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Abstract 

Large variations in the maximum earthquake magnitude ( Mmax ) have been observed among the world’s subduction 
zones. There is still no universal relationship between Mmax and a given subduction-zone parameter, such as plate age, 
plate dip angle, or plate velocity, which suggests that multiple parameters control Mmax . Here, we conduct exhaustive 
variable selections that are based on three evaluation criteria; leave-one-out cross-validation errors (LOOCVE), Akaike 
information criterion (AIC), and Bayesian information criterion (BIC) to determine the combination of subduction-
zone parameters that best explains Mmax . Multiple linear regression analyses are applied using 18 subduction-zone 
parameters as potential candidates for the explanatory variables of Mmax . The minimum BIC is obtained when five 
variables (trench sediment thickness, existence of an accretionary prism, upper-plate crustal thickness, bending radius 
of the subducting oceanic plate, and trench depth) are selected as explanatory variables; each variable contributes 
positively to Mmax . Minimum LOOCVE and AIC values are obtained when eight variables (the five parameters for BIC, 
plus the along-strike plate convergence rate, age of the subducting plate, and maximum depth of the subducting 
plate) are selected. Our selection of the trench sediment thickness and plate bending radius contributing to Mmax is 
consistent with previous studies. The results show that increasing upper-plate crustal thickness results in a large Mmax . 
In addition to smoothing the subducting-plate interface via subducted sediments, along-dip extension of the crustal 
area along the convergent plate boundary would be important for generating a large earthquake.
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Graphic Abstract
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Introduction
Large earthquakes (magnitude M ≥ 8 ) rarely occur, 
but are often detrimental to life and property. They 
have usually been observed along subduction zones 
and some continental-collision zones, with a signifi-
cant variation in the maximum earthquake magnitude 
( Mmax ) detected among the world’s subduction zones 
(Fig.  1); for example, the 1960 M9.5 Chile earthquake 
along the South-Central Chilean subduction zone is the 
largest recorded earthquake to date, whereas a M-7+ 
event has not been observed along the South Kermadec 

subduction zone. Seismologists generally assume that 
large earthquakes are associated with certain subduc-
tion settings, with numerous relationships between 
Mmax (or the Gutenberg–Richter b-values) and various 
parameters that characterize the tectonic features of 
subduction zones (hereafter referred to as “subduction-
zone parameters”) proposed (e.g., Wirth et  al. 2022; 
Marzocchi et al. 2016); for example, the age of the sub-
ducting plate (e.g. Ruff and Kanamori 1980; Nishikawa 
and Ide 2014), angle or curvature radius of the subduct-
ing plate (e.g., Ruff and Kanamori 1980; Bletery et  al. 
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Fig. 1 Map of the observed maximum earthquake magnitude, Mmax (unstandardized). The data is referred from SubMap 4.3 and includes the 169 
locations. The white lines indicate plate boundaries
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2016), seafloor sediment thickness at the subduction 
trench (e.g., Ruff 1989; Heuret et al. 2012; Scholl et al. 
2015; Brizzi et al. 2018), subducted sediment thickness 
(Seno 2017), fore-arc structures (e.g., Song and Simons 
2003; Wells et  al. 2003), upper-plate strain (e.g., Heu-
ret et  al. 2012), trench migration velocity (e.g., Schel-
lart and Rawlinson 2013), upper-plate motion (e.g., 
Scholz and Campos 1995), width of the subducting 
plate or trench length (Schellart and Rawlinson 2013; 
Brizzi et  al. 2018), and topographic roughness or sea-
floor smoothness along the subducting plate (e.g., 
Wang and Bilek 2014; Lallemand et  al. 2018) have all 
been analyzed to infer Mmax . Schellart and Rawlinson 
(2013) have investigated 24 physical parameters that 
characterize subduction zones, but were unable to find 
any parameters that had a large correlation with Mmax 
(correlation coefficient less than 0.5). Thus, there is still 
no consistent relationship between Mmax and these 
individual subduction-zone parameters, which suggests 
that multiple factors may be involved. Alternatively, 
observational errors in subduction zone parameters 
may make it difficult to relate such parameters to Mmax , 
and it is therefore necessary to select parameters with a 
low signal-to-noise ratio to correctly predict Mmax.

