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Abstract 

In volcanic regions, active earthquake swarms often occur in association with volcanic activity, and their rapid detec-
tion and analysis are crucial for volcano disaster prevention. Currently, these processes are ultimately left to human 
judgment and require significant time and money, making detailed real-time verification impossible. To overcome this 
issue, we attempted to apply machine learning, which has been successfully applied to various seismological fields to 
date. For seismic phase pick, several models have already been trained using a large amount of training data (mainly 
crustal earthquakes). Although there are some cases in which these models can be applied without any problems, 
regional dependence on pre-trained models has been reported. Since this study targets earthquakes in a volcanic 
region, applying existing pre-trained models may be difficult. Therefore, in this study, we compared three models; 
the publicly available trained model (model 0), a model which was trained with approximately 220,000 P- and S-wave 
onset reading data recorded at the Hakone volcano from 1999 to 2020 with initialized parameters (model 1) using the 
same architecture, and a model fine-tuned with the aforementioned Hakone data using the parameters of model 0 
as initial values (model 2), and evaluated their phase identification performance for the Hakone data. As a result, the 
seismic phase detection rates of models 1 and 2 were much higher than those of model 0. However, small-amplitude 
signals are often missed when multiple seismic events occur within a detection time window. Therefore, we created 
training data with two earthquakes in the same time window, retrained the model using the data, and successfully 
detected events that previously would have been missed. In addition, it was found that more events were detected 
by setting the threshold to a low probability value for detection, increasing the number of seismic phase detections, 
and filtering by phase association and hypocenter location.
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Graphical Abstract

Introduction
In volcanic regions, active earthquake swarms are often 
associated with volcanic activities, and their rapid 
detection and analysis are vital for disaster prevention. 
In addition, understanding seismic activities and their 
mechanisms is also essential for mitigating future dis-
asters. These tasks begin with detecting and identifying 
seismic phases but those tasks mainly rely on human 
labor and are both time-consuming and labor-intensive. 
The general method for estimating the onset of a seis-
mic phase involves applying the autoregressive Akaike 
information criterion (AR-AIC) picker (Akazawa 2004) 
to events detected by the short- (STA) and long-term 
average (LTA) methods (Allen 1978). However, the final 
decision is typically left to human labor.

Various machine learning methods—especially deep 
neural networks—have been developed to detect and 
pick seismic phase arrivals. Early studies used multilayer 
perceptron networks to detect earthquakes (e.g., Dys-
art and Pulli 1990; Musil and Plešinger 1996; Fedorenko 
et  al. 1999; Ursino et  al. 2001; Kong et  al. 2016), and 
phase-picking techniques have been developed (e.g., Dai 

and MacBeth 1995; Tiira 1999; Zhao and Takano 1999; 
Wiszniowski et  al. 2014). Subsequently, seismic event 
detection and phase-picking techniques were devel-
oped using a convolutional neural network (CNN) with 
convolutional and pooling layers added to deep learn-
ing (e.g., Perol et  al. 2018; Ross et  al. 2018). Zhu and 
Beroza (2019) used the training data of millions of seis-
mograms picked manually throughout northern Cali-
fornia and built a model to detect P- and S-waves using 
the U-Net architecture (Ronneberger and Fischer 2015), 
a fully convolutional network (FCN). An EQ trans-
former was also developed by introducing the atten-
tion mechanism used in the transformer (Vaswani et al. 
2017) into a conventional FCN to perform the detection 
of earthquake signals and phase picking simultaneously 
(Mousavi et al. 2020). Most of the above-described codes 
and pre-trained models are publicly available on GitHub 
(https:// github. com/) and other websites for use by any-
one. However, it has also been known that these models 
have regional characteristics, where the detection perfor-
mance varies depending on the region in which they are 
applied (Münchmeyer et al. 2022).

https://github.com/
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Furthermore, most of the above pre-trained models 
use crustal earthquakes as training data, which may make 
them unsuitable for detecting earthquakes proximate to 
volcanoes. Earthquakes in volcanic regions are charac-
terized by active earthquake swarms, and it may be nec-
essary to build models suitable for such environments. 
However, the problem is that few volcanoes have accu-
mulated the vast amount of data required to train using 
deep learning. For example, Lapins et  al. (2021) used 
transfer learning from the pre-trained model of Ross 
et  al. (2018) to improve the performance of earthquake 
phase detection in areas with just a small amount of data.

