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Abstract 

Zodiacal light (ZL) is sunlight scattered by interplanetary dust particles (IDPs) at optical wavelengths. The spatial dis-
tribution of IDPs in the Solar System may hold an important key to understanding the evolution of the Solar System 
and material transportation within it. The number density of IDPs can be expressed as n(r) ∼ r

−α , and the expo-
nent α ∼ 1.3 was obtained by previous observations from interplanetary space by Helios 1/2 and Pioneer 10/11 
in the 1970s and 1980s. However, no direct measurements of α based on ZL observations from interplanetary space 
outside Earth’s orbit have been performed since then. Here, we introduce initial results for the radial profile of the ZL 
at optical wavelengths observed over the range 0.76−1.06 au by ONC-T aboard the Hayabusa2# mission in 2021-
2022. The ZL brightness we obtained is well reproduced by a model brightness, although there is a small excess 
of the observed ZL brightness over the model brightness at around 0.9 au. The radial power-law index we obtained 
is α = 1.30± 0.08 , which is consistent with previous results based on ZL observations. The dominant source of uncer-
tainty arises from the uncertainty in estimating the diffuse Galactic light (DGL).
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Graphical Abstract

Introduction
The zodiacal light (ZL) is sunlight scattered by interplan-
etary dust particles (IDPs) at optical wavelengths, and it 
is a major constituent of the diffuse celestial brightness. 
A continuous supply of IDPs is necessary to sustain the 
diffuse brightness because IDP is removed from the Solar 
System due to the Poynting–Robertson (PR) effect and 
by radiation pressure from the Sun (Wyatt and Whipple 
1950; Burns et al. 1979). Possible sources for this supply 
are asteroid collisions (Dermott et  al. 1984; Schramm 
et  al. 1989; Tsumura et  al. 2010) or cometary ejections 
(Liou et  al. 1995; Nesvorný et  al. 2010; Yang and Ishig-
uro 2015), but the relative ratios of the contributions 
from these sources are still unknown. Dust of interstellar 
origin also contributes ∼10% to the total amount of IDP 
(Rowan-Robinson and May 2013). Thus, observational 
constraints that can tell the differences among these 
sources are important for a better understanding the ori-
gin and characteristics of IDPs and of the way planetary 
and exoplanetary systems evolve with time (Leinert et al. 
1998; Lasue et al. 2020).

Historically, extensive ZL observations were conducted 
from ground-based telescopes at high-altitude sites in the 
1960 s and 1970 s (Dumont and Sanchez 1975; Levasseur-
Regourd and Dumont 1980), but the accuracy of these ZL 
observations is limited due to atmospheric emission. In 
contrast, space-based platforms eliminate atmospheric 
contamination and provide precise ZL measurements 
(Murdock and Price 1985; Matsuura et  al. 1995; Matsu-
moto et  al. 1996; Tsumura et  al. 2010, 2013a; Buffington 
et al. 2016; Korngut et al. 2022; Takimoto et al. 2022, 2023). 
The ZL is the only sky-brightness component that is not 
fixed on the celestial sphere. In general, the ZL is smoothly 
distributed, and its small-scale spatial structures are only at 
the level of a few percent owing to the smooth spatial dis-
tribution of IDP as a smooth cloud (Pyo et al. 2012). The 

plane of symmetry of the smooth cloud is slightly inclined 
to the ecliptic plane because of the Jovian orbit. Seasonal 
variations in ZL occur for an Earth-based observer due to 
the orbital motion of the Earth, which changes the helio-
centric distance and the position of the observer with 
respect to the symmetry plane. A detailed IDP distribution 
model has been established based on the seasonal variation 
of the ZL (Kelsall et al. 1998; Wright 1998).

The number density (n) of IDP is presumed to be of a 
form that is separable into radial and vertical terms:

 where n0 is the reference number density of IDPs in 
the symmetry plane at the heliocentric distance r0 , and 
f (β) denotes the vertical distribution as a function of an 
elevation angle β from the symmetry plane (Giese et al. 
1986). The assumption that the vertical distribution of 
the IDPs depends only on β is suggested by the fact that 
the PR effect does not affect the orbital inclinations of 
particles as they spiral into the Sun. The radial power-law 
is induced by the radial distribution expected for parti-
cles under the influence of the PR effect, which results 
in α = 1 for dust bound in a circular orbit (Burns et  al. 
1979). When dust-grain sizes are reduced by sublima-
tion near the Sun, such smaller dust particles are expelled 
from the Solar System as β-meteoroids by radiation 
pressure (Zook and Berg 1975; Wehry and Mann 1999; 
Krüger and Grün 2014). The radial profile of β-meteor-
oids is expected to follow a power law with α = 2 (Szalay 
et  al. 2020). The relative ratio of these two components 
remains an open issue and may hold an important key 
for understanding the evolution of the IDP distribution 
(Leinert and Grün 1990; Mann et al. 2004).

(1)n(r,β) = n0

(

r

r0

)−α

f (β),
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The ZL brightness IZL can be modeled as the integral of 
scattered sunlight along the line of sight:

 where F⊙(r) ∼ r−2 is the solar flux at the distance r from 
the Sun, A is the albedo of the IDP, �(θ) is the phase 
function at the scattering angle θ , and dl is an incre-
ment along the line of sight. If the scattering properties 
(size and albedo) of IDPs do not change significantly 
with heliocentric distance, the heliocentric dependence 
of ZL toward the antisolar direction on the symmetry 
plane can be written as IZL ∼ r−(α+1) . If the line of sight 
is not oriented in the antisolar direction, the heliocentric 
dependence of IZL becomes much more complex, since it 
depends on the phase function �(θ) for which θ will vary. 
In addition, a heliocentric dependence of the local albedo 
of the IDPs has also been reported (Levasseur-Regourd 
et al. 1991), which makes the heliocentric dependence of 
IZL even more complex.

Direct observations of the radial power-law index α 
based on ZL observations were performed from space-
craft outside Earth’s orbit in the 1970 s and 1980 s. Pio-
neer 10/11 observations of the ZL at 1 −3.3 au gave α =

1−1.5. More specifically, a single power-law model with 
α ∼ 1 and a cutoff near 3.3  au gives the best fit to the 
observational data, although a two-component model 
with α ∼ 1.5 and increased IDP in the asteroid belt fits 
the data equally well (Hanner et  al. 1976). Helios 1/2 
observations of the ZL at 0.3-1  au gave α = 1.3± 0.05 , 
although α = 1.35 gives a better fit for small solar elonga-
tions ( < 50◦ ), and α = 1.25 is more appropriate for large 
solar elongations ( > 100◦ ) (Leinert et al. 1981, 1982). ZL 
observations from spacecraft outside Earth’s orbit have 
not been performed following these missions. The Japa-
nese Venus orbiter Akatsuki tried but could not detect 
the ZL due to insufficient cooling of the sensor (Satoh 
et al. 2016).

Some IDP distribution models were developed based 
on observations of the all-sky ZL brightness and its 
seasonal variation from geocentric orbit. In particu-
lar, observations from the Cosmic Background Explorer 
(COBE) yielded α = 1.34 ± 0.022 (Kelsall et  al. 1998) 
and α = 1.22 (Wright 1998), and observations by AKARI 
gave α = 1.59± 0.02 (Kondo et al. 2016). These observa-
tions of the ZL were performed at 1 au, so the accuracy 
in determining α was worse than that obtained by direct 
observations from interplanetary space.