The ability to determine the key subduction-zone 
parameters that influence the occurrence of large earth-
quakes is limited by the ability to effectively derive a small 
number of essential elements from a desired phenom-
enon. An exhaustive variable selection procedure com-
bined with regression or discriminant analysis, which is 
a primitive machine-learning-based method, is a power-
ful approach to derive a small number of essential vari-
ables from complex processes (e.g., Kuwatani et al. 2014; 
Igarashi et  al. 2018; Ueki et  al. 2020; Itano et  al. 2020; 
Nakao et al. 2022). This method is suitable for determin-
ing a combination of subduction-zone parameters that 
can reasonably explain Mmax , and can be instrumental 
in gaining scientific insight into the origin of large earth-
quakes; however, this machine-learning approach has 
not been applied to derive a Mmax relationship to date. 
Variable selection is a reasonable approach for addressing 
the present problem for two key reasons. First, the sam-
ple locations for subduction-zone parameters are limited. 
For example, the observed subduction styles, including 
the velocity and shape of the subducting plate, exhibit 
much smaller variations than those simulated in labo-
ratory and numerical experiments (e.g., Schellart 2011; 
Nakao et al. 2016). Model selection with cross-validation 
would also be useful in enhancing the predictability of 
Mmax with limited observations. Second, the observed 
subduction-zone parameters, including the velocity and 
geometry of the subducting oceanic plate, contain large 
uncertainties, such that a model may be overfit due to 

these uncertainties if a variable selection approach is 
not employed. Therefore, we employ an exhaustive vari-
able selection approach in this study to infer which sub-
duction-zone parameters may explain local variations in 
Mmax.

Data and methods
Data
We investigate 18 types of subduction-zone parameters 
via regression analysis to determine the set of parameters 
that can effectively constrain Mmax . Subduction-zone 
parameters are sampled at 2-degree intervals following 
Heuret and Lallemand (2005), at which both Mmax and 
its explanatory variables are sampled. We incorporate 
present-day observations in our analysis, and therefore 
evaluate potential Mmax values under present-day tec-
tonic conditions.

The objective variable, Mmax , is taken from the SubMap 
4.3 database and is based on the rupture areas of large 
subduction earthquakes ( M ≥ 8 ) that occurred at depths 
less than 70  km during the 1900–2007 period (Heuret 
et  al. 2011), as well as the 2011 Tohoku-oki Earthquake 
(M9.1, Northeast Japan; Yagi and Fukahata 2011). In 
addition, we included known historical earthquakes, 
including the 1700 Cascadia earthquake (M9.0, North 
America; Satake et  al. 1996), the 1707 Hoei earthquake 
(M8.6, Southwest Japan; Fujiwara et  al. 2020), and the 
1833 Sumatra earthquake (M8.8, Indonesia; Zachariasen 
et al. 1999). The segmentation of Mmax is defined based 
on three criteria of Heuret et  al. (2011): (1) the rupture 
area inferred for M+8.0 earthquakes must be included 
in a single segment; (2) the transects with homogeneous 
activity in the seismogenic zone were grouped; and (3) 
the transects with homogeneous geometries in the seis-
mogenic zone were grouped.

The subduction-zone parameters that we investigate in 
relation to Mmax are listed in Table 1 and shown graphi-
cally in Fig.  2, with Mmax values obtained at 169 loca-
tions along subduction zones worldwide (Fig.  1). We 
mainly employed the subduction-zone parameters from 
the SubMap 4.3 database (e.g., Heuret and Lallemand 
2005) in our analysis. This data set lacks observations 
along some subduction zones (e.g., Mediterranean sub-
duction zones); therefore, we excluded all sample loca-
tions with at least two missing variables. We conducted 
leave-one-out cross validation, a method to enhance the 
model predictability for unknown samples, to minimize 
the effects of this omission. We employed a neighbor-
ing value at the locations with only one missing vari-
able. We consider that the effect to be small because the 
operation was applied to only 0.3% of the total data, and 
because the subduction-zone parameters generally vary 
continuously along a trench. Furthermore, we removed 
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the subduction-zone parameters that are dependent on 
Mmax by definition, such as the equivalent representative 
magnitude ( MMRR ; the earthquake magnitude calculated 

from MRR (moment release rate), where MRR is the 
integrated seismic moment during a century and along 
1000 km of the trench), from the regression analysis. The 

Table 1 Analyzed subduction-zone parameters in this study

aMean value
bStandard deviation

Symbol Explanation Unit mi a si b References

A Age of subducting plate Ma 67.28 42.29 Müller et al. (1997)

as Dip angle of subducting plate degree 30.21 10.75 Heuret and Lallemand (2005)