On the other hand, Hakone—the target area of this 
study—has over 20  years of accumulated observation 
data to be trained from scratch. Therefore, this study 
uses the pre-trained model and architecture of Zhu and 
Beroza (2019), which has shown one of the highest per-
formances in previous studies (Münchmeyer et al. 2022). 
We created models using the PhaseNet pre-trained 
model (model 0) and its architecture, and we evaluated 
their performance under various conditions.

Seismic activities and observations network 
in Hakone
Hakone volcano is located in central Japan’s northern 
boundary zone of the Izu–Bonin–Mariana volcanic arc. 
It has a caldera topography surrounded by an outer ring 
of about 10 km diameter (Fig. 1). The most recent large-
scale eruption with lava ejecta was about 3000 years ago. 
Although no such large-scale eruption has occurred, 
since some studies indicate that a phreatomagmatic 
eruption happened between the twelfth and thirteenth 
centuries (e.g., Kobayashi et al. 2006). In addition, a very 
small eruption occurred in 2015 at Owakudani for the 
first time in the Hakone volcano’s recorded history (e.g., 
Mannen et  al. 2018). The Hakone volcano is still active 
today, with earthquakes occurring very superficially in 
the crust of the caldera and occasional large swarms of 
earthquakes. In this context, the hot spring research 
institute of Kanagawa Prefecture (HSRI) installed a short-
period seismometer with a 200 Hz sampling rate and has 
been observing and studying the causes of these seismic 
events since 1989 (Fig.  1). Typical seismic activity since 
then includes active earthquake swarms in 2001, 2006, 
2008, and 2009 (e.g., Yukutake et  al. 2011a), and active 
seismic swarms associated with phreatic eruptions were 
observed in 2015 (e.g., Mannen et al. 2018). The mecha-
nism of the seismic swarms at the Hakone volcano has 
also been extensively studied. The prevailing theory is 
that they are caused by the migration process of high-
temperature, high-pressure hydrothermal water sup-
plied from deep underground through fractures, such as 
micro-faults (Yukutake et al. 2011a). Seismic activity also 

increased after the 2011 M9.0 Tohoku–oki earthquake, 
although with different characteristics from the above 
earthquake swarm (Yukutake et al. 2011b).

Although seismic observations at Hakone began in 
1989, we used data from 1999, because it was from that 
year that the WIN system (Urabe and Tsukada 1992), 
the standard used in Japan for continuous waveform 
recording, began recording and the seismic catalog was 
properly maintained. In fact, the catalog has been in 
place since 1995 but the accuracy of the onset readings 
was not very good initially, and there were fewer earth-
quakes in Hakone, so we have chosen to use data from 
1999 onward. In this study, we used 217,553 seismic 
waveforms that contain one P- and S-wave onset read-
ing per data set recorded by the above seismic network 
in April 1999–December 2020, as training data. Fig-
ure 1 shows seismic stations, which include the National 
Research Institute for Earth Science and Disaster Preven-
tion (NIED) Hi-net (Obara et al. 2005) as well as stations 
operated by HSRI.