The value of α has also been determined based on 
the observations of the inner ZL or F-corona. Observa-
tions of the inner ZL by Clementine from lunar orbit 
while the Sun was in eclipse behind the Moon yielded 

(2)IZL =

∫

F⊙(r)n(r)A�(θ)dl,

α = 1.45± 0.05 (Hahn et  al. 2002). Values of α from 
1.31 to 1.35 were obtained from F-corona observations 
at elongations ranging from 0.07 to 0.45 au from the 
Sun (Stenborg et al. 2018) by the Heliospheric Imager-1 
(Eyles et al. 2009) onboard the Solar TErrestrial RElations 
Observatory-A (STEREO-A) orbiting the Sun at approx-
imately 1  au. In addition, α = 1.31 was obtained by 
F-corona observations between 0.1 and 0.4 au (Howard 

Fig. 1 A comparison of the relative transmissivity. The solid line 
shows the bandpass of ONC-T/Hayabusa2# wide-band (Tatsumi et al. 
2019), the dashed line shows the bandpass of Gaia G-band (Riello 
et al. 2021), and the dotted line shows the bandpass of LORRI/New 
Horizons (Cheng et al. 2008)

Fig. 2 Hayabusa2# orbit in the J2000EC inertial frame 
before the Earth swing-by on December 2027. The regions suitable 
for ZL observations are shown in red, and unsuitable regions owing 
to pointing toward the Galactic plane (Galactic latitude < 20◦ ) 
and the Galactic center (Galactic longitude < 20◦ ) are shown in blue 
and green, respectively
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et al. 2019) by the Widefield Imager for Solar Probe inner 
telescope (WISPER-1) (Vourlidas et  al. 2016) onboard 
the Parker Solar Probe (PSP) when it passed perihelion 
at 0.16−0.25 au. These results are limited to dust distribu-
tions close to the Sun.

A technique for studying the distribution and proper-
ties of IDPs independent of the ZL observation is in situ 
dust counting using dedicated dust detectors. The size 
distribution of IDPs was studied by the in  situ dust-
counting method and it was suggested that large (10-
100 µ m) dust is dominant around 1 au (Grün et al. 1985; 
Divine 1993). The ZL brightness is indicative of the IDP 
distribution in the inner Solar System, where the IDP 
density is substantial, and the IDP distribution derived 
from these ZL observations is confined to the inner Solar 
System ( < 5  au). Conversely, dust distribution in the 
outer Solar System has been investigated by the in  situ 
dust-counting method (Poppe et  al. 2019; Bernardoni 
et al. 2022).

This paper introduces the IDP distribution based on 
the ZL observations from the Hayabusa2# mission at 
0.76−1.06 au performed in 2021-2022. These are the first 

successful observations of the ZL from outside Earth’s 
orbit in the last 40 years.

Data acquisition and reduction
Hayabusa2# overview
Hayabusa2 is the second Japanese asteroid-sample-
return mission. The Hayabusa2 spacecraft was launched 
in December 2014 and successfully arrived at asteroid 
(162173) Ryugu in June 2018. After extensive scientific 
observations for ∼1.5 years, it departed from Ryugu in 
November 2019 and successfully brought the capsule 
containing Ryugu samples back to Earth in December 
2020 (Tsuda et al. 2022; Tachibana et al. 2022). With the 
successful main mission of the sample return completed, 
an extended mission named Hayabusa2# (SHARP; Small 
Hazardous Asteroid Reconnaissance Probe) was initi-
ated to explore new asteroids; it will perform a fly-by of 
(98943) 2001 CC21 in July 2026 and a rendezvous with 
1998 KY26 in July 2031 (Mimasu et al. 2022). Some scien-
tific observations including ZL observations will be per-
formed during this long cruising phase (Hirabayashi et al. 
2021).

Fig. 3 a Heliocentric distance of the Hayabusa2 spacecraft and b its ecliptic longitude, c Galactic longitude, and d Galactic latitude of the antisolar 
direction during the period from April 2021 to March 2023. The regions suitable for ZL observations are shown in red, and unsuitable periods owing 
to pointing toward the Galactic plane (Galactic latitude < 20◦ ) and the Galactic center (Galactic longitude < 20◦ ) are shown in blue and green, 
respectively
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The Optical Navigation Camera (ONC) onboard Haya-
busa2 consists of one telescopic camera (ONC-T) and 
two wide-angle view cameras (ONC-W1/W2) (Kameda 
et al. 2017; Suzuki et al. 2018; Tatsumi et al. 2019; Kouy-
ama et al. 2021; Yamada et al. 2023), and it was used for 
both global and local high-resolution optical observa-
tions of Ryugu (Sugita et  al. 2019). The ONC was care-
fully calibrated both before and after launch, and it 
remains in good condition after contact with the surface 

of Ryugu during the two touchdowns for sampling. In 
this study, we used ONC-T for the ZL observations. The 
field of view of ONC-T is 6.27× 6.27 deg2 , which is cov-
ered with a 1024 × 1024  pixel region of a CCD detec-
tor (Kameda et  al. 2017). The longest exposure time 
of ONC-T was 178  s, which we used for the ZL obser-
vations in this study. ONC-T has a wheel system that 
rotates seven color-bandpass filters and one wide clear 

Table 1 Spacecraft positions and observed fields

1 R =

√

X2 + Y2

2 Ecliptic coordinate
3 Galactic coordinate
4 These data were excluded from the analysis owing to the presence of additional stray light (see "Stray-light subtraction" section)

Date Position of spacecraft [au] Observed field [deg]

X Y Z R1 (RA, Dec) (Elon, Elat)2 (Glon, Glat)3 Solar elongation

2021-08-23 1.023 0.252 – 0.069 1.053 (15.93, -3.65) (13.25, – 9.64) (130.58, – 66.34) 174.10

2021-09-20 0.821 0.633 – 0.047 1.037 (37.06, 5.46) (36.52, – 8.71) (162.23, – 49.88) 173.81

2021-11-29 – 0.261 0.846 0.035 0.886 (104.42, 18.72) (103.67, – 4.03) (196.79, 9.75) 172.78

2021-12-06 – 0.375 0.781 0.042 0.866 (112.96, 18.16) (111.80, – 3.56) (200.79, 16.88) 172.57

2021-12-28 – 0.664 0.468 0.057 0.812 (142.74, 12.54) (141.02, – 2.05) (219.94, 41.00) 172.84

2022-01-244 – 0.774 – 0.067 0.055 0.777 (198.38, 3.56) (195.57, 10.49) (316.49, 65.85) 167.64

2022-02-144 – 0.625 – 0.474 0.037 0.784 (204.83, – 14.26) (208.19, – 3.68) (320.08, 47.01) 169.01

2022-04-18 0.451 – 0.810 – 0.048 0.927 (297.25, – 31.48) (293.38, -10.22) (8.92, -25.26) 170.79

2022-05-16 0.834 – 0.535 – 0.071 0.991 (327.89, – 25.02) (321.52, – 11.33) (25.45, – 49.77) 170.76

2022-06-20 1.039 – 0.024 – 0.076 1.039 (357.99, – 13.31) (352.80, – 11.40) (74.84, – 70.40) 170.74

2022-07-04 1.028 0.193 – 0.071 1.046 (8.76, – 8.29) (4.74, – 11.08) (110.55, – 70.76) 170.74

2022-08-01 0.854 0.587 – 0.051 1.036 (30.13, 1.62) (28.62, -10.00) (155.74, – 56.78) 170.76

2022-08-29 0.505 0.858 – 0.021 0.996 (53.46, 10.57) (53.73, -8.38) (174.72, – 35.49) 170.80

2022-10-17 – 0.318 0.811 0.038 0.871 (106.56, 17.81) (105.80, -4.72) (198.51, 11.20) 170.88

2022-11-14 – 0.683 0.415 0.057 0.799 (144.53, 10.87) (143.23, -3.08) (222.98, 41.84) 170.95

2022-12-12 – 0.750 – 0.154 0.052 0.766 (184.25, -5.34) (186.02, -3.21) (287.28, 56.48) 171.00

Fig. 4 Dataset acquired for one ZL observation. One dataset includes one bias image B(x, y), three wide-band images Wi(x , y) ( i =1-3), two v-band 
images Vj(x , y) ( j =1-2), and their respective optical-black images (Bb(x, y), Wbi(x , y) , and Vbj(x , y))
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filter (a panchromatic glass window). We used the wide-
band filter ( � = 612 nm and �� = 448 nm, see Fig. 1) for 
the ZL observations, with a v-band filter ( � = 550 nm and 
�� = 28 nm) for stray light subtraction (see "Stray-light 
subtraction" section).

