as σ̃n0 in the low-velocity regime, and the 
opposite sign in the high-velocity regime.

The exponential growth rate c of the separable per-
turbation by Dow and Burton (1972) is given by ( iβ in 
Eq. (20) in Burton (1980)):

Just note that there is a typological error in Eq.  (20) in 
Burton (1980). c is positive if v > 1 , which is a sufficient 
condition for the thermoelastic instability: the steady 
state in the high-velocity regime is unstable. If v < 1 and 
if the separable perturbation is dominant, then the nor-
mal stress perturbation approaches to the steady state 
scaled by its initial value. Then the amplitude of hetero-
geneity in the normal stress can be reduced by carefully 
preparing the initial sliding surface to be very flat in the 
low-velocity regime. It is noteworthy that the full solu-
tion is different from the separable perturbation as is 
evident if one compared ∂T/∂t just after onset of slip. 
In a later section, c is used to verify the newly developed 
numerical method.

Numerical methodology
In general, f  varies during fault motion, as well as V  and 
σn . If a characteristic value f ∗ is selected, the correspond-
ing V ∗

cr can be defined from Eq. (20). Equations (8), (14), 
(15), and nondimensionalization using V ∗

cr , σ̃n0 , and Dk2 
leads to

where η̃ = �σ̃n/σ̃n0 is the nondimensional Fourier-trans-
formed normal stress change caused by the thermoelastic 
effect, s = Dk2t is the nondimensional time, and ω̃ the 
nondimensional Fourier-transformed frictional power 
density:

This could be, in general, calculated every timestep from 
spatial distribution of the variables with the Fast Fourier 
Transform technique. Here the argument k was omitted 
because a focus was put on a single Fourier-mode pertur-
bation in the present study. The assumption of constant 
V  and f  and the natural selection of f∗ = f  yield

(21)cDB =
(
2v − 1

2 −
(
2v + 1

4

)1/2)
Dk2.
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σ̃n0f ∗V ∗
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.

(24)ω̃(s) = v
(
1+ η̃(s)

)
,

Note that the steady-state solution (Eq.  (19)) is nondi-
mensionalized to

The calculation of the convolution by a standard numeri-
cal integration requires the storage of history, which 
increases with time. To avoid this, Eq. (22) was approxi-
mately transformed into a system of ordinary differen-
tial equations by approximation of the integration kernel 
and definition of memory variables, which was proposed 
by Noda (2022) in the implementation of poroelastic 
rebound into a dynamic earthquake sequence simulation. 
If an approximation

is found, then Eq. (22) can be written as

where φi a memory variable, and its derivative is 
expressed as:

In this study, this is integrated in time using a second-
order exponential time-differencing method, assuming a 
piecewise constant source term (e.g., Noda and Lapusta 
2010). The detailed numerical algorithm is described in 
the Appendix.

A numerical approximation of the integration kernel 
(Eq. (27)) was obtained by solving the least-squares prob-
lem in the present study. Alternatively, it may be possible 
to construct an approximation by discretizing the inte-
gral in Laplace transform of erfc

(√
s
)
,

where p is the integration variable of the Laplace trans-
formation, and sc = 1/p corresponds to the characteristic 
decay time. The discretization of the integral in Eq. (30) 
yields an approximation of erfc

(√
s
)
 . However, in doing 

so, a definition of the collocation points and a quadrature 
rule is required, and the best choice is not clear. Equa-
tion  (30) was not used in this study. The least-squares 
fitting of Eq.  (27) eventually optimizes the collocation 
points sc = si and the coefficient ai for each decaying 
mode for the desired range of nondimensional time.
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Figure 2 shows the numerical approximation (Eq. (27)) 
obtained by a numerical solver of least-squares prob-
lems, scipy.optimize.leastsq, using up to 20 memory vari-
ables. 1000 data points were sampled from s = 10−6 to 
30 at grid points regularly spaced on a logarithmic scale. 
The solution search was performed with a constraint 
of 

∑n
i=1ai = 1 which guarantees equality in Eq.  (27) 

at s = 0 . With n = 20 , the difference between the two 
sides of Eq.  (27) is less than 10−7 (Fig.  2a). More analy-
ses of numerical costs and errors by comparison with a 
standard integral equation method are described in the 
Appendix.