CMP Dummy variable for compressive upper plate − 0.2189 0.1720 Heuret et al. (2011)

MT Dummy variable for accretionary prism − 0.4260 0.4960 Brizzi et al. (2018)

Rc Bending radius of subducting plate km 407.2 198.4 Heuret (2005)

RIW Intermediate-wavelength seafloor roughness m 586.9 428.0 Lallemand et al. (2018)

RLW Long-wavelength seafloor roughness m 445.1 398.9 Lallemand et al. (2018)

RSW Short-wavelength seafloor roughness m 139.5 70.83 Lallemand et al. (2018)

Tc Upper-plate crustal thickness km 31.12 16.24 Laske et al. (2013)

TNS Dummy variable for tensile upper plate − 0.2781 0.2020 Heuret et al. (2011)

Tsed Trench sediment thickness km 0.6568 0.7641 Straume et al. (2019)

vsn Convergence rate at trench (trench-normal) mm/y 57.16 30.67 Lallemand et al. (2008)

vss Convergence rate at trench (trench-parallel) mm/y 21.30 16.80 Lallemand et al. (2008)

vdn Upper-plate extension rate mm/y − 5.148 25.00 Lallemand et al. (2008)

vtn Trench retreat rate mm/y 8.189 28.10 Lallemand et al. (2008)

Zseis Maximum earthquake depth km 359.4 207.3 Heuret (2005)

Zt Trench depth km 5.787 1.787 Heuret (2005)

Ztomo Maximum slab depth km 639.9 308.7 Heuret and Lallemand (2005)

Mmax Maximum earthquake magnitude − 8.226 0.6094 Heuret et al. (2011)

Upper Plate Subducting PlateTrench
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Fig. 2 Schematic cross-section of a subduction-zone, with the analyzed subduction-zone parameters labeled. The stars indicate earthquake 
hypocenters. The gray, pink, yellow, and blue regions indicate lithospheric rocks, the upper crust, trench sediments, and seawater, respectively. See 
Table 1 for details of each parameter
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trench length (or slab width), which is a potential con-
trolling factor for Mmax (Schellart and Rawlinson 2013; 
Brizzi et al. 2018), is not used as an explanatory variable 
of Mmax in this study, because there can be a spurious 
correlation between Mmax and the trench length; more 
precisely, a smaller Mmax is generally expected to be 
observed within a limited timeframe as the trench length 
becomes smaller, even if the occurrence of a large earth-
quake is completely random.

The details of the 18 analyzed subduction-zone variables 
are as follows. A is the age of the subducting oceanic plate 
at the trench (Müller et al. 1997). as is the mean dip angle 
of the subducting oceanic plate over the 0–125 km depth 
range, which is measured using hypocenters of Engdahl 
et al. (1998) along Wadati–Benioff zones and plate bounda-
ries (Lallemand et al. 2005). CMP and TNS (compression 
and tension, respectively) are dummy parameters, which 
take 0 or 1, to express the strain state of the upper plate 
(“UPS” in Heuret et  al. 2011): (CMP,TNS) = (1, 0) for 
compressible upper plates, (0, 1) for tensile upper plates, 
and (0, 0) for neutral upper plates. The upper-plate stress 
is originally classified using an “ordinal scale” into three 
types based on the focal mechanisms of shallow earth-
quakes occurring at depths less than 40 km (Heuret et al. 
2011); the two dummy variables CMP and TNS are nec-
essary to express the ordinal scale in the regression mod-
eling. MT, or the margin type, is a dummy variable that 
expresses either the accretionary or erosional conditions 
of the upper-plate margin: MT = 1 for accretionary mar-
gins and 0 for erosional margins. Rc is the bending radius of 
the subducting oceanic plate, which is measured such that 
a circle of radius Rc within a trench-normal vertical cross 
section fits hypocenters of Engdahl et al. (1998) along the 
upper limit of the Wadati–Benioff zone over the 0–150 km 
depth range (Heuret 2005; Wu et al. 2008). RSW , RIW , and 
RLW are the seafloor roughnesses of the subducting oce-
anic plate for different bathymetric wavelengths, which 
have been defined by Lallemand et  al. (2018): 12–20  km 
(short wavelengths), 20–80 km (intermediate wavelengths), 
and 80–100 km (long wavelengths), respectively. Tc is the 
thickness of the margin of the upper plate, which is taken 
from CRUST 1.0 (Laske et al. 2013). Here, Tc is defined as 
the maximum thickness of the crust from the trench to the 
volcanic arc. Tsed is the sediment thickness at the trench, 
which is taken from GlobSed 3 (Straume et  al. 2019). vsn 
and vss are the trench-normal and -parallel components, 
respectively, of the convergence rate at the trench (Lalle-
mand et al. 2008). vdn is the trench-normal component of 
the extension rate of the upper-plate margin (Lallemand 
et al. 2008). vdn is positive for back-arc spreading and nega-
tive for back-arc shortening. vtn is the trench-normal com-
ponent of the trench migration rate, with a positive value 
for a retreating trench (oceanward motion) and negative 