Observation fields
The Hayabusa2 spacecraft followed an elliptical orbit 
over the range 0.76−1.06 au before the Earth swing-by on 
December 2027, as shown in Fig. 2 and 3 (Mimasu et al. 
2022). The spacecraft maintained an attitude in which the 
solar-array paddle (+Z direction) was pointed toward the 
Sun during this period, and we performed the ZL obser-
vations during periods when the ion engines were not in 
operation. Since ONC-T points toward the -Z direction, 
the ZL is observed toward the antisolar direction. This 
is an advantage of our ZL observations over past obser-
vations because previous ZL observations in interplan-
etary space were made at various solar elongation angles, 
making it difficult to distinguish whether the ZL changes 
were due to changes in the heliocentric distance or in the 
solar elongation. In our ZL observations, the change in 
ZL brightness due to the solar elongation was minimized 
by observing the ZL at a nearly constant solar elongation 
(see Table 1).

Stray light is produced when sunlight hits the radia-
tor that cools the ONC-T detector from a certain range 
of directions (Suzuki et  al. 2018; Tatsumi et  al. 2019). 
Thus, the ZL observations need to be conducted in a 
“stray-light-avoidance attitude”, in which the -X side and 
+Y side of the spacecraft are illuminated by the Sun. For 
this reason, the actual directions of our ZL observations 
are shifted from the antisolar direction by ∼ 10 degrees. 
Table 1 summarizes the observed fields and the position 
of the spacecraft when the observations were conducted.

Periods when the observable direction (antisolar direc-
tion) is pointed toward either the Galactic plane or the 
Galactic center are not suitable for ZL observations 
because the Galactic brightness is too strong (see "Inte-
grated starlight" and "Diffuse Galactic light" sections). 
Thus, we define as unsuitable ZL observation periods 
those in which the antisolar direction is pointing toward 
(1) Galactic latitude < 20◦ (the blue zones in Figs. 2 and 
3) or (2) Galactic longitude < 20◦ (the green zones in 
Figs. 2 and 3). The ZL observations were made approxi-
mately once a month during the time suitable for ZL 
observations (the red zones in Figs. 2 and 3).

Acquired images
The ONC-T detector has a 1024 × 1024 pixel imaging 
region, with a 16× 1024 pixel masked regions termed 
“optical black” on each side as a dark reference (Kameda 

et  al. 2017). The two optical-black images are com-
bined and treated as one 32× 1024 pixel optical-black 
image. Raw images acquired by ONC-T are processed 
in a sequence of steps to calibrate the image data. In this 
work, we used L2a-level images, which are raw FITS 
images with header information containing the space-
craft system housekeeping data and ONC status data (the 
temperatures of the detector, lens system, and electronics 
as well as the voltages of the electronics, etc.) (Tatsumi 
et  al. 2019). The signal from each pixel is provided in 
16-bit digital numbers (DN).

One ZL observation dataset includes one bias image 
B(x,  y), three wide-band images Wi(x, y) ( i =1-3), two 
v-band images Vj(x, y) ( j =1-2), and their respective 
optical-black images (Bb(x, y), Wbi(x, y) , and Vbj(x, y) ), 
as shown in Fig.  4. For the ZL observations on 2021-
11-29, 2021-12-06, 2021-12-28, 2022-01-24, and 2022-
02-14, as part of the calibration operations we acquired 
two data sets to monitor the stability of the ONC-T 
sensitivity after it was turned on.

Dark‑current subtraction
Dark-current subtraction is essential for the measure-
ment of diffuse radiation such as the ZL. We estimated 
the dark current for each image in our dataset from the 
corresponding dark image, which we obtained from 
the optical-black image by subtracting a bias image 
( Wbi(x, y)− Bb(x, y) and Vbj(x, y)− Bb(x, y) ). We then 
created a histogram of the dark image, and we take its 
peak position to be the value of the dark current for that 
image. We fitted the histogram of the dark image with a 
Gaussian function. The peak position of the histogram 
corresponds to the mode of the dark image. Using this 
Gaussian-fitting procedure, we eliminated bad pixels 
such as those due to leakage of light from the imaging 
region or due to hot pixels caused by cosmic-ray hits. We 
expressed the resulting dark-current values for the wide-
band and v-band images as IWi

dark
 and IVj

dark
 , respectively. 

As an example, we found the dark current of the first 
bias-subtracted optical-black image taken on 2022-08-29 
to be IW1

dark
= 5.92 DN from the peak position of the histo-

gram, as shown in Fig. 5.
Next, the obtained dark current and the bias image 

are subtracted from the imaging region, yielding three 
wide-band subtracted images and two v-band subtracted 
images in one data set. From the wide-band images, we 
generated a single reduced image W(x, y) from three sub-
tracted images by taking the median of each pixel:

 This median procedure removes many hot pixels caused 
by cosmic-ray hits. Since there are only two v-band 

(3)W (x, y) = median

[

Wi(x, y)− (B(x, y)+ I
Wi

dark
)

]

.
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images, we cannot use the median procedure for them. 
Instead, we generated a single reduced image V(x, y) by 
taking the minimum of each pixel to reduce hot pixels 
caused by cosmic-ray hits:

Stray‑light subtraction
Since stray light occurs in ONC-T images when the 
spacecraft is at certain attitudes (Suzuki et al. 2018; Tat-
sumi et  al. 2019), we performed all ZL observations in 
stray-light-avoidance attitudes (see  "Observation fields" 
section). However, weak stray light remains even in this 
case. Figure 6a and b shows the reduced wide-band image 
W(x, y) and v-band image V(x, y) obtained on 2021-08-
23, respectively, and the stray-light patterns can be seen 
clearly in these images. It is known that the intensity and 
pattern of the stray light do not depend on the filter selec-
tion (Suzuki et al. 2018). Thus, we subtracted the v-band 
image V(x,  y) as a stray-light reference frame from the 
wide-band image W(x, y) to remove the remaining stray 
light, as shown in Fig.  6c and d. Since the ZL signal in 
the v-band image is estimated to be less than 1 DN, there 
is little impact on the scientific analysis of the ZL due to 
this stray-light-removal procedure.

We found an additional stray-light pattern in the data 
obtained on 2022-01-24 and 2022-02-14, as shown in 
Fig. 7. Because this stray light appears only in the wide-
band image, it cannot be removed by the v-band subtrac-
tion procedure. The source of this additional stray light 
is thought to be light scattered at the inner wall of the 
entrance hole of the ONC-T hood, as is indicated by the 
shape of the stray light (circular pattern). For this reason, 
we excluded data from these 2 days from subsequent 
analyses.

Flat‑field correction
The stray-light-subtracted image W (x, y)− V (x, y) clearly 
shows a limb-darkening pattern (Fig. 6c and d), which is 
the same pattern as in the flat-field image (Fig. 6e) (Tat-
sumi et  al. 2019; Kameda et  al. 2021b). This fact means 
that the detector is uniformly illuminated from the front 
of the optics, showing that the sky brightness has cer-
tainly been detected by the ONC-T. We corrected this 
limb-darkening pattern by dividing the image by the nor-
malized flat-field image FLAT(x, y), as shown in Fig.  6f. 
Since we have not created a wide-band flat-field image, 
we used the v-band flat-field image instead. The wave-
length dependence of the flat-field image is negligible 
because the detector is identical for both bands. The 
image obtained after the flat-field correction SKY(x,  y) 

(4)V (x, y) = min

[

Vj(x, y)− (B(x, y)+ I
Vj

dark
)

]

.

is the final reduced image of the sky used for scientific 
analysis:

Sensitivity calibration using stars
Degradation of the ONC-T sensitivity was reported after 
the two touchdown operations on the asteroid Ryugu 
(Kouyama et al. 2021; Yamada et al. 2023). Consequently, 
we monitored and calibrated the sensitivity of the ONC-T 
in our data using the field stars in our images. For this 
sensitivity calibration, we used the W(x,  y)/FLAT(x,  y) 
image and not the SKY(x,  y) image. This is because the 
flux for the bright stars used in this calibration process 
in case of the SKY(x, y) image is unsuitable for the sensi-
tivity calibration as the v-band signal of the bright stars 
has been subtracted in the SKY(x,  y) image. Although 
the W(x,  y)/FLAT(x,  y) image includes the stray light 
described in "Stray-light subtraction" section, it can 
be removed by the aperture photometry procedure 
described below.