Construction of a seismic phase picker
In this study, we used the PhaseNet architecture con-
structed by Zhu and Beroza (2019). The method is based 
on the structure of U-Net (Ronneberger and Fischer 
2015), a type of encoder–decoder FCN developed for 
biomedical image processing and modified to handle 1D 
time-series data. In the decoder part, convolution and 
upsampling are repeatedly applied to the input data to 
improve the resolution of the feature map and obtain the 
desired region extraction results. PhaseNet takes a three-
component seismic waveform as input and outputs the 
probability of P- and S-wave onsets and noise per sam-
ple. See Zhu and Beroza (2019) for more details about the 
model.

While CNN classifies given unknown data, U-Net aims 
toward segmentation, so it does not matter how many 
events are in the detection window. In addition, one of 
the largest differences between CNN and U-Net is that 
the length of the input data must be the same as the 
training data for CNN, because it has a fully connected 
layer at the end but it is variable for U-Net which lacks 
one.

In this study, we used seismic events recorded from 
1999 to 2020 in the Hakone volcanic area mentioned in 
the previous section. Experts have manually inspected 
this data for P- and S-waves and we will treat the infor-
mation as the ground truth. In many cases, the picked 
onsets are stored with the P-wave at the same position 
in the time window, and the position could be incor-
rectly learned as the P-wave onset. To avoid this case, 
the P- and S-waves were always included in PhaseNet 
and the waveforms are randomly shifted back and forth 



Page 4 of 15Kim et al. Earth, Planets and Space           (2023) 75:85 

a

b

138°57' 139°00' 139°03' 139°06'
35°09'

35°12'

35°15'

35°18'

300

400

400

40
0

50
0

500

500

500

600
60
0

600

600

700

700

700

700

800

80
0

800

800
800

800

90
0

900

900

900

900

1000

1000

1000
1100

1200

0 1 2

E.KOMW

HKN27

KIN

KOM

KZR

KZY

MOT

N.NTOR

NASGH

NODWH

ODAWA2

OWD

SSN
T.HTJ

T.KNT

T.KRK

T.MKN

T.YBT

TNMVHNNN

YGW

(km)

0

1000

2000

3000

0 10 20 30

138°30' 139°00' 139°30'

34°30'

35°00'

35°30' M3.0
M2.0
M1.0

(km)

Owakudani

D
ep

th
 (k

m
)

Izu-B
onin-M

ariana A
rc

Fig. 1 Earthquakes and the distribution of seismic stations in the Hakone volcanic area. a Earthquakes (gray circles) and seismic stations (blue 
triangles) in May 1999–June 2021. The earthquake symbol size is scaled by the magnitude. b Enlarged view of the area enclosed by the square in a. 
The red circles represent the distribution of earthquakes in May 18–20, 2019 used for the test data
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in the position of the P-wave onset. In this study, as in 
the original, each seismic waveform was cut out of a 90-s 
time window; after shifting them in the above manner, 
they were cut to 30 s and used as input data. Other than 
that, the original 200 Hz sampling was downsampled to 
100 Hz as preprocessing.

In this study, three models were first created, and their 
performances were evaluated as follows:

(1) Model 0: A trained model built using training data 
from millions of crustal earthquakes in Northern Califor-
nia (Zhu and Beroza 2019; publicly available on GitHub).

(2) Model 1: A model trained from scratch using the 
PhaseNet architecture with the Hakone seismic data.

(3) Model 2: A fine-tuned model with the Hakone vol-
cano training data used in model 1 and the parameters in 
model 0 as initial values.

In training models 1 and 2, 217,553 data were randomly 
assigned as follows: 80% as training data and 20% as vali-
dation data. To determine the best parameters for each 
model, their performances were verified by varying the 
learning rate and batch size and repeating the computa-
tion up to epoch 100 (Fig. 2). The results showed that the 
best parameters for model 1 were those with a batch size 
of 64 and a learning rate of 0.01, while the best param-
eters for model 2 were those with a batch size of 16 and 
a learning rate of 0.1. The best F1 scores were almost the 
same for two models (Fig. 3). From now on, the models 
with the best parameters for both will be called models 
1 and 2, respectively. Using the same data for valida-
tion, the F1 values for model 0 were calculated as 0.832 
for the P-wave and 0.707 for the S-wave, mainly show-
ing a significant improvement in the S-wave picking. 