Simulation results
Figure  3 shows simulation results with v ≤ 1 . The low-
velocity regime v < 1 corresponds to low V  , large k , and 
small samples because a small sample cannot accom-
modate heterogeneity of long wavelength. The change 
of normal stress heterogeneity due to the thermoelastic 
effect η̃ increases while dη̃/ds decreases (Fig.  3a), and 
it asymptotically approaches to the steady-state value 

v/(1− v) if v < 1 (Fig. 3b). The solution with v = 1 shows 
an almost linear increase with time. The characteristic 
nondimensional time of the decay to the steady state is 
apparently longer for larger v . At very low slip rate v ≪ 1 , 
η̃ is small and almost follows a limit of η̃ ≪ 1 . Equa-
tions (25) and (26) lead to

This is shown with a thick black line in Fig. 3b. The simu-
lation results demonstrate that the steady-state solution 
was stable in the low-velocity regime. In this regime, the 
heterogeneity in the normal stress during the friction 
experiments can be mitigated by reducing the initial het-
erogeneity σ̃n0 by, for example, carefully preparing the 
sliding surface.

In the high-velocity regime v > 1 , however, η̃ increases 
unlimitedly, dη̃/ds increases (Fig.  4a), and thus, the 
steady-state solution η̃ = v/(1− v) < 0 is not realized 
during the friction experiment as shown by Dow and 
Burton (1972). A semilogarithmic plot of the full ampli-
tude of the nondimensional normal stress heterogeneity 

(31)

η̃(s)
η̃ss

≈ 2
∫
s

0
erfc

(√
s − s

′
)
ds

′ = erf
(√

s
)
+ 2s erfc

(√
s
)
− 2

√
s

π
e−s .

Fig. 2 Numerical approximation to the integration kernel erfc(
√
s) (Eq. (27)). a The kernel and residual of the approximation. b Optimized 

parameters si and ai

Fig. 3 Simulation results for v ≤ 1. a The nondimensionalized Fourier-transformed normal stress change η̃  as a function of the nondimensional 
time s . b η̃  normalized by its steady-state value η̃ss as a function of the nondimensional time s . The thick black line shows the limit of small v 
(Eq. (31))
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(
σ̃n0 +�σ̃n

)
/σ̃n0 = η̃ + 1 (Fig.  4b) indicates that it 

increases almost exponentially with time. The growth 
of heterogeneity causes the concentration of frictional 
power and dynamic weakening or partial opening of the 
fault plane. These nonlinear effects are not included here 
and require further research to better compare the simu-
lation with experimental data and to constrain the behav-
ior of natural faults.

The growth rate relative to the steady-state solution 
(Eq. (26)) can be defined as:

This may be different from the theoretical prediction for 
the separable perturbation by Dow and Burton (1972) 
(Eq.  (21)). Figure  5 represents the nondimensionalized 
difference in the growth rates (c − cDB)/k

2D . It decays 
towards zero, indicating that the separable perturba-
tion becomes dominant after then initial run-in phase 
affected by the abrupt onset of sliding. Also, this asymp-
totic behavior support validity of the numerical solution.

(32)c = k2D dη̃/ds
η̃−η̃ss

.