The sensitivity-calibration procedure for the wide-band 
is as follows. First, we solved the astrometry of the images 
from the distribution of the stars using the astrometry-
calculation code Astrometry.net (Lang et al. 2010). Next, 
we matched the bright stars in the image with those in 
the Gaia Data Release 3 (DR3) catalog (Gaia Collabora-
tion 2016, 2022). This catalog is suitable for our dataset 
because the wavelength coverage of Gaia’s G-band, which 
is an unfiltered, white-light photometric band, is similar 
to that of our wide-band filter on ONC-T (Fig.  1). The 
Gaia DR3 catalog contains around 1.806× 109 sources, 
with a limiting magnitude of about G ∼ 21  mag, with 
uncertainties of ∼0.3 mmag for G < 13 mag, 1 mmag at 
G = 17  mag, and 6  mmag at G = 20  mag. We selected 
stars that meet the following criteria: 

(a) The selected stars are in regions with stray-light 
intensities less than 20 DN in the V(x, y) image,

(b) The selected stars are in the region with normalized 
flat-field values greater than 0.8, and

(c) The selected stars have fluxes between the 6th and 
9th AB magnitude in the G-band in the Gaia DR3 
catalog.

Criteria (a) and (b) reduce the uncertainty caused by the 
reduction processes of stray-light subtraction and flat-
field correction. The fraction of the area satisfying both 
criteria (a) and (b) is approximately 44% of the total 
detector area in the central region of the detector. Cri-
terion (c) reduces the uncertainty in the photometry by 

(5)SKY (x, y) =
W (x, y)− V (x, y)

FLAT (x, y)
.



Page 8 of 24Tsumura et al. Earth, Planets and Space          (2023) 75:121 

selecting stars that have sufficient signal but are not satu-
rated. The ONC-T detector is known to be linear up to ∼
3000 DN, with < 1 % deviation (Tatsumi et al. 2019), and 
the signal value of even the brightest pixel in an image of 
a 6th-magnitude star is approximately within this range.

For aperture photometry, a boxed region of 41× 41 
pixels centered on the selected star is cut out, and this 
boxed region is divided into a region centered on the star 
and the surrounding background region, as shown in 
Fig. 8. The radius of the circle used to cut out the star at 
the center is adjusted according to the G-band brightness 
of this star in the catalog. Next, all pixels greater than 
20  DN are masked, as they are considered to be other 
astronomical objects (stars and galaxies) or hot pixels 
caused by cosmic-ray hits. We applied additional masks 
using a σ-clipping procedure to remove the remaining 
bright pixels. Then we examined all the masked images 
by eye and masked any additional remaining bad pixels. 
Subsequently, we calculated the background brightness 
and its noise by computing the average and standard 
deviation of the masked background region, and we sub-
tracted the background brightness from the star region. 
We then calculated the flux from the central star by cal-
culating the sum of the masked and background-sub-
tracted star region and estimated its uncertainty based 
on the background noise. Figure  9 shows the relation 
between the G-band fluxes of the selected stars from the 

catalog and their detected signal in the 2022-12-12 data. 
A good linear relation between them exists in all the 
observed data, and we obtained the sensitivity in units of 
(DN/sec)/(W/m2/µm/sr) by taking their ratio.

Figure  10 (left) shows the sensitivity calculated from 
our observed data as a function of time. The sensitivity 

Fig. 5 Dark-current estimation. A histogram of the first 
bias-subtracted optical-black image, Wb1(x , y)− Bb(x , y) , obtained 
on 2022-08-29 (black) and its best-fit Gaussian function (red). We 
obtained the dark current as IW1

dark
= 5.92 DN from the peak position 

of this histogram

Table 2 Obtained sky brightness and backgrounds with their uncertainties

1 Brightness in �I� and its statistical and systematic uncertainty in nW/m2/sr
2 Correction factor used to obtain the ZL brightness toward the antisolar direction in the ecliptic plane (see "Absolute ZL brightness" section)
3 Limiting magnitude in the G-band (see "Limiting magnitude" section)
4 Two data sets were acquired on the same day (see "Acquired Images" section)

Date SKY1 ISL1 DGL1 ZL1 Corr. factor2 limmag3

2021-08-23 961.1 ± 23.2 ± 29.3 28.1 ± 2.2 34.2 ± 2.6 ± 27.6 889.3 ± 16.1 ± 40.3 1.142 12.79 ± 0.18

2021-09-20 1047.8 ± 6.0 ± 31.9 34.2 ± 2.7 33.2 ± 2.5 ± 25.9 958.4 ± 8.8 ± 41.1 1.135 12.80 ± 0.19

2021-11-294 1922.1 ± 12.1 ± 58.6 299.4 ± 15.1 46.9 ± 3.3 ± 30.3 1602.5 ± 17.4 ± 65.9 1.091 12.63 ± 0.16

2021-11-294 1937.1 ± 10.8 ± 59.0 299.1 ± 15.1 46.9 ± 3.3 ± 30.3 1619.5 ± 17.3 ± 66.3 1.091 12.63 ± 0.16

2021-12-064 1864.2 ± 9.8 ± 56.8 156.1 ± 8.4 32.5 ± 2.3 ± 22.1 1670.6 ± 11.3 ± 61.0 1.092 12.70 ± 0.17

2021-12-064 1819.9 ± 9.4 ± 55.4 155.8 ± 8.6 32.5 ± 2.3 ± 22.1 1642.8 ± 11.7 ± 59.7 1.091 12.70 ± 0.17

2021-12-284 1882.5 ± 10.1 ± 57.4 45.0 ± 3.1 24.4 ± 1.8 ± 18.6 1809.2 ± 7.9 ± 60.3 1.092 12.72 ± 0.17

2021-12-284 1885.6 ± 10.0 ± 57.4 45.7 ± 3.1 24.4 ± 1.8 ± 18.6 1770.7 ± 8.2 ± 60.4 1.092 12.71 ± 0.17

2022-04-18 1599.7 ± 11.0 ± 48.7 186.3 ± 8.3 68.7 ± 5.0 ± 49.1 1358.8 ± 12.3 ± 69.2 1.172 12.69 ± 0.17

2022-05-16 1052.9 ± 18.9 ± 32.1 57.0 ± 3.8 16.7 ± 1.3 ± 13.0 988.3 ± 9.3 ± 34.6 1.202 12.76 ± 0.18

2022-06-20 857.3 ± 32.7 ± 26.1 31.8 ± 2.4 15.1 ± 1.2 ± 12.2 806.1 ± 13.9 ± 28.8 1.198 12.74 ± 0.18

2022-07-04 928.0 ± 9.4 ± 28.3 27.9 ± 2.1 25.7 ± 2.0 ± 20.9 850.2 ± 8.0 ± 35.2 1.190 12.77 ± 0.18

2022-08-01 994.2 ± 15.2 ± 30.3 31.7 ± 2.4 17.2 ± 1.3 ± 13.7 927.5 ± 8.2 ± 33.2 1.172 12.79 ± 0.18

2022-08-29 1196.4 ± 12.8 ± 36.4 38.7 ± 2.7 132.9 ± 9.9 ± 99.2 1002.4 ± 14.2 ± 105.7 1.147 12.79 ± 0.18

2022-10-17 1984.2 ± 9.4 ± 60.4 251.7 ± 12.4 45.2 ± 3.2 ± 29.6 1698.3 ± 14.6 ± 67.3 1.102 12.62 ± 0.16

2022-11-14 1854.4 ± 9.3 ± 56.5 44.5 ± 2.9 20.0 ± 1.5 ± 15.2 1792.9 ± 7.6 ± 58.5 1.114 12.69 ± 0.17

2022-12-12 1997.9 ± 7.8 ± 60.9 37.0 ± 2.6 23.6 ± 1.8 ± 18.8 1923.5 ± 6.8 ± 63.7 1.121 12.70 ± 0.17
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obtained after the return to the Earth (Yamada et  al. 
2023) is also shown. This figure shows that the degrada-
tion of the sensitivity has stopped and that the sensitiv-
ity has remained almost constant since the return to the 

Earth. The average and standard deviation of the sensi-
tivity after the σ-clipping procedure is 16095± 490 (DN/
sec)/(W/m2/µm/sr) (red solid and dashed lines, respec-
tively, in Fig.  10 left), which we applied to all the data 
to obtain the sky brightness of the wide-band images. 
We treated the standard deviation of the sensitivity as a 
systematic uncertainty (see "Field-variance correction" 
section).