model1

Batch size 64 Learnig Rate 0.01 Batch size 16 Learnig Rate 0.1 
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Fig. 2 Examples of F1 score for P-wave (blue) and S-wave (red) and loss (green) for different hyperparameters. a Model 1, batch size 16, learning 
rate 0.1, b model 1, batch size 64, learning rate 0.01, c model 2, batch size 16, learning rate 0.1, d model 2, batch size 64, learning rate 0.01
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An examples of the heatmap for F1 scores with respect 
to various batch size and the learning rate are shown in 
Fig. 3.

Application to test data
These models were applied to 5559 seismic phase data 
(441 events) from swarm earthquakes that occurred 
May 18–20, 2019 but were not used for training or vali-
dation. The detection time window to pick the phase 
onset is 90 s and the detection threshold is a probabil-
ity of 0.6. The F1 scores of the P-wave for models 0, 
1, and 2 are 0.823, 0.860, and 0.857 and those for the 
S-wave are 0.641, 0.755, and 0.749, respectively. As 
with the validation data, models 1 and 2 showed a bet-
ter F1 score, indicating that the two models trained by 
Hakone data performed better than model 0. There was 
almost no difference in travel time between the three 
models compared to human-operated data (Fig. 4). Fig-
ure  5 shows an example of phase picking. The results 

indicate that each model can detect earthquakes with a 
high probability when there is only one event or when 
there are multiple events with similar amplitudes in the 
detection window (Fig. 5a, b). In addition, each model 
can detect seismic events with a low signal-to-noise 
ratio (Fig. 5d).

On the other hand, when there were multiple earth-
quakes with significantly different amplitudes in the 
detection time window, model 0 detects the event with a 
larger amplitude and higher probability. Models 1 and 2 
still have probability amplification for smaller amplitude 
events, but the probability of larger amplitude events is 
often lower than that in model 0 (Fig. 5c, e, and f ). The 
above results suggest that the reason for all models’ 
slightly lower performance in the test data compared 
to the validation data is that the test data are from one 
of the most active swarms in Hakone and thus contain 
many earthquakes in the detection window, missing 
some earthquakes.
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Fig. 3 Heat maps of the highest F1 score. The F1 scores were obtained when the learning rate and batch size were varied and calculated up to 
epoch 100. a model 1 (P-wave), b model 2 (P-wave), c model 1 (S-wave), d model 2 (S-wave)
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Application to continuous data
Then, models 0, 1, and 2 were applied to continuous 
waveforms for the same period as the test data. The 
number of manually detected earthquakes by HSRI dur-
ing this period was 441. After detecting P- and S-waves, 
we used the rapid earthquake association and location 
(REAL) (Zhang et  al. 2019) for phase association and 
preliminary location. The parameters used in REAL are 
10 km for the search range, horizontally centered at the 
station recording the initiating phase, and a depth of 
20  km. The search grid was set to approximately 2  km 
horizontally and in-depth. The time windows were tested 
for 1 h, 30 min, 10 min, 1 min, 30 s, 10 s, and 5 s. The best 
results were obtained at 30 s, the same data length used 
in training, which suggests that shortening the time win-
dow may not improve the performance (Table 1). In addi-
tion, when applying the method to continuous waveform 
data, as was the case with the above test data, there were 
many cases in which small-amplitude events were missed 
when multiple events of largely different amplitudes 
were included in the detection time window. Zhu et  al. 
(2020) showed that by having multiple seismic events in 
the training data, the detection performance improved 
when many earthquakes occurred in a short period. 
Thus, it may be necessary to insert multiple events into 
the training data to improve the detection performance 
of active swarm earthquakes, where many earthquakes 
occur across a short period near a volcano. Thus, in this 
study, we verified the performance when the training 
data contained two events. Here, two events were ran-
domly extracted from the validation data and combined, 
so that the P-wave of the following event comes 6–25 s 
after the first arrives, and 100,000 semi-synthetic train-
ing data containing two earthquakes in a 90-s time win-
dow were created. The model re-trained from scratch 
with only those data was denoted model 3 and the model 
trained with the same data as model 3 that uses model 
1 as the starting model is denoted model 4 hereafter. As 
a result, both models 3 and 4 significantly improved the 
problems observed in models 1 and 2, but model 3 was 
lower than model 1 in the total number of detections 
(Table 2; Fig. 6). The number of event detections in model 
4 also exceeded that of model 1 (Table 2), suggesting the 
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Fig. 4 Travel time residuals of the test data for each model. The width 
of the bin is 0.02 s and the number of the bin is 30. Values in the 
lower right corner indicate the mean and standard deviation (SD). a 
model 0, b model 1, c model 2