Discussion
Scale effect in laboratory experiments
It was shown that Vcr (Eq.  (20)) defines the low- and 
high-velocity regimes in terms of thermoelastic effect 
(Dow and Burton 1972; Burton 1980). The interaction 
of frictional heating and the thermoelastic effect leads 
to instability in the high-velocity regime, which causes 
unlimited growth of the amplitude of normal stress 
heterogeneity, as long as the assumptions adopted 
here are valid. The resulting concentration of frictional 
power conceivably activates dynamic weakening and 
decreases spatially averaged frictional resistance. Vcr is 
proportional to the angular wavenumber 

∣∣k
∣∣ , and a large 

sample can host perturbation of a small 
∣∣k
∣∣ . Therefore, 

it is expected that a larger sample has a smaller Vcr and 
thus shows thermoelastic instability and associated 
weakening at a smaller V  . If the width of the sample is 
W  , the normal stress perturbation of the system has a 
minimum angular wavenumber of

Then the minimum Vcr of the sample is

Based on the simulation results (Figs. 3 and 4), the char-
acteristic time of the normal stress evolution tc may be 
defined as s = 1 when t = tc,

tc = c−1
DB is another candidate, but it diverges at v = 1 and 

thus has difficulty in comparison with experimental con-
ditions. The corresponding characteristic time for the 
perturbation of minimum angular wavenumber is then

(33)kmin = 2π
W .

(34)Vmin
cr = 2πγCD

αfW
.

(35)tc = 1
Dk2

.

(36)tmax
c = W 2

4π2D
.

Fig. 4 Simulation results for v ≥ 1. a The nondimensionalized Fourier-transformed normal stress change η̃  as a function of the nondimensional 
time s . b The nondimensionalized Fourier-transformed normal stress η̃ + 1 in a logarithmic scale as a function of the nondimensional time s

Fig. 5 Difference in the growth rate of the numerical solution 
(Eq. (32)) from the theoretical prediction for the separable 
perturbation (Eq. (20’)) found by Dow and Burton (1972)
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The thermoelastic properties of gabbro, which are 
often used in high-velocity friction experiments, are 
summarized in Table  1. The P-wave speed VP , S-wave 
speed VS , density ρ , thermal conductivity κ , and heat 
capacity per mass cp were obtained from Schön (2015) 
and the volumetric thermal expansion coefficient β was 
obtained from Robertson (1988). Using these param-
eters, Vmin

cr  and tmax
c  are expressed as follows:

where the Poisson’s ratio ν is given by:

The parameters listed in Table 1 and the friction coeffi-
cient in the range of Byerlee’s law (Byerlee 1978) f = 0.7 , 
yield

These formulae give, for example, Vmin
cr = 1.32cm/s 

and tmax
c = 2.91s for a sample of W = 1cm , and 

Vmin
cr = 1.32mm/s and tmax

c = 291s for a sample of 
W = 0.1m . These values drop within the frequently 
adopted range of laboratory friction experiments for sub-
seismic to seismic slip rates, implying the importance of 
the thermoelastic effect in those experiments.

The size effect discovered by Yamashita et  al. (2015) 
decreases the macroscopic frictional power at the 
dynamic weakening by about an order of magnitude 
when W  is increased from 1.15cm to 0.1m . At con-
stant normal stress and V  , the thermoelastic insta-
bility predicts an inverse proportionality between 
sample size and weakening speed. Because the data 
by Yamashita et  al. (2015) contain experiments at 

(37)Vmin
cr = 12π κ

fWβρV 2
S

1−ν
1+ν

,

(38)tmax
c = ρcpW

2

4π2κ
,

(39)ν = (VP/VS)
2−2

2
[
(VP/VS)

2−1
] .