We applied the same sensitivity-calibration procedure 
to the v-band data (V(x, y)/FLAT(x, y) images) to check 
the consistency of the result because the wide-band data 
and v-band data share the same detector. Gaia does not 
have a V-band filter, but it does have a blue band (BP) 
and a red band (RP), and the V-band magnitude can be 
estimated from the BP and RP magnitudes (Riello et  al. 
2021). In the selection of stars for the v-band calibration, 
conditions (a) and (b) are the same as for the wide-band 
calibration, and condition (c) selects stars brighter than 
8th mag in the converted V-band. Figure 10 (right) shows 
the sensitivity profile of the v-band, and we confirmed 
that the sensitivity remained constant in our dataset. 

Fig. 6 Data-reduction procedure. a The wide-band image generated by taking the median of the three dark-subtracted wide-band images. 
b The v-band image generated by taking the minimum of two dark-subtracted v-band images as a reference frame for the stray light. c The 
stray-light-subtracted image W(x , y)− V(x , y) . d Same as c. e A normalized flat-field image (Suzuki et al. 2018). f The flat-field-corrected image 
SKY(x, y), which is the final reduced image of the sky used for scientific analysis

Fig. 7 The additional stray light pattern found in the data obtained 
on 2022-01-24 and 2022-02-14
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The sensitivity and its 1 σ uncertainty we obtained for the 
v-band are 906± 37 (DN/sec)/(W/m2/µm/sr).

Point‑spread function
We obtained a template for the point-spread function 
(PSF) of the ONC-T wide-band image by adding the 
images of several bright stars. First, as suitable images 
for making the PSF template, we selected 56 objects with 
G-band magnitudes between 6th mag and 8th mag that 
have clean stellar images, with few bad pixels or with-
out other objects around them. Then, we aligned these 
images with 0.1 pixel resolution and added them together 
to obtain the PSF template. Figure 11 shows the resulting 
PSF template and its radial profile with 0.1 pixel resolu-
tion. The full-width half-maximum (FWHM) of the PSF 
is 2.00 pixels, which is consistent with previous measure-
ments (Kouyama et al. 2021).

Fig. 8 Aperture photometry of a star, as used for sensitivity calibration. A boxed region of 41× 41 pixels centered on the selected star 
from the catalog is cut out from the W(x, y)/FLAT(x, y) image (left), and it is then divided into a region containing the central star (center), which 
is used for the aperture photometry of the star, and the surrounding background region (right), which is used to estimate the background 
brightness and its noise

Fig. 9 The sensitivity calibration. The linear relationship 
between the G-band flux of the selected stars and their detected 
signals in the W(x, y)/FLAT(x, y) image of the 2022–12-12 wide-band 
data as an example of the sensitivity calibration. The red line shows 
the best fit to the data, and the dashed lines show ±1σ deviations

Fig. 10 Sensitivity variation of the wide-band (left) and v-band (right) images. The red solid lines show the average of these sensitivities and the red 
dashed lines show their 1σ standard deviations. The black dashed lines show the sensitivity after the return to Earth (Yamada et al. 2023)
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Sky brightness
We obtained the sky brightness as the signal value of 
dark pixels with no stars nor hot pixels by cosmic-ray 
hits in the SKY(x, y) image, using the histogram method 
employed to determine the dark current described in 
"Dark-current subtraction" section. We created a his-
togram of the SKY(x,  y) image, including stars and hot 
pixels, and obtained the best-fit Gaussian curve. Fig-
ure  12 shows the histogram of the SKY(x, y) image and 
its best-fit Gaussian curve for the 2022-10-17 data. Since 
the SKY(x,  y) image is dominated by dark pixels with 
no stars nor hot pixels, the peak of the pixel histogram 
of the SKY(x,  y) image represents the sky brightness. 
We separate the higher signal tail of bright stars and the 
dark sky signals in the pixel histogram by the Gaussian 
fitting as shown in Fig.  12, and we treated the 1 σ error 
in the peak position as the statistical uncertainty in the 

sky brightness. We converted the resulting sky bright-
ness from DN units to �I� in nW/m2/sr units by applying 
the calibration factor obtained in "Sensitivity calibration 
using stars" section. Using this procedure, the system-
atic uncertainty in the calibration factor is transferred 
to a systematic uncertainty in the sky brightness. Table 2 
summarizes the obtained sky brightness and its statistical 
and systematic uncertainties.

At this point, the detection limit has not been deter-
mined (this is obtained in the next subsection using the 
sky brightness and its standard deviation). As it is not 
known how faint stars should be masked based on the 
star catalog, we determined the sky brightness by cre-
ating a histogram of the entire SKY(x, y) image without 
masking the stars. This method worked well because 
the number of pixels observing dark sky is much larger 

Fig. 11 Point-spread function. The PSF and its radial profile with 0.1 pixel resolution are shown on a linear scale (left) and a logarithmic scale (right)

Fig. 12 Sky brightness. A histogram of the pixel signals of the 2022–10-17 data is shown on the vertical axis with a linear scale (left) 
and a logarithmic scale (right). The red curves show the best-fit Gaussian functions
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than the number observing stars and other astronomi-
cal objects. Note that the stars detected in the images 
are masked when we determine the ZL as described in 
"Zodiacal light" section.

Limiting magnitude
It is important to know the limiting magnitude in our 
observed images because we need to mask the detected 
stars to derive the diffuse brightness of the sky. As shown 
in Fig. 12, the histogram of the SKY(x, y) image has a side 
lobe caused by the detected stars in the images, which 
exceeds the best-fit Gaussian curve. The width ( σ ) of 
the Gaussian corresponds to the standard deviation of 
the fluctuation in the sky brightness, and we define the 
limiting magnitude as the brightness of stars for which 
three pixels in the center of the PSF (Fig. 11) exceed +2σ 
of the sky deviation. We set the uncertainty in determin-
ing the limiting magnitude to be 1 DN, which is equiva-
lent to approximately 0.2 mag uncertainty in the limiting 
magnitude. The limiting magnitude of each image and its 
uncertainty are summarized in Table 2.

Stars brighter than the limiting magnitude were 
extracted from the Gaia DR3 catalog (see "Sensitivity 
calibration using stars" section), convolved with the PSF 
(see "Point-spread function" section), and distributed in 

the image to create a Gaia bright-star image, as shown 
in Fig. 13b. The distribution of stars in this Gaia bright-
star image reproduces well the distribution of the stars 
detected in the image observed by ONC-T (Fig.  13a), 
indicating the validity of the detection limits determined 
by the method described above. We used the Gaia bright-
star image as a stellar mask to conceal stars when obtain-
ing the ZL (see "Zodiacal light" section).

Background subtraction
Integrated starlight
Stars fainter than the limiting magnitude are not detected 
as point sources in the observed images, but the sum of 
the light from those undetected stars, called integrated 
starlight (ISL), contributes to the sky brightness. There-
fore, the ISL must be estimated and subtracted from the 
sky brightness to obtain the ZL.