Fig. 5 Examples of raw seismic waveforms recorded under various conditions predicted using models 0, 1, and 2. The upper three figures show 
the observed waveforms from the top in east–west, north–south, and vertical directions, and the vertical axis shows the normalized amplitude. 
The lower three figures show the results of model 0, model 1, and model 2 from the top. The vertical axis is probability. The dotted lines represent 
the probability values of P-wave and S-wave, respectively. When the probability exceeds 0.6, it is indicated by a solid line and is considered to be 
detected as the respective phase. a One earthquake in the detection window, b two seismic events of almost the same amplitude in the detection 
window, c two events of very different amplitude in the detection window, d poor signal-to-noise ratio, e, f multiple earthquakes of very different 
amplitude in the detection window

(See figure on next page.)
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importance of selecting training data depending on the 
seismic activity to be applied (Zhu et al. 2020).

Discussion
In this study, we constructed a model trained from 
scratch (model 1) using the PhaseNet architecture. We 
then fine-tuned the model with the Hakone data using 
model 0 as the initial value to create model 2 and com-
pared the performances of models 1 and 2 with that of 
model 0.

In model 1, we were able to find the batch size and 
learning rate that produced the highest F1 score, but 
we could not find the optimal value for the batch size in 
model 2. While a smaller batch size could produce a bet-
ter F1 score, we were unable to conduct further investiga-
tion due to the limitations in our computational facilities. 
Regarding batch size, it is generally believed that as the 
batch size increases, the features of the input parame-
ters become averaged out and individual features of the 
data may be lost. Conversely, a smaller batch size can 
be considered more sensitive to individual data (Kes-
kar et al. 2017). In other words, in the case of model 2, a 
model that learned more detailed features of the Hakone 
data from the model 0 with a smaller batch size is con-
sidered to have performed better. However, determining 
the hyperparameters can only be accomplished through 
detailed benchmark tests in the end. Although detailed 
hyperparameter testing is computationally demanding, 
the optimizer used in PhaseNet, called Adam, is known 

to require only low-level hyperparameter tuning (Kingma 
and Ba 2014). Since the values chosen for model 1 are not 
very different from those used in the original model, we 
believe that the test results are reliable.