(40)Vmin
cr = 1.32×10−4[m2/s]

W ,

(41)tmax
c = 2.91× 104

[
s/m2

]
×W 2.

different σ , it is replotted against V  for a more direct 
comparison (Fig. 6a and b). The data for the large sam-
ple ( W = 0.1m ) and small samples ( W = 1.15cm ) are 
plotted in Fig. 6a and b, respectively, together with the 
estimation of Vmin

cr  . For f  in Eq.  (37), the average fric-
tion coefficients for V < 2mm/s and V < 20mm/s were 
used for the large and small samples, respectively. In 
addition, Vmin

cr  was compared with that in the experi-
ments by Tsutsumi and Shimamoto (1997a), as shown 
in Fig.  6c. They used hollow-cylindrical samples of 
inner and outer diameters of 25 and 16  mm, respec-
tively, W = 4.5mm . f  in Eq.  (37) is estimated from 
average of friction coefficients in V < 0.1m/s . These 
comparisons indicate that Vmin

cr  reproduces the inverse 

Table 1 Physical properties of gabbro

* 1Schön (2015)
* 2Robertson (1988)

P-wave speed VP 6460  ms−1 *1

S-wave speed VS 3500  ms−1 *1

Density ρ 2991  kgm−3 *1

Volumetric thermal expansivity β 1.6 ×  10–5  K−1 *2

Thermal conductivity κ 2.63  Wm−1  K−1 *1

Heat capacity per mass cp 1.01  kJkg−1  K−1 *1

Fig. 6 Comparison of experimental data and predicted critical slip 
rate for the thermoelastic instability Vmin

cr  . “MG”, “MD”, and “G” indicate 
metagabbro, monzodiorite, and gabbro, respectively. The stress 
values represent the normal stress of the experiments. a Date for a 
large sample ( W = 0.1m ) from Yamashita et al. (2015). b Date for small 
samples ( W = 1.15cm ) from Yamashita et al. (2015). c Date for even 
smaller samples ( W = 4.5mm ) from Tsutsumi and Shimamoto (1997a)
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proportionality between the sample size and the slip 
rate of the onset of dynamic weakening but underesti-
mates it by about an order of magnitude. This may be 
due to nonlinear effects, such as partial opening that 
keeps local frictional power non-negative, or too much 
idealization to the infinite medium and neglect of effi-
cient thermal conduction in sample holders made of 
stainless steel. The importance of the finiteness of the 
system was pointed out and has been studied in tribol-
ogy (e.g., Lee and Barber 1993; Du et al. 1997). It is cru-
cial to conduct realistic thermoelastic analysis of the 
experimental system for rock friction for more detailed 
comparison. For example, the experiments by Yamash-
ita et  al. (2015) show a series of stick–slip events in 
which V  changes dynamically for orders of magnitude. 
The earthquake sequence simulation with the thermoe-
lastic effect is probably a powerful tool in modeling of 
friction experiments and in interpretation of experi-
mental results.

The present analysis of the evolution of Fourier-mode 
perturbation in the normal stress is applicable before 
various weakening mechanisms activate and decrease f  
locally where the normal stress σ and frictional power 
τV  concentrate. The condition for the onset of dynamic 
weakening was not directly inferred in the present anal-
ysis, because not only the heterogeneity, but also the 
uniform overall temperature rise on the sliding surface 
must be considered. If a sample of a friction experi-
ment were infinitely large and we could conduct an 
infinitely long experiment, then the temperature would 
unboundedly increase unless τV  rapidly decreased to 
zero. Typical studies on friction experiments report 
steady-state friction coefficients that depend on the 
thermal properties of the sample assembly, as demon-
strated by Yao et  al. (2006). A more detailed compari-
son accounting for thermal properties of the sample 
assembly (e.g., Tsutsumi and Shimamoto 1997b) and 
the experimental apparatus deserves future study.

Implication for natural fault behavior
Natural faults that host repeating earthquakes experience 
a vastly wide range of slip rates, from orders of magni-
tude below the plate convergence rate ( ∼ 1nm/s ) to the 
coseismic slip rate ( ∼ 1m/s ). Equation (20) indicates that 
the critical wavelength of the thermoelastic instability �cr 
also varies inversely proportional to the slip rate, V :

The corresponding characteristic time is

(42)�cr = 2πγCD
αfV

.