value for an advancing trench (continent-ward motion). We 
referenced the absolute velocity vtn from the SB04 model 
(Steinberger et  al. 2004; Lallemand et  al. 2008), which is 
adjusted using the Indo-Atlantic hotspots as a reference. 
We referenced SB04 because the Indo-Atlantic hotspot ref-
erence frame better explains the geometry of subducting 
slabs beneath global subduction zones, which is sensitive 
to trench motion (Schellart 2011; Schellart and Rawlinson 
2013; Nakao et  al. 2022). We additionally applied the vtn 
based on the Pacific hotspot reference frame (HS3; Gripp 
and Gordon 2002) to confirm that the influence of the ref-
erence frame on the analytical results is small, as shown 
in Additional file 1: Fig. S7. Zseis is the maximum depth of 
deep earthquakes. Zt is the trench depth. Ztomo is the maxi-
mum depth of the subducting plate, which has been con-
strained from high-velocity seismic anomalies (Heuret and 
Lallemand 2005).

Regression analysis
We relate Mmax (objective variable) to the subduction-zone 
parameters (explanatory variables) via regression analysis. 
We evaluate the contribution of each explanatory variable 
to Mmax by standardizing the i-th explanatory variables at 
location j as follows:

where xij is an unstandardized explanatory variable (i.e., 
A, as, . . . ,Ztomo ), mi =

1
J

∑J
j=1 xij is the empirical mean 

value of variable i, si = { 1
J−1

∑J
j=1(xij −mi)

2}
1
2 is the 

empirical standard deviation of variable i, and J is the 
number of locations used for training. We randomly 
selected 95% of the 169 locations in Fig. 1 as training data 
for the regression analysis, with the remaining 5% used 
as test data to validate the optimal models (i.e., J = 161 ). 
Hereafter, a standardized variable is expressed using a 
prime symbol.

We assume that Mmax is a linear combination of the 
explanatory variables:

where f ′j (a; c) is the predicted maximum earthquake 
magnitude at location j, a = (a0, a1, . . . , aI ) is a vector of 
the coefficients, I is the number of explanatory variables 
( I = 18 ), c = (c1, . . . , cI ) is a vector of parameters that 
control whether x′ij is included in the regression analysis 
(i.e., ci = 0 or 1), and εj is Gaussian observation noise. A 
linear model is determined when c is fixed, with this lin-
ear model specified by the configuration of c . Although 
such a simple linear combination of subduction-zone 

(1)x′ij =
xij −mi

si
,

(2)f ′j (a; c) = a0 +

I
∑

i=1

ciaix
′
ij + εj ,
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parameters is often used to express Mmax (e.g., Brizzi 
et al. 2018), this assumption is not physically derived. We 
therefore conduct an error analysis to check the validity 
of this assumption.

The coefficients are estimated via a least-squares 
method for a given c , such that:

where M′
max,j is the maximum earthquake magnitude 

observed at location j.
Multicollinearity, which occurs when a pair of explana-

tory variables has a significantly large correlation coef-
ficient, causes problems during multiple regression 
analysis. For example, strong multicollinearity may pro-
hibit the selection of an explanatory variable, even if 
that explanatory variable has a significant relationship to 
the objective variable. We verified that each of the pairs 
among the 18 explanatory variables have variance infla-
tion factors (VIFs; an index for multicollinearity) below 
∼  3.5 (Additional file 1: Fig. S2), thereby indicating that 
multicollinearity should not largely impact our results 
(Hair et al. 2009).