Model 1 showed the best performance among the three 
models. However, when multiple events with different 
amplitudes were in the same detection time window, the 
probability for small amplitude events was lower than 
the threshold for phase pick, and the prediction perfor-
mance for large amplitude events was often lower. On 
the other hand, Model 0 did not respond to any small 
amplitude events in such cases and only tended to detect 
large amplitude events. The training data contain only 
one earthquake per data set, the amplitude of which is 
normalized by the maximum value. The normalization 
means that small-amplitude events in the same detec-
tion time window are considered noise and unlikely to 
be detected. The probability increased slightly in models 
1 and 2, because the seismicity in Hakone has different 
characteristics from those of the California crustal earth-
quakes used in model 0 and may have captured those 
characteristics. To overcome this issue, two earthquakes 
were randomly taken from the aforementioned valida-
tion data and combined to create semi-synthetic training 
data. Creating such data allows small-amplitude events 
in the data normalized by the maximum amplitude to be 
labeled and trained as P- and S-waves. We evaluated the 
performance of models 3—where all weights are initial-
ized—and 4—taking the parameters of model 1 as initial 
values. As the result, we found that both models showed 
an improved ability to detect seismic phases with smaller 
amplitudes when there were multiple events with dif-
ferent amplitudes in the same detection time window. 
Model 4 outperformed model 1 in terms of the number 
of events detected, whereas model 3 was less good than 
model 1 in terms of the number of events detected. This 
may be because the number of seismic waves is 100,000, 
half the size of the data used to train model 1. Deep 
learning models for seismic phase pick usually use ampli-
tude-normalized data as training data. The amplitude 
varies with the distance from the epicenter and the mag-
nitude of the earthquake in each seismic data set. There-
fore, when using seismic events acquired over a wide area 
as training data, the amplitude range will cover several 
orders of magnitude and the model may not converge if 
trained without normalization. However, in the case of 
a group of earthquakes that occurred within a narrow 
magnitude range of magnitude, the inclusion of fluctua-
tions in amplitude values within that range in the training 
data could improve the model’s performance.

Since we used the validation data to create models 3 
and 4, it cannot be completely ruled out that the perfor-
mance improvement is due to the use of validation data. 

Table 1 Time window and number of earthquakes detected

Time window # of event 
detection

10 s 920

20 s 1088

30 s 1244

1 min 1047

10 min 787

30 min 670

1 h 610

Table 2 Numbers of seismic waves were detected for each 
model with a detection threshold of 0.6

Model # of event 
detection

Model0 1028

Model1 1244

Model2 1131

Model3 1120

Model4 1311



Page 10 of 15Kim et al. Earth, Planets and Space           (2023) 75:85 

N
or

m
al

iz
ed

 A
m

p. 1
0

-1

Pr
ob

ab
ilit

y

1
0

-1
1
0

-1
1.0
0.5
0.0
1.0
0.5
0.0
1.0
0.5
0.0

0 10 20 30 40 50 60 70 80 90

model 1

model 3

model 4

1
0

-1
1
0

-1
1
0

-1
1.0
0.5
0.0
1.0
0.5
0.0
1.0
0.5
0.0

0 10 20 30 40 50 60 70 80 90

model 1

model 3

model 4

EW EW

NS NS

UD UD

N
or

m
al

iz
ed

 A
m

p. 1
0

-1

Pr
ob

ab
ilit

y

1
0

-1
1
0

-1
1.0
0.5
0.0
1.0
0.5
0.0
1.0
0.5
0.0

0 10 20 30 40 50 60 70 80 90

1
0

-1
1
0

-1
1
0

-1
1.0
0.5
0.0
1.0
0.5
0.0
1.0
0.5
0.0

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

N
or

m
al

iz
ed

 A
m

p. 1
0

-1

Pr
ob

ab
ilit

y

1
0

-1
1
0

-1
1.0
0.5
0.0
1.0
0.5
0.0
1.0
0.5
0.0

1
0

-1
1
0

-1
1
0

-1
1.0
0.5
0.0
1.0

0.0
1.0
0.5
0.0

0 10 20 30 40 50 60 70 80 90

time(s) time(s)

EW EW

EW EW

NS NS

NS NS

UD UD

UDUD

model 1 model 1

model 3model 3

model 4model 4

model 4 model 4

model 3model 3

model 1model 1

P-wave

S-wave
a b

c d

e f

Fig. 6 Same as Fig. 5, but with models 1, 3, and 4



Page 11 of 15Kim et al. Earth, Planets and Space           (2023) 75:85  

Thus, we performed tests to show that the improved 
performance of the phase pick is due not to the use of 
validation data but to the inclusion of two earthquakes 
in the training data as follows:

1. Create a fine-tuned model of model 1 with valida-
tion data consisting of 43,511 seismic data and each 
data contains a single event (model v).