With the thermoelastic properties in Table  1 and 
f = 0.7 , this formula yields �cr = 1.32× 105m and 
tc = 4.59× 1015s ∼ 145Ma for V = 1nm/s , and 
�cr = 1.32× 10−4m and tc = 4.59× 10−3s for V = 1m/s . 
Note that thermoelastic instability takes place for nor-
mal stress perturbation of a longer wavelength than �cr . 
These numbers indicate that thermoelastic instability is 
not important when considering long-term processes, 
such as steady-state plate convergence, if the fault always 
creeps. It may become important during a seismic event 
or in acceleration processes towards the seismic slip rate.

Implementation of the thermoelastic effect to the 
analysis of fault motion may not be straightforward. The 
critical wavelength �cr must be resolved in a numerical 
simulation based on continuum mechanics, unless para-
metrization or coarse-grained fault constitutive laws are 
developed. In the simulation of a seismic event, a sub-
millimeter grid interval may be needed, which requires 
huge computational resources. In addition, the existence 
of pore water in the natural fault zone may cause signifi-
cant differences from the laboratory room-dried fric-
tion experiments. First, a change in σn causes a change 
in the pore pressure, scaled by Skempton’s coefficient 
(e.g., Skempton 1954), which diffuses out with time. This 
poroelastic effect effectively decreases f  in the undrained 
condition, and the effect of the subsequent fluid flow 
must be is considered. Second, frictional heating causes 
not only thermal expansion of rocks but also pore-pres-
sure build-up, called thermal pressurization (e.g., Sibson 
1973). The permeability of fault rocks varies by orders 
of magnitude depending on the type of host rock and 
degree of brittle deformation. Therefore, the dominance 
of the thermoelastic effect studied in this paper over the 
poroelastic effect is still unclear and requires further 
study.

Conclusion
Thermoelastic instability has long been investigated in 
the field of tribology, but rarely discussed in experimen-
tal studies in rock friction. Dow and Burton (1972) and 
Burton (1980) showed by looking for a separable form of 
perturbation that there is a critical slip rate Vcr for unlim-
ited growth of heterogeneity in the normal stress and that 
Vcr is proportional to the wavenumber of the heterogene-
ity. In order to investigate possibility of the thermoelastic 
instability during laboratory rock friction experiments 
and if it explained the sample size effect, a full solution 
for the interaction between the thermoelastic effect and 
frictional heating on a planar sliding surface in an infinite 
medium was numerically calculated in a framework of 

(43)tc =
ρcp�cr

2

4π2κ
.
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2-dimensional uncoupled thermoelasticity. The Fourier 
transformation along the sliding surface leads to a simple 
integral equation of the amplitude of the Fourier-trans-
formed normal stress σ̃ for each angular wavenumber k . 
The integral equation can be solved efficiently by approx-
imating the integration kernel to the summation of expo-
nential decays and by defining memory variables. The 
new algorithm is suitable for future implementation into 
earthquake sequence simulations. The numerical solu-
tion reveals that the steady-state solution is stable at low 
slip rates v < 1 , and σ̃ grows in an unlimited manner at 
high slip rates v > 1 , consistently with the previous stud-
ies. A severely heterogeneous normal stress should cause 
a concentration of frictional power, local activation of 
dynamic weakening mechanisms, and thus macroscopic 
weakening of the sliding surface. A larger sample hosts 
heterogeneity with a smaller wavenumber, and thus, a 
smaller Vcr . Therefore, it is expected that a larger sample 
will show dynamic weakening at a smaller slip rate, as 
observed in the laboratory friction experiments. Estima-
tions of the critical slip rate and time scale of evolution 
of the heterogeneity based on typical thermoelastic prop-
erties of gabbro drops within a range of typical experi-
mental conditions and reproduce the tendency of inverse 
proportionality between the sample size and the slip rate 
at the onset of dynamic weakening with underestimation 
of about an order of magnitude. This underestimation is 
possibly because of partial opening of the sliding surface 
or too much idealization to an infinite medium. It has 
been shown that thermoelastic effect probably plays an 
important role during laboratory friction experiments. 
Because the thermoelastic effect diffuses out after the 
friction experiment, measurement of the temperature 
distribution in samples during friction experiments is 
important for further understanding the dynamic weak-
ening and scale effect of rock friction.