Model selection
We assume that a limited number of subduction-zone 
parameters essentially characterizes Mmax , such that we 
can determine the best combination of the subduction-
zone parameters from our analysis. We select the opti-
mal models from 2I (= 262,144) cases by calculating 
three criteria, the leave-one-out cross-validation error 
(LOOCVE), Akaike information criterion (AIC) (Akaike 
1974), and Bayesian information criterion (BIC) (Schwarz 
1978), for each case.

Cross-validation is a method that divides the sam-
ples into test and training data sets, with the model 
performance iteratively evaluated based on the data 
sizes. Leave-one-out cross-validation is a special case 
whereby one sample is left as test data to evaluate 

(3)aLS = arg min
a

J
∑

j=1

(

f ′j (a; c)−M′
max,j

)2
,

a model that is generated using the other samples, 
with this procedure repeated based on the number of 
samples:

where f ′−j(c) is the maximum earthquake magnitude at 
the j-th location that was predicted by the model using 
the other locations. Cross-validation can enhance the 
generalized performance of a prediction model using a 
small number of observations, which is common in sub-
duction zones.

AIC and BIC are evaluation criteria that balance the 
misfit with the number of explanatory variables. We 
can avoid overfitting to noisy subduction-zone param-
eters by implementing either AIC or BIC. AIC and BIC 
are defined as

and

respectively, where L(c) is the maximum likelihood of the 
model. The term 

(

∑I
i=1 ci + 2

)

 in Eqs. (5) and (6) indi-
cates the number of parameters; the number of ai values 
used in model c, intercept a0 , and observation noise are 
all counted as parameters in these evaluations. L(c) is cal-
culated as

where σ̂ (c) is the maximum likelihood estimate of the 
error variance, which can be written as

(4)LOOCVE(c) =

√

√

√

√

1

J

J
∑

j=1

(

f ′−j(c)−M′
max,j

)2

,

(5)AIC(c) = −2 ln L(c)+ 2

(

I
∑

i=1

ci + 2

)

(6)BIC(c) = −2 ln L(c)+

(

I
∑

i=1

ci + 2

)

ln J ,

(7)ln L(c) = −
J

2
ln(2πσ̂ 2(c))−

J

2
,

-0.2

0

0.2

0.4

0.6

a0 A as CMP MT Rc RIW RLW RSW Tc TNS Tsed vdn vsn vss vtn Zseis Zt Ztomo

LOOCVE & AIC
BIC

Fig. 3 Results for determining the subduction-zone parameters that are related to Mmax . The graph shows the coefficients, ai , for each standardized 
explanatory variable that yields the smallest LOOCVE and AIC (gray bars; Eq. 9), and BIC (black bars; Eq. 11). An explanation of the symbols is 
provided in Table 1
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Exhaustive model evaluation was conducted to deter-
mine the smallest LOOCVE, AIC, and BIC values, which 
both enhanced the predictability and minimized the 
overfitting of the final model.

Results
Optimal models
We obtained minimum LOOCVE and AIC values among 
the 218 cases by characterizing Mmax using eight explan-
atory variables: A, MT, Rc , Tc , Tsed , vss , Zt , and Ztomo 
(Fig.  3). The standardized and unstandardized forms of 
the optimal model are

and

respectively. The minimum BIC is obtained when the 
model includes only five parameters, which are also used 
in the f ′LOOCVE and f ′AIC (Fig.  3). The standardized and 
unstandardized forms of the optimal model in terms of 
BIC are

and

respectively. Other parameters, including the angle of 
the subducting oceanic plate, seafloor roughness, upper-
plate strain, and trench-normal plate velocities, were not 
selected as explanatory parameters in the both optimal 
models. Although the RIW–RLW pair has a slightly large 
VIF (3.5; Additional file  1: Fig.  S2), neither is selected; 
therefore, our regression analysis did yield very weak 
multicollinearity (Hair et al. 2009).

The upper-plate crustal thickness, Tc , makes the largest 
contribution to each optimal model among the selected 
explanatory variables. In fact, all large earthquakes 
(M > 9) have occurred along trenches where the upper 
plate consists of continental lithosphere; e.g., the 1960 
Chile M9.5, 1964 Alaska M9.2, 2004 Sumatra–Andaman 

(8)σ̂ 2(c) =
1

J

J
∑

j=1

(

f ′j (aLS; c)−M′
max,j

)2
.