2. Create ten fine-tuned models (model sN, where 
N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). To create the models, 
ten different datasets are prepared using the same 
method used in model 4. Each dataset consists of 
43,511 training data and each training data contain two 
earthquakes.

Then, we compared the performances of models 1, v, 
and sN.

In this test, we first compared the number of earth-
quakes detected by applying the picks obtained from 
each model to REAL (Table  3). Next, the same earth-
quakes shown in Fig. 6 were used to compare the detec-
tion performance (Fig. 7 and Additional file 1: Fig. S1).

These results show that simply fine-tuning with 
validation data yields almost the same performance 
as model 1, whereas model sN clearly improved the 
phase identification performance as seen in models 3 
and 4. Based on the above verification, we believe that 
the improvement in the performance of model 4 over 
model 1 is due to the inclusion of two events per unit 
of training data rather than the use of validation data. 
However, in some cases, model sn, which uses train-
ing data with about half the amount of data than that 
of model 4, which uses 100,000 training data, improves 
the detection performance, and there is room for 

further study on the preparing the training data that 
includes multiple earthquakes (Figs. 6 and 7).

Model 4 detected more earthquakes in the continu-
ous seismic waveforms than model 1, but some events 
were still missed. Although these may be improved by 
increasing the size of the data, a detailed inspection of 
the results shows that many events tended to show even 
a slight increase in probability. Therefore, we predicted 
the same continuous waveform data by setting the detec-
tion threshold of model 4 to a probability of 0.1 and 0.3 
and applying REAL to the results. We further applied 
VELEST (Kissling et al. 1994) for the earthquake location 
and finally relocated events using HypoDD (Waldhauser 
and Ellsworth 2000). The events were relocated as 2094, 
1296, and 1091 earthquakes, with probability thresholds 
of 0.1, 0.3, and 0.6, respectively (Fig. 8; Table 4). The total 
number of earthquakes recorded in the original catalog 
during this period is 441, so if the detection threshold 
is set as 0.1, we have detected about 4.7 times as many 
earthquakes. From the above, it is not necessary to set 
the threshold high at the time of event detection; instead, 
it is more effective to set it low and filter out noise in the 
subsequent phase association, hypocenter location, and 
relocation.

Regarding the types of earthquakes newly detected by 
the PhaseNet model, most events are located within the 
cluster of hypocenters in the original catalog, but some 
are outliers. Although the magnitudes in the original cat-
alog, which have been edited by HSRI for the test data 
(441 events), are calculated in different ways and can-
not be compared directly, the histogram shown in Fig. 9 
indicates that the smaller the probability threshold, the 
smaller magnitude the picked-up earthquakes. How-
ever, as the probability threshold decreases, the number 
of earthquakes outside the cluster increases. Hence, it 
is necessary for future work to examine whether these 
newly detected small earthquakes are real. Yukutake et al. 
(2022) applied matched filter method (MF) (Gibbons and 
Ringdal 2006) to this earthquake swarm, and the num-
ber of earthquakes detected was 2600 in August 18–20, 
2019, which is more than the number detected by model 
4 with the probability threshold of 0.1. The hypocenter 
depth relocated by model 4 is very similar to the depth of 
the original catalog but generally deeper than that deter-
mined by MF (Fig. 10). Possible explanations for this dif-
ference are that our hypocenter relocation is not based 
on waveform correlation and/or that the station correc-
tion is performed in MF but not in this study. Regard-
ing the processing time, it is possible to improve the 
performance of both methods by devising the code. As 
mentioned in Zhu and Beroza (2019), to improve phase 
detection in the contentious data, new data sets with 
more non-seismic signals may be needed for training 

Table 3 Numbers of seismic waves were detected for each 
model with a detection threshold of 0.6

Mean and Standard deviation (SD) of model sN are shown at the bottom

Mean: 1279.5

SD: 1.9

Model # of event 
detection

Model v 1246

Model s1 1278

Model s2 1280

Model s3 1279

Model s4 1279

Model s5 1281

Model s6 1278

Model s7 1284

Model s8 1278

Model s9 1278

Model s10 1280
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to learn the features that distinguish noise spikes that 
resemble seismic phases.