The ISL image ISL(x,  y) for each field is produced by 
stars fainter than the limiting magnitude extracted from 
the Gaia DR3 catalog, as shown in Fig. 13c. The average 
brightness of each ISL image and its 1σ statistical uncer-
tainty are listed in Table 2. Since the ISL at optical wave-
lengths saturates when the contributions from stars down 
to 20th mag are added (Leinert et  al. 1998), the depth 
of the Gaia DR3 catalog is sufficient. The photometric 

Fig. 13 SKY(x,y) image obtained by ONC-T and ISL image. a A zoom-in image taken by ONC-T. b Gaia bright-star image of the same area 
as panel (a). We obtained this image using stars brighter than the limiting magnitude of the Gaia DR3 catalog, and we used this as a mask 
to conceal the stars detected in the SKY(x,y) image. c Gaia ISL image of the same area as panel (a). We constructed this image using stars fainter 
than the limiting magnitude of the Gaia DR3 catalog. The intensity scale of this image (c) is several times larger because the stars are too faint to be 
seen at the same scale. d Masked image of SKY(x,y) shown in a obtained using the mask image (b)
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uncertainty in the catalog is negligible compared with the 
uncertainty of the limiting magnitude of ONC-T.

Diffuse Galactic light
Diffuse Galactic light (DGL) consists of starlight scat-
tered by interstellar dust in our galaxy (Elvey and Roach 
1937), and it also must be subtracted from the sky 
brightness to obtain the ZL. A method commonly used 
to estimate the DGL is to use its correlation with the 
thermal emission from interstellar dust in the far infra-
red. The intensity map at � =100 µ m, which is a repro-
cessed composite of the COBE and IRAS maps (SFD 
map, Schlegel et al. (1998)), is commonly used as a tem-
plate for the interstellar dust distribution. Thus,

 where �IDGL is the DGL brightness in nW/m2/sr, ISFD is 
the far-infrared intensity at 100 µ m from the SFD map 
in MJy/sr, d(Glat) is a geometric function of the Galactic 
latitude (Glat), and νβ� is the DGL correlation factor in 
(nW/m2/sr)/(MJy/sr). As discussed in Sano et al. (2016b), 
this geometric function is given by:

 where d0 is a normalizing parameter, and g is the asym-
metry factor of the scattering phase function (Jura 1979).

This DGL correlation factor at optical and near-infra-
red wavelengths has been derived in many previous 
studies (Arendt et al. 1998; Witt et al. 2008; Brandt and 
Draine 2011; Ienaka et  al. 2013; Tsumura et  al. 2013b; 
Arai et  al. 2015; Kawara et  al. 2017; Onishi et  al. 2018; 
Symons et  al. 2023), but there are two different results. 
Recently, the values νβ� = 3.54 ± 0.91 (nW/m2/sr)/(MJy/
sr), d0 = 1.76 , and g = 0.61 have been reported from 
results obtained by the Long-Range Reconnaissance 
Imager (LORRI) on New Horizons (Symons et al. 2023). 
These results were obtained at 10–50  au from the Sun, 
where the ZL is negligible. The bandpass of LORRI is also 
similar to that of the wide-band filter of ONC-T (Fig. 1). 
However, this DGL estimate is about 5–10 times smaller 
than many previous results. For example, Kawara et  al. 
(2017) found νβ� = 21.0± 0.9  (nW/m2/sr)/(MJy/sr) and 
d(Glat) = 1 (the geometric function was not considered) 
at 0.65 µ m based on observations from the Hubble Space 
Telescope (HST). In the present work, we treat the DGL 
estimate based on the New Horizons result as a low-level 
DGL estimate, that based on the HST result as a high-
level DGL estimate, and the average of these two DGL 
estimates as a middle-level DGL estimate. We treat the 
difference between the low-level and the high-level DGL 
estimates as a systematic uncertainty.

(6)�IDGL = νβ� · d(Glat) · ISFD,

(7)d(Glat) = d0(1− 1.1g
√

sin |Glat|),

The spatial resolution of the SFD map (6.1 arcmin) is 
insufficient relative to our data from ONC-T (22 arc-
sec). Therefore, we used a far-infrared, all-sky diffuse 
map based on the AKARI all-sky survey (Doi et al. 2015; 
Takita et  al. 2015) in this study. Because these AKARI 
all-sky diffuse maps cover wider wavelength ranges with 
finer spatial resolution and better signal-to-noise ratio 
than the SFD map, they can serve as a new template for 
the DGL estimate, replacing the SFD map. In this study, 
we used the AKARI Wide-S ( � =90 µ m) map, for which 
the spatial resolution is ∼ 1.3 arcmin. One difference 
between these maps is that point sources have not been 
removed from the AKARI Wide-S map, whereas they 
have been removed from the SFD map. Therefore, we 
masked all the point sources included in the AKARI Far-
Infrared Bright Source Catalogue Version 2 (Yamamura 
et al. 2018). Figure 14 compares the SFD map (left) and 
AKARI Wide-S map (center) in the field of 2022-08-23, 
which shows that the AKARI Wide-S map has better spa-
tial resolution than the SFD map.

The publicly available AKARI Wide-S map has a ZL 
remainder that must be subtracted because only the 
smooth cloud component of the ZL has been subtracted 
from the raw data, and other ZL components, such as 
asteroidal dust bands, have not been subtracted (Doi 
et al. 2015). The contribution from the unsubtracted ZL 
components is recognizable in the Wide-S map in the 
low-ecliptic-latitude region that we study in this work. 
There is a good linear correlation between the SFD map 
and the AKARI Wide-S map (Takita et al. 2015), but the 
AKARI Wide-S map at low ecliptic latitudes shows devia-
tions from the linear correlation owing to the residual 
ZL that remains to be subtracted. Therefore, we used 
the data that other ZL components are additionally sub-
tracted from the public AKARI Wide-S map based on a 
ZL asteroidal-dust-band model (Ootsubo et al. 2016). We 
confirmed the good correlation between the SFD map 
and the additionally ZL-subtracted AKARI Wide-S map, 
as shown in Fig. 14 (right). This correlation is fitted by the 
equation:

 where IWide-S is the far-infrared intensity from the 
AKARI Wide-S map in MJy/sr, and a and c are the fit-
ting parameters. We obtained a = 1.54 ± 0.05 and 
c = −1.20± 0.14 MJy/sr in our observation fields, which 
are consistent with the result based on the all-sky data 
(Doi et  al. 2015; Takita et  al. 2015). We converted the 
AKARI Wide-S maps in our observation fields into DGL 
images DGL(x, y) using equations (6) and (8).

(8)ISFD = a× IWide-S + c,
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Another issue in the AKARI Wide-S map is the sky 
coverage. The AKARI all-sky map has > 99% coverage of 
the whole sky, but our observation fields contain regions 
with missing data. We therefore used SFD data for the 
missing regions in the AKARI Wide-S map. The middle-
level DGL brightness based on the AKARI Wide-S map 
and its statistical and systematic uncertainties are listed 
in Table 2.

Extragalactic background light
Extragalactic background light (EBL) arises from emis-
sions integrated from the first era of star production to 
the present day. Recent observations have shown that the 
EBL measured at optical and near-infrared wavelengths 
has an excess over the cumulative light from galaxies 
(Tsumura et al. 2013c; Matsumoto et al. 2015; Sano et al. 
2015, 2016a; Matsuura et  al. 2017; Mattila et  al. 2017; 
Zemcov et al. 2017; Lauer et al. 2022; Symons et al. 2023; 
Windhorst et  al. 2022, 2023), which means that there 
are unknown light sources in the universe. The sources 
for this excess are still under discussion, but some can-
didates that have been proposed include intra-halo light 
(Cooray et al. 2012; Zemcov et al. 2014), primordial black 
holes formed by the collapse of the first halos (Kashlin-
sky 2016), the decay of hypothetical particles (Kohri 
et  al. 2017), nearby black holes observed as faint com-
pact objects (Matsumoto and Tsumura 2019; Matsumoto 
2020), and a warm–hot intergalactic medium (Zhu and 
Wang 2023). We adopted �IEBL = 21.98± 1.83  nW/m2

/sr at � = 0.44−0.87  µ m, as observed by LORRI/New 
Horizons (Symons et al. 2023). We created an EBL image 
EBL(x, y) with all pixels having this value.