(9)

f ′LOOCVE = f ′AIC = 5.4 × 10
−16 + 0.15A′ + 0.30MT

′ + 0.30R′
c

+ 0.46T ′
c + 0.16T ′

sed + 0.13v′ss + 0.17Z′
t − 0.14Z′

tomo

(10)

fLOOCVE =fAIC = 6.7+ 2.1× 10
−3A

+ 0.37MT+ 9.1× 10
−4Rc + 0.018Tc + 0.13Tsed

+ 4.4 × 10
−3vss + 0.078Zt − 2.7× 10

−4Z′
tomo,

(11)
f ′BIC =5.53× 10

−16 + 0.32MT
′ + 0.30R′

c

+ 0.40T ′
c + 0.16T ′

sed + 0.24Z′
t

(12)
fBIC =6.7+ 0.40MT+ 9.0× 10

−4Rc

+ 0.015Tc + 0.12Tsed + 0.081Zt,

M9.1, 2011 Northeast Japan 9.1, and 1952 Kamchatka 
M9.0 earthquakes. Conversely, no large earthquakes 
(M > 8.5) have been observed along the Mariana, Tonga–
Kermadec, and South Sandwich subduction zones, where 
the upper plate consists of oceanic lithosphere, which has 
a homogeneous crustal thickness of ∼ 7 km (White et al. 
1992).

The margin type, MT, and the trench sediment thick-
ness, Tsed , also make large positive contributions to 
fLOOCVE , fAIC , and fBIC , followed by Tc . An accretion-
ary prism (MT = 1) generally develops where there are 
thick oceanic sediments, such that both variables have 
a strong positive correlation (Additional file  1: Fig.  S1). 
Accretionary prisms and large Tsed values are found along 
the Cascadia, Alaska, Antilles, Andaman, and Hikurangi 
subduction zones, and some great earthquakes, such as 
the 1964 Alaska M9.2 and 2004 Sumatra–Andaman M9.1 
earthquakes, occurred in these regions.

Comparison between fBIC and Mmax

Hereafter, we compare the observed Mmax with the opti-
mal model that yields the minimum BIC ( fBIC ) for sim-
plicity. This is because BIC generally yields a simpler 
model than LOOCVE and AIC and better fits our pur-
pose. fLOOCVE ( fAIC ) yields approximately the same val-
ues as fBIC (Additional file 1: Figs. S3, S4, S6).

Figure  4a shows that the optimal model fBIC can pre-
dict Mmax from both the test and training data sets within 
the 95% prediction intervals, whereas some of the fBIC 
values along the (A) South Kermadec and (B) South-Cen-
tral Chile subduction zones are outside of the prediction 
intervals (Fig. 4a, c). Possible reasons for the limitations 
of our analysis along these three subduction zones will be 
discussed in the Discussion section.

Figure  4b shows that the error between the predicted 
and maximum earthquake magnitudes, f ′BIC −M′

max , 
possesses a Gaussian-like distribution. A Q–Q plot, 
which can be used to quantify the distribution of the 
error (Additional file  1: Fig.  S5b), shows that the error 
f ′BIC −M′

max is well aligned with the theoretical Gaussian 
distribution.

Discussion
Possible effects of subduction‑zone parameters on Mmax

Our analysis indicates that the trench sediment thick-
ness, Tsed , is an essential factor for obtaining a large 
Mmax , which is consistent with previous studies (e.g., 
Heuret et  al. 2012; Brizzi et  al. 2018). There are sev-
eral explanations of the effects of oceanic sediments on 
Mmax . One is that the subducted sediment layer creates 
structural coherence between two converging plates, 
establishing the potential for plate locking due to diagen-
esis (e.g., Ruff 1989). Another explanation focuses on the 
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small permeability of the subducted sediments (Seno 
2017). The subducted oceanic crust dehydrates as the 
temperature and pressure increase, and the released 
fluid migrates toward the overlying sediment layer. Seno 
(2017) proposed that a thick sediment layer will act as an 
impermeable layer, preventing the migration of fluid from 