Appendix: Evaluation of numerical methodology
The numerical method adopted in the present study was 
evaluated. For reference, Eq. (25) is solved with a stand-
ard integral equation method (IE), and numerical solu-
tions with the present method using memory variables 
(MV) are compared with those with IE in terms of the 
numerical error and computational time.

As the integration kernel in Eq.  (25), erfc
(√

s
)
 has a 

square-root singularity at s = 0 , it should be regularized 
by integration by parts for numerical accuracy as:

(44)η̃(s) = 2vF(s)+ 2v
∫ s
−∞η̃

(
s
′
)
F
(
s − s

′
)
ds

′
,

where F  is integral of erfc
(√

s
)
,

Discretization with a regular mesh of interval �s , linear 
interpolation between the grid points, and approxima-
tion of the integral by the midpoint rule leads to

where the numerical integration kernel K�i can be 
expressed as:

The numerical solution at s = m�s is then

This method is semi-analytic and second-order accurate. 
On the other hand, numerical integration requires prep-
aration of the integration kernel and the storage of his-
tory, which increases with the number of timesteps. For a 
long simulation such as an earthquake sequence simula-
tion, the temporal convolution must be truncated with an 
affordable length of the time window.

In the present study, these issues are resolved by 
approximating the integration kernel by the summation 
of exponential decays (Eq.  (27)) and the definition of 
the memory variables φi (Eq.  (28)). φi is integrated with 
time using a second-order exponential time-differenc-
ing method, assuming a piecewise constant source term 
based on a predictor–corrector approach (e.g., Noda and 
Lapusta 2010). Suppose that the variables at s = m�s are 
known; then, the integration of Eq.  (29) with a constant 
source term yields:

Superscript ∗ indicates that this is a first-order estimation 
of the solution. η̃ at s = (m+ 1)�s can be estimated as:

(45)
F(s) =

∫
s

0
erfc

(√
s
′
)
ds

′ = 1
2
erf

(√
s
)
+ s erfc

(√
s
)
−

√
s

π
e−s .

(46)

η̃(m�s)
2v

≈ F(m�s)+
∑

m−1
i=0

η̃((i+1)�s)−η̃(i�s)
�s

F((m− i − 1/2)�s)�s

= F(m�s)+
∑

m−1
i=1 Km−iη̃(i�s)+ F((1/2)�s)η̃(m�s),

(47)K�i = F((�i + 1/2)�s)− F((�i − 1/2)�s).

(48)
η̃(m�s) =

[
F(m�s)+

∑
m−1
i=1 Km−iηi

]
/

[
1
2v

− F((1/2)�s)

]
.

(49)

φ∗
i ((m+ 1/2)�s) =φi (m�s) exp

(
−
�s

2si

)

+ 2v(1+ η̃(m�s))si

(
1− exp

(
−
�s

2si

))
,

(50)

φ∗
i ((m+ 1)�s) =φi (m�s) exp

(
−
�s

2si

)

+ 2v(1+ η̃(m�s))si

(
1− exp

(
−
�s

2si

))
.

(51)η̃∗((m+ 1)�s) =
∑n

i=1aiφ
∗
i ((m+ 1)�s).
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A second-order accurate estimation can be obtained by 
integrating Eq. (29) in the latter half of this time step by:

and

The variables with ∗∗ were adopted as the numerical 
solution.

Convergence analyses were performed to evaluate the 
accuracy of the proposed method and to select a numeri-
cal parameter �s . The cases with v = 0.1 , 1 , and 10 are 
analyzed, and solutions at s = 1 are compared, which is in 
the middle of the decay to the steady state in stable cases. 
Values of �s from 1 to 2−22 were tested, and the solution 
with the integral equation method with �s = 2−23 was 
used as the reference solution from which the numerical 
error was defined.