Zodiacal light
The ZL is obtained by subtracting the background emis-
sions from the observed sky brightness:

 We first subtracted the ISL image (see "Integrated star-
light" section), DGL image (see  "Diffuse Galactic light" 
section), and EBL image (see  "Extragalactic background 
light" section) from the SKY image (see  "Flat-field cor-
rection" section) to obtain the ZL image, ZL(x, y), and we 
masked the stars detected in the ZL image (see "Limiting 
magnitude" section). As shown in Fig. 13d, this masking 
procedure works well for almost all stars, although the 
peripheries of some of the brightest stars are not masked 
perfectly and are smeared out. We then created a histo-
gram of the area where FLAT(x, y) > 0.5 and stray light 
< 20 DN (see "Sensitivity calibration using stars" section) 

(9)
ZL(x, y) = SKY (x, y)− ISL(x, y)− DGL(x, y)− EBL(x, y).

for each masked ZL image, and we regard its peak posi-
tion and its 1 σ error estimate as the brightness and sta-
tistical uncertainty of the ZL (Fig.  15). The systematic 
uncertainty in the ZL comes from the systematic uncer-
tainties in the calibration and the DGL. Comparing the 
histograms of the masked ZL image (Fig.  15) with the 
SKY image (Fig.  12) shows that the excess of the side 
lobe over the Gaussian has been reduced thanks to the 
stellar masking. There is still a small excess owing to 
the smeared peripheries of the brightest stars and to 
some hot pixels caused by cosmic-ray hits, but this small 
excess has little effect on the peak position of the Gauss-
ian because we performed the Gaussian fitting on data 
within a +2σ range from the peak (the red dashed line in 
Fig. 15). The resulting estimate of the ZL and its uncer-
tainties are listed in Table 2 and shown in Fig. 16 (black).

Discussion
Absolute ZL brightness
We have compared the ZL brightness we observed with 
that predicted by the Kelsall model, which is based on 
observations of the all-sky ZL brightness obtained from 
COBE observations at infrared wavelengths (Kelsall et al. 
1998). We calculated the ZL model brightness using 
the ZodiPy code (San et  al. 2022), which implements 
the Kelsall model. The shortest wavelength for which 
the ZL brightness can be calculated with this model 
is 1.25 µ m, which is outside the range of the ONC-T 
wide-band data used in this study. However, the ZL at 
both 1.25 µ m and optical wavelengths (i.e., the ONC-T 
wide-band filter) results from scattered sunlight, and its 
spectral shape is the same irrespective of ecliptic lati-
tude (Tsumura et  al. 2010). We therefore determined 
the ZL brightness at optical wavelengths by extrapolat-
ing from the model brightness at 1.25 µ m using the solar 

Table 3 Obtained radial power-law index α for each systematic 
uncertainty case

Calibration DGL Value of α

Low Low 1.19± 0.02

Nominal Low 1.22± 0.02

High Low 1.21± 0.02

Low Middle 1.29± 0.02

Nominal Middle 1.28± 0.02

High Middle 1.31± 0.02

Low High 1.38± 0.02

Nominal High 1.37± 0.02

High High 1.42± 0.02
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Fig. 14 Diffuse Galactic Light. Left: DGL image for the field of 2021–08-23 based on the SFD map at � =100 µ m (Schlegel et al. 1998). Center: 
DGL image for the same field based on the AKARI Wide-S map at � =90 µ m (Doi et al. 2015; Takita et al. 2015) after masking the point sources. 
Right: Comparison of the intensities from the SFD map and the AKARI Wide-S map of our observation fields. The red line shows the best fit to this 
correlation

Fig. 15 A histogram of the pixel signals from the masked ZL image of the 2022–10-17 data on a linear scale (left) and a logarithmic scale (right). The 
red curves show the best-fit Gaussian functions, and the red dashed line shows the +2σ distance from the peak position. We performed the fitting 
using data within this range

Table 4 Comparison of the radial power-law index α

1  the Kelsall model is assumed

Value of α Coverage of α Method Observation wavelength Observation site Instrument References

1− 1.5 1–3.3 au ZL observation B, R bands Interplanetary space Pioneer 10/11 Hanner et al. (1976)

1.3± 0.05 0.3–1 au ZL observation U, B, V bands Interplanetary space Helios 1/2 Leinert et al. (1981)

1.34± 0.022 >1 au ZL observation 1.25–240 µm Geocentric orbit COBE Kelsall et al. (1998)

1.22 >1 au ZL observation 1.25–240 µm Geocentric orbit COBE Wright (1998)

1.45± 0.05 0.06–0.6 au F-corona 0.5–0.9 µm Lunar orbit Clementine Hahn et al. (2002)

1.59± 0.02 >1 au ZL observation 9 µ m, 18 µm Geocentric orbit AKARI Kondo et al. (2016)

1.34
1 1–3.3 au ZL observation B, R bands Interplanetary space Pioneer 10/11 Matsumoto et al. (2018)

1.31− 1.35 0.07–0.45 au F-corona 0.63–0.73 µm Heliocentric orbit STEREO-A Stenborg et al. (2018)

1.31 0.1–0.4 au F-corona 0.49-0.74 µm Interplanetary space PSP Howard et al. (2019)

2 0.17–0.7 au Dust counting – Interplanetary space PSP Szalay et al. (2020)

1.30± 0.08 0.76–1.06 au ZL observation 0.39-0.84 µm Interplanetary space Hayabusa2# This work
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spectrum (Gueymard et  al. 2002). This extrapolation 
was performed using the ratio of the solar spectrum at 
0.612 µ m and 1.25 µ m. Since the IDP reflectance varies 
by about 10% between 1.25 µ m and optical wavelengths 
(Tsumura et  al. 2010; Matsuura et  al. 2017; Matsumoto 
et al. 2018), we have assumed a 10% uncertainty in the ZL 
model brightness at optical wavelengths associated with 
this extrapolation. Figure  16 compares the observed ZL 
brightness with the model brightness, which shows that 
they are consistent with each other within the ranges of 
uncertainties.

Gegenschein appears in the antisolar direction, and the 
Kelsall model does not include it. However, our observed 

fields are shifted from the antisolar direction by ∼ 10 
degrees (see Table 1), and the Gegenschein is negligible 
there (Ishiguro et al. 2013).

There are small excesses of the observed ZL brightness 
over the model brightness at around 0.9 au, as shown in 
Fig. 16. This structure may be real, but we cannot confirm 
this at this point due to the paucity of data points. Verifi-
cation will require the accumulation of data from future 
observations.

Field‑variance correction
Since the ZL brightness measurements were obtained at 
different ecliptic latitudes and solar elongations, a correc-
tion for the field variance is necessary to compare them 
under the same conditions in order to obtain the radial 
profile of the ZL. We performed this field-variance cor-
rection based on the Kelsall model. We calculated the 
seasonal average of the ZL model brightness toward the 
antisolar direction in the ecliptic plane at various helio-
centric distances, as shown in Fig. 17 (left, red). The radial 
power-law index of this calculated ZL model brightness is 
α = 1.34 because this value is used in the Kelsall model. 
We compared this ZL brightness toward the antisolar 
direction with the ZL model brightness toward the fields 
observed by ONC-T (Fig. 17, left, black). We multiplied 
the observed ZL brightness by the ratio of these two ZL 
model brightnesses at each position as correction factors 
in order to obtain the ZL brightness toward the antisolar 
direction in the ecliptic plane (Fig. 17, right). These cor-
rection factors are listed in Table 2.