the underlying crustal layer, and the pore-fluid pressure 
along the subducted plate interface above the sediment 
layer will remain small. This mechanism may account for 
the positive correlation between the stress drop due to 
megaquakes and sediment thickness (Seno 2017).
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Our study reveals that the upper-plate crustal thick-
ness, Tc , is another essential factor in generating large 
Mmax . This result is consistent with Heuret et al. (2011), 
who showed that continental upper plates can host 
larger earthquakes than oceanic upper plates. A pos-
sible explanation for the positive relationship between 
Tc and Mmax is that the rupture areas (i.e., exponential 
function of earthquake magnitude) of large earthquakes 
are roughly limited to the brittle crust of the upper plate. 
This is because the serpentine in the mantle component 
of the upper plate along the plate boundary, which gener-
ally forms via plate dehydration and has a low shearing 
strength, tends to inhibit shear stress accumulation and 
instead release it via ductile deformation (e.g., Katayama 
et  al. 2012). A key exception is the 2011 Tohoku earth-
quake, which occurred where the upper continental crust 
is slightly thinner ( ∼ 30 km); however, the main rupture 
area is still estimated to be at shallow depths near the 
Japan Trench, with insignificant slip detected below the 
continental Moho (e.g., Yagi and Fukahata 2011).

The bending radius, Rc , was selected as an explanatory 
variable for Mmax in our analysis, but the dip angle, as , 
was not. This result is consistent with a previous obser-
vational study (Bletery et al. 2016), in which the bending 
radius has the stronger correlation with Mmax compared 
to the dip angle. This is probably due to the fact that as 
is the average angle for the entire slab depth (0–125 km), 
whereas large earthquakes generally occur at shallow 
depths (0–70 km). Therefore, Rc has a stronger relation-
ship with Mmax . We propose that, where Rc is larger, 
more of the plate boundary is in contact with the crustal 
part of the upper plate, along which elastic stress would 
accumulate.

It is unclear why the trench depth, Zt , is selected in the 
optimal model and why its coefficient is positive, particu-
larly since Zt generally reflects negative slab buoyancy 
and is expected to have a negative contribution to the 
earthquake size (Nishikawa and Ide 2014). Although Zt is 
negatively correlated with Tsed as sediment fills a trench, 
multicollinearity does not greatly affect our results due 
to the small correlation coefficient ( ∼ − 0.4 ; Additional 
file  1: Figs.  S1 and S2), and Zt would have a role inde-
pendent of Tsed . An explanation for the positive relation-
ship between Zt and Mmax is that, when a subductinhg 
slab contains a large amount of water, both of Zt and 
Mmax become small. That is, subducting plates contain-
ing a large amount of water have a large positive buoy-
ancy (Nakao et al. 2016, 2018), thereby yielding small Zt 
values. Meanwhile, such a plate would cause significant 
dehydration and subsequently yield large pore-fluid 
pressures along the plate boundary, inhibiting stress 
accumulation along the plate boundary. However, this 
explanation is highly speculative; numerical simulations 

are required to reveal the physical mechanisms that may 
induce large earthquakes along deep trenches.

A smooth seafloor is often regarded as an essential fac-
tor in generating large earthquakes (e.g., Wang and Bilek 
2014) because a smooth plate interface contributes to a 
coherent plate boundary. However, the seafloor rough-
ness, at least at wavelengths greater than 12  km, is not 
selected as an explanatory variable in our analysis. A pos-
sible reason for this omission is that the subducted sedi-
ment layers are up to ∼1 .6 km thick (Seno 2017), which 
may cover and smooth a large percentage of the seafloor 
relief, whereas the typical seafloor roughness is ∼ 0.5 km, 
with a standard deviation of ∼ 0.5 km (Table 1). This may 
be the reason why the seafloor roughness is not selected 
as a universal explanatory variable in our analysis.

The upper-plate stress was not selected as an explana-
tory variable of Mmax in our analysis, even though it had 
been selected in some previous studies (Heuret et  al. 
2011, 2012). Our results suggest that the present-day 
stress is not a good indicator for evaluating the potential 
Mmax . A possible interpretation of our result is that the 
stress patterns change temporally throughout earthquake 
cycles. For example, the upper-plate stress immediately 
changed from compressional to tensional, as observed 
before and after the 2011 Tohoku earthquake (Hasegawa 
et al. 2012).

Thus, we propose that multiple factors influence Mmax . 
For example, the 1868 Peru earthquake (Mw8.5−9.2; 
Lay and Nishenko 2022; McCaffrey 2008) has occurred 
where the trench sediment is thin (<  1  km), suggest-
ing that it is difficult to attribute the magnitude of this 
earthquake to the sole role of the sediment. Rather, this 
historical earthquake may be related to the thick conti-
nental crust ( Tc ∼ 60 km), which is newly found as a fac-
tor for large Mmax in our study. However, it is difficult to 
generate a M ≥ 8 earthquake considering a typical value 
of Tc ; therefore, the combined effects of other factors, 
including Tsed and Rc , are necessary to generate a M ≥ 8 
earthquake.