Figure 7a shows the relative numerical errors for s = 1 . 
The solid symbols represent the IE, showing second-
order convergence. The numerical error is larger for 
larger v . With v = 1 �s = 2−3 , the solution shows grow-
ing oscillation so that the numerical error is above the 
range of the vertical axis. The open symbols represent the 
solution with MV, which yields a numerical error compa-
rable to IE for relatively large �s . With decreasing �s , the 
numerical error with MV decreases to �s2 as expected 
from the second-order accuracy of the integration 
scheme, but it stops decreasing at approximately 10−8 . 
This is the numerical error caused by the approximation 
of the integration kernel (Eq. (27)).

(52)

φ∗∗
i ((m+ 1)�s) =φ∗

i ((m+ 1/2)�s) exp

(
−
�s

2si

)

+ 2v(1+ η̃∗((m+ 1)�s))si

(
1− exp

(
−
�s

2si

))
,

(53)η̃∗∗((m+ 1)�s) =
∑n

i=1aiφ
∗∗
i ((m+ 1)�s).

The numerical error due to the approximation 
(Eq. (27)) in the long-term ( s ≫ 1 ) behavior can be evalu-
ated for low-velocity cases by comparing the analytic 
and numerical steady-state solutions. Equation  (28) at a 
steady state ( d/ds = 0 ) yields

and Eq. (28) leads to

The nondimensionalized steady-state solution (Eq.  (26)) 
indicates that 

∑n
i=12aisi ≈ 1 , and the present approxima-

tion (Fig. 2) yields:

The computational time is always shorter for MV than 
for IE as long as studied (Fig. 7b). MV yields a linear scal-
ing between the computational time and the number of 
time steps m unless m is so small that the overhead cost 
becomes significant. On the other hand, IE shows a scal-
ing of approximately m2 for large m . Therefore, MV is 
more advantageous for a simulation with a larger number 
of time steps.

In the simulations presented in the body of this paper, I 
choose �s = 10−4 and m = 105 indicated by dashed lines 
in Fig. 7a and b. The expected numerical error is approxi-
mately 10−8 for cases with low slip rates ( v < 1 ), and of 
the order of 10−5 for the case with the highest slip rate 
( v = 10 ). These error levels as well as errors in the steady-
state solutions (Eq.  (56)), are too small to affect the dis-
cussion in this study. MV saves computational time by 
approximately one order of magnitude relative to IE.

The accuracy of MV is comparable to that of the 
standard semi-analytic method (IE) if the numerical 

(54)φiss = 2vsi
(
1+ η̃ss

)
,

(55)η̃ss ≈
v
∑n

i=12aisi
1−v

∑n
i=12aisi

.

(56)
∑n

i=12aisi = 1+ 6.42× 10−7.

Fig. 7 Evaluation of the new numerical method developed in the present study. “IE” and “MV” indicate the integral equation method and 
the method using memory variables, respectively. a Relative error at s = 1 for v = 0.1 (blue), 1 (black), and 10 (red) for different timestep �s . b 
Computational time for different number of timesteps m
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approximation to the integration kernel is sufficient and 
requires a smaller amount of numerical costs than IE in 
terms of not only the computational time but also the 
memory requirement. In addition, the constraint of con-
stant �s can be easily removed for MV, whereas the prep-
aration of the numerical integration kernel K�i requires 
constant �s and the introduction of an adaptive timestep 
is not straightforward for IE. The focus of the present 
study was on the evolution of a single Fourier-mode per-
turbation; however, the new method developed here is 
presumably useful for the full simulation of fault motion, 
including a sequence of stick-slips and earthquakes (e.g., 
Lapusta et al. 2000).
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IE  Integral equation method
MV  Method using memory variables
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