Since this correction relies on the Kelsall model with 
α = 1.34 , it is not self-consistent if the obtained value 
of α deviates significantly from 1.34. As we discuss in 

Fig. 16 The ZL brightness of each field (black). The red points show 
the model brightness (Kelsall et al. 1998) extrapolated to optical 
wavelength using the solar spectrum (Gueymard et al. 2002)

Fig. 17 Field-variance correction. Left: ZL model brightness of the fields observed by Hayabusa2# (black) and toward the antisolar direction 
in the ecliptic plane (red) based on the Kelsall model (Kelsall et al. 1998) at 1.25 µ m. A radial power-law profile with α = 1.34 is also shown. Right: 
Observed ZL brightness after subtracting the background components (black) and the corrected ZL brightness toward the antisolar direction 
in the ecliptic plane (red)
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the next subsection, however, the value of α we obtained 
from our observations is close to 1.34, so consequently 
this correction works. In addition, the field variance 
was corrected for local brightness difference at the same 
elongations but different ecliptic coordinates, so the cor-
rection is not sensitive to α which represents the global 
distribution of IPD.

Dependence on heliocentric distance
Based on the corrected ZL brightness, we calculated the 
radial power-law index α using the following method. 
The ZL brightness has two types of uncertainties: statisti-
cal uncertainties and systematic uncertainties. Statistical 
uncertainties appear randomly at each data point, while 

systematic uncertainties appear with a certain tendency 
at each data point. Our data contain two types of system-
atic uncertainties, one due to calibration (see "Sensitiv-
ity calibration using stars" section) and the other due to 
DGL (see "Diffuse Galactic Light" section). We therefore 
calculated the radial power-law index α for a total of 3× 3 
cases (three cases for calibration uncertainty and three 
cases for DGL uncertainty). Table 3 shows the values of 
α we obtained for each of these systematic-uncertainty 
cases. As this table shows, the calibration uncertainty 
does not have a significant impact on the value of α , 
since the data points only go up and down overall. On 
the other hand, the DGL uncertainty does have a signifi-
cant impact on the value of α . From all of these values, 
we obtain α = 1.30± 0.08 as the final result. Figure  18 
shows the radial profile of the ZL and the best-fit power-
law function. Again, the excess structure at ∼0.9 au can 
be seen in Fig. 18.

Table 4 and Fig. 19 compare the value of α we obtained 
with previous results, and they show that our result is 
consistent with them. Since it is difficult to determine 
the radial profile of the IDP density from ZL observa-
tions obtained in a geocentric orbit or from F-corona 
observations, direct observations of the radial profile of 
the ZL from interplanetary space outside Earth’s orbit 
are more reliable for this purpose. Our observations are 
the first successful observations of ZL from interplan-
etary space in the 40 years since Helios 1/2 and Pioneer 
10/11. In addition, the ZL intensity varies with both the 
heliocentric distance and the solar elongation, both of 
which varied in the previous observations by Helios 1/2 
and Pioneer 10/11. On the other hand, we confined our 
observations to the antisolar direction (solar elongation 

Fig. 18 The radial profile of the ZL observed by Hayabusa2# on 2021–2022 at 0.76−1.06 au on a linear scale (left) and a logarithmic scale (right). The 
error bars include both statistical and systematic uncertainties. The solid curve shows the best-fit power-law function ( α = 1.30 ), and the dashed 
curves show the power-law functions for the low-DGL ( α = 1.19 ) and high-DGL ( α = 1.42 ) cases

Fig. 19 Comparison of the radial power-law index α as a function 
of heliocentric distance. The data plotted here are shown in Table 4. 
The red data point shows the result from this study
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∼180 deg), so we can impose changes in ZL brightness on 
changes in heliocentric distance.

Values of α greater than 1 are obtained from all the ZL 
observations, even though α = 1 is expected if the orbital 
evolution of the IDP is dominated by the PR effect (Burns 
et al. 1979). This difference is caused by dust production 
due to the collision of dust particles (Leinert et al. 1983; 
Grün et  al. 1985), dust supplied by comets around 1 au 
(Ishimoto 2000), the finiteness of the dust cloud (van Dijk 
et  al. 1988), or the heliocentric dependence of the local 
albedo of the IDP (Giese and Kinateder 1986; Levasseur-
Regourd et al. 1991). In fact, a heliocentric dependence of 
the local albedo of the form r−0.3±0.1 has been reported 
(Levasseur-Regourd et al. 1991), which partially explains 
α being greater than 1.

The IDPs falling into the Sun due to the PR effect 
decrease in size owing to evaporation, and such small 
IDPs are blown away by radiation pressure as β-mete-
oroids. The radial profile of β-meteoroids is expected to 
follow a power law with α = 2 , and recent in situ direct 
counting of the flux of IDPs experienced by the PSP 
does show α = 2 in the range 0.17− 0.7 au (Szalay et al. 
2020). On the other hand, the reddening (Tsumura et al. 
2010) and polarization (Takimoto et  al. 2022, 2023) of 
the ZL spectrum indicate that the majority of IDPs seen 
as ZL are large ( > 1 µm); smaller IDPs do not contribute 
much to the ZL even though they do exist (Krüger and 
Grün 2014). While the value α = 2 obtained by the IDP 
impact-counting method is sensitive to small IDPs, the 
values of α between 1 and 2 obtained from ZL observa-
tions are sensitive to larger IDPs. The small dust particles 
become hotter than the larger ones (Ishiguro et al. 2010), 
and a hot component in the thermal emission from IDPs 
has been found using mid-infrared spectroscopy at � =

3–6   µ m (Ootsubo et  al. 1998, 2000; Hong et  al. 2009; 
Tsumura et  al. 2013a). We would therefore expect to 
obtain the value α ∼ 2 from ZL observations at � =3–6   
µ m carried out outside Earth’s orbit because small dust 
particles with high temperatures are mainly observed in 
this wavelength range.

Future observations
Since ZL observations at 0.7–1  au by Hayabusa2# will 
continue until the Earth swing-by at the end of 2027, 
the accuracy of the results we have reported here will 
be improved through the accumulation of additional 
observational data. In particular, the excess structure at 
∼0.9 au needs to be verified by accumulating data dur-
ing this phase. After the second Earth swing-by in 2028, 
the Hayabusa2 spacecraft will fly to an orbit in the 1 −
1.5 au range (Mimasu et al. 2022), so we will be able to 

obtain the radial profile in the outer regions of the Solar 
System.

Before this orbital change of Hayabusa2#, we will 
have a chance to observe the radial profile of the ZL in 
the 1 −1.5  au range from the Martian Moons eXplora-
tion (MMX) spacecraft, which is a Japanese sample-
return mission from the Martian satellite Phobos 
(Kuramoto et  al. 2022). The MMX is scheduled for 
launch in 2024 and arrival at Mars in 2025, and we are 
proposing to conduct simultaneous multi-wavelength 
(350–1000  nm) ZL observations during this cruis-
ing phase using the Optical RadiOmeter composed of 
Chromatic Imagers (OROCHI) onboard MMX (Kam-
eda et al. 2021a).

In addition, we are developing an EXo-Zodiacal 
Infrared Telescope (EXZIT), with the aim of installing 
it on a spacecraft to Jupiter or farther (Matsuura et al. 
2014; Sano et al. 2020). If this instrument can be real-
ized, we will be able to observe the radial profile of the 
ZL at 1–5  au as well as the EBL without the ZL fore-
ground above 3  au. We are also considering adding 
mid-infrared capabilities to EXZIT, which would allow 
us to examine our prediction of the α ∼ 2 index for the 
ZL radial profile owing to small particles.

In situ direct dust counting is also important for com-
prehending the IDP distribution in the Solar System 
because it provides independent estimates of the radial 
variation of the IDP density. More quantitative com-
parisons between the ZL observations and in situ direct 
dust counting are envisioned for future projects, which 
will provide us with the differences in the distributions 
according to dust size and parent bodies.

Summary
We observed the ZL brightness at optical wavelengths 
at 0.76−1.06  au with ONC-T on the Hayabusa2# mis-
sion. We detected a small excess of the observed ZL 
brightness over the model brightness at around 0.9 au, 
but we cannot determine whether or not this structure 
is real at this stage due to the paucity of data points. The 
radial power-law index we obtained is α = 1.30± 0.08 , 
and the uncertainty in this estimate is dominated by 
the uncertainty due to the DGL estimate. This result 
is consistent with previous results based on other ZL 
observations.
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