Previous studies have proposed numerous possi-
ble mechanisms for the genesis of large earthquakes as 
in Introduction. Our exhaustive model evaluation has 
detected the subduction-zone parameters that possess a 
strong relationship with Mmax , which enables us to evalu-
ate the plausibility of the proposed mechanisms for gen-
erating large earthquakes. Our presented approach will 
therefore assist in clarifying problems that include com-
plex processes.

Origin of the misfit between fBIC and Mmax

Here we discuss why there is high degree of misfit 
between fBIC and Mmax at some of the analyzed loca-
tions (Fig. 4a). There are large fBIC values along the South 
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Kermadec subduction zone (A in Fig.  4a, c) because 
the subduction-zone parameters are almost the same 
as those along the North Kermadec subduction zone, 
whereas Mmax is significantly smaller. If our analysis 
accurately reflects a sufficient number of factors for con-
straining the earthquake magnitude, then a M-8 class 
earthquake will potentially occur along the South Kerma-
dec subduction zone. Or, the North and South Kermadec 
regions should be integrated into the same group. The 
South-Central Chile subduction zone (B in Fig. 4a, c) is 
another outlier. These results suggest that the 1960 Chile 
earthquakes are linked to tectonic processes that are not 
captured by the subduction parameters considered in our 
analysis, which focuses on large-scale tectonic features. 
Ridge subduction, petit-spots, and hydrothermal circula-
tion are potential candidates for the elevated earthquake 
magnitudes along the South-Central Chile subduction 
zone. However, we cannot identify the factor(s) here, but 
hope to resolve this in a future study.

The misfit between the predicted and observed maxi-
mum earthquake magnitudes, fBIC −Mmax , yields a 
Gaussian-like distribution among the 169 analyzed loca-
tions. The least-squares method, which is used in our 
regression analysis, is based on the assumption that 
the error follows a Gaussian distribution. Therefore, it 
is suggested that our modeling, which is based on the 
assumption that fBIC is a linear combination of the sub-
duction-zone parameters, is not unreasonable. In addi-
tion, the Gaussian-like distribution of the misfit justifies 
applying Mmax in Fig. 1 as the objective variable to some 
extent although Mmax may lack some unknown historical 
earthquakes because of the observation duration shorter 
than megathrust earthquake cycles ( 102–103 years). This 
would be because large earthquakes have been observed 
in this 102 year correspondingly to potential (or ideal) 
Mmax following the Gutenberg–Richter’s law.

Conclusions
We conducted multiple regression analyses and exhaus-
tive model evaluation to determine the subduction-
zone parameters that control maximum earthquake 
magnitude, Mmax . The smallest LOOCVE and AIC 
evaluation criteria were obtained when eight param-
eters, the trench sediment thickness, Tsed , existence 
of an accretionary prism, MT, upper-plate thickness, 
Tc , bending radius of the subducting oceanic plate, 
Rc , trench depth, Zt , age of the subducting plate, A, 
along-strike convergence rate along the trench, vss , and 
maximum depth of the subducting plate, Ztomo , were 
selected as explanatory variables to express Mmax . Fur-
thermore, the combination of only five variables, Tsed , 
MT, Tc , Rc , and Zt , yields the smallest BIC. The seafloor 
roughness, trench-normal plate and trench velocities, 

upper-plate stress, and dip angle of the subducting 
oceanic plate are notable subduction-zone parameters 
that were not selected as explanatory variables. Our 
results are consistent with previous studies that have 
proposed Tsed as the primary factor controlling Mmax . 
We provided new insight that Tc also has a positive 
effect on producing large Mmax , which suggests that 
along-dip extension of crustal areas along a converging 
plate boundary are important in generating large earth-
quakes. We used five tectonic conditions, Tsed , MT, Tc , 
Rc , and Zt , to demonstrate that our optimal model can 
explain almost all of the observed Mmax values within 
the 95% confident interval, although our model fails 
to predict some samples, such as the 1960 M9.5 Chile 
earthquake. An evaluation of additional mechanisms 
that may cause these outliers will be conducted to 
understand the processes controlling the earthquakes 
that are not explained by our model. An investigation of 
the genesis of large earthquakes using numerical simu-
lations that consider the essential subduction-zone fac-
tors for generating large Mmax will also be undertaken, 
as our analyses do not explain the physical meanings of 
the detected parameters.
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