One advantage of PhaseNet over MF is that it does not 
require template earthquakes. The model we constructed 
can be generalized to some extent, even if trained on data 
from other regions with similar geological backgrounds. 
For example, when model 1 was applied to seismic 
data from other volcanic areas in Japan, it successfully 

Original

Predicted
Threthold 0.1

Threthold 0.3

Threthold 0.6

2094

1296

1091

a

b

c

Fig. 8 Hypocenter distribution relocated by hypoDD. PhaseNet 
detection thresholds are the probability of a 0.1, b 0.3, and c 0.6

Table 4 Number of event detections for each algorithm relative 
to the detection threshold

Threshold REAL VELEST hypoDD

0.1 7381 6909 2094

0.3 1937 1865 1296

0.6 1311 1302 1091

Fig. 9 Histograms of earthquake magnitudes relocated by hypoDD. 
Red and blue indicate PhaseNet detection thresholds of the 
probability of 0.1 and 0.6, respectively

Fig. 10 Hypocenter distribution comparison. The magenta circle 
indicates the hypocenters determined by matched filter method, 
and the blue circle indicates those relocated in this study. Here, the 
PhaseNet detection threshold is the probability of 0.1
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detected eight times more earthquakes than those in the 
catalog edited by human labor (Yukutake and Kim 2022). 
Since not all volcanoes have been monitored with high 
quality for many years—like Hakone volcano—it is worth 
aiming to improve the performance of such machine 
learning models. In the future, it may be possible to cre-
ate a model specialized for a particular region by trans-
fer learning with a small amount of data based on the 
model developed at Hakone volcano. In addition, many 
seismic events may overlap during the very active swarm 
period. Using the method of training data with multiple 
earthquakes used in this study, we can artificially create 
overlapping data and add it to the training data, thereby 
learning its characteristics and potentially contributing 
to the event detection capability.

Conclusion
To automate and improve the quality of seismic phase 
detection at Hakone volcano, a few models were cre-
ated using the PhaseNet architecture with training data 
of approximately 220,000 P- and S-wave onset readings 
in the area. The newly constructed model outperformed 
model 0 (pretrained open-to-public model) when there 
was only one earthquake or multiple events with similar 
amplitudes. When multiple events with different ampli-
tudes existed in the same detection time window, there 
were many cases, where earthquakes with small ampli-
tudes were missed with models 1 and 2. Fine-tuning with 
100,000 semi-synthetic training data—including two 
events per one data—using the parameters of model 1 
initial values significantly improved the above problems 
and increased the number of seismic detections.

Careful inspection of the detection results showed that 
even for phases that did not lead to detection, there was 
often a small amplification of likelihood (Fig.  6). There-
fore, we lowered the threshold and passed the data to 
REAL, VELEST, and HypoDD, which showed that the 
number of earthquake detections was higher than when 
the same process was performed with a higher threshold. 
These results suggest that, although further investigation 
is needed, it may be possible to detect a large number of 
earthquakes if we do not set a strict threshold at the time 
of seismic wave detection and instead use phase asso-
ciation, hypocenter location, and other methods to filter 
out the false seismic phase detections. In the future, we 
will apply this model to earthquakes in volcanic regions, 
where training data are insufficient to verify its generali-
zation. We will also consider creating models specific to 
individual volcanoes using transfer learning.
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