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Abstract 

Earthquake dynamic rupture requires a nucleation process to provide sufficient energy to overcome the fracture 
energy. Large earthquakes may occur via a cascading rupture process, which includes many triggering processes 
that cascade from small to large sections of the fault system. During such a process, the nucleation of a large sec-
tion of the fault plane may occur dynamically via the propagating rupture from a small section of the fault plane. 
A quasi-static view of seismic nucleation has been widely discussed in earthquake seismology; however, the dynamic 
nucleation process remains poorly known. Here, we investigate one aspect of the dynamic nucleation process 
by focusing on the rupture propagation velocity during the nucleation process. We simplify this process as self-similar 
crack propagation at a constant rupture velocity in a finite nucleation zone within a target region that possesses 
a uniform fracture energy. We numerically solve this elastodynamic problem in two dimensions for both the anti-
plane and in-plane cases using the Boundary Integral Equation method. As the rupture velocity increases, the critical 
ratio of the fracture energy step to continue the rupture increases and the critical size of the dynamic nucleation zone 
decreases. The rapid increase in the ratio of the fracture energy step toward infinity could explain why earthquakes 
never propagate at slow rupture velocities. However, the effect on the size of the nucleation zone is rather limited, 
with the size of the dynamic nucleation zone decreasing to ~ 70% of the static nucleation zone size. However, such 
a small difference would result in a significant overall difference if such a dynamic nucleation process repeatedly 
occurred in the cascading rupture process of a large earthquake, which would be a difficult situation for earthquake 
early warning.
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Graphical Abstract

Introduction
Is there any difference in rupture growth process 
between small and large earthquake? Is the final size of 
an earthquake predictable from the very beginning of 
seismic signals? These are the questions that have been 
discussed intensively since around 1990, in part owing to 
their significance in improving earthquake early warning 
capabilities (Abercrombie and Mori 1994; Ellsworth and 
Beroza 1995; Iio 1995; Mori and Kanamori 1996; Olson 
and Allen 2005; Colombelli et al. 2014). Recent observa-
tions have indicated that the initial part of seismic signal 
is statistically universal among different ranges of event 
magnitudes (Meier et al. 2016; Noda and Ellsworth 2016). 
Furthermore, many pairs of different-sized earthquakes 
have been identified as sharing almost identical initial 
seismic signals, thereby suggesting that these events 
have undergone almost the same rupture growth process 
(Okuda and Ide 2018; Ide 2019).

An earthquake is the propagation of fast slip on fault 
planes that are loaded with high stress. For this fast slip 
to propagate spontaneously, fracture mechanics dictate 
that there must be an finite area on the fault plane, where 
the stress is released in advance by a particular process. 
This process is called seismic nucleation, and the area in 
which this process occurs is called the nucleation zone. 
Therefore, the above questions can be revised to how the 
nucleation of a large earthquake may differ from that of 
a small earthquake. However, the understanding of the 
physical process of seismic nucleation remains limited 
mainly in some quasi-static processes, such as stress cor-
rosion (Das and Scholz 1981) and slow preslip (Dieterich 
1992; Matsu’ura et al. 1992; Uenishi and Rice 2003; Rubin 
and Ampuero 2005), have been suggested. Nevertheless, 
it should be emphasized that slow deformation is not 

always a requirement of seismic nucleation process. It 
may occur via faster seismic processes, as demonstrated 
through the heterogeneous distribution of some physical 
parameters (Ampuero et  al. 2006; Ripperger et  al. 2007; 
Galis et al. 2015, 2017).

The size (radius) of the nucleation zone is proportional 
to the fracture energy of the surface to be ruptured (e.g. 
Andrews 1976; Rubin and Ampuero 2005). Although the 
fracture energy of large earthquakes is larger than that 
of small earthquakes (Tinti et al. 2005; Abercrombie and 
Rice 2005; Mai et  al. 2006; Viesca and Garagash 2015), 
fracture energy is usually only measured after the slip has 
progressed sufficiently, such that this value is uncertain at 
the beginning of a given earthquake. Rather, earthquakes 
can grow by sequential fracturing of areas with small, 
medium, and large fracture energy, which is known as a 
cascading process and has attracted much attention in 
earthquake seismology research (Ellsworth and Beroza 
1995; McLaskey and Lockner 2014; Ellsworth and Bulut 
2018; McLaskey 2019). In such cascading process, any 
preceding processes before the rupture of a target region 
should be considered as its own nucleation process.

Cascading rupture growth processes are expected 
owing to various fractal heterogeneities in the fault, 
rock properties, and stress and earthquake statistics 
like the Gutenberg–Righter law. The distribution of 
fault traces on map is fractal (e.g. Okubo and Aki 1987; 
Hirata 1989), and the topography of the fault surfaces 
is also consistently fractal from the sub-millimeter- to 
hundred-kilometer scale (e.g. Power and Tullis 1991; 
Candela et  al. 2012; Candela and Brodsky 2016). The 
stress distribution may be also fractal (Day-Lewis et al. 
2010), with such a distribution likely arising from the 
kinematic interaction of slips on a fault with a fractal 
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geometry and/or material properties (Langenbruch and 
Shapiro 2014). Seismicity also has a fractal distribution 
(Okubo and Aki 1987; Hirata 1989; Mandal and Rastogi 
2005), and the power-law magnitude–frequency distri-
bution, which is known as the Gutenberg–Richter law, 
is associated with self-organized criticality. Although 
fault systems have some characteristic size, such as 
widths of the damage zone and seismogenic zone, 
which can be characterized by some exponential distri-
butions of material properties (Mitchell and Faulkner 
2009; Savage and Brodsky 2011), the fractal or power-
law structure should exist at scales smaller than these 
characteristic sizes.

This idea of a cascading rupture process in fractal 
media has been incorporated into the numerical model 
of Ide and Aochi (2005), whereby circular patches with 
different fracture energies are distributed fractally 
along the fault plane. This model successfully explains 
the dynamic rupture processes of earthquakes as a 
scale-free process. It is also consistent with both initial 
seismogenic signal observations (Yamada and Ide 2008; 
Ide 2019) and the nature of the source time function 
catalog obtained for many earthquakes (Renou et  al. 
2022). The similarity of the initial stage to that for the 
entire rupture process (Uchide and Ide 2007, 2010) also 
supports this cascading rupture process.

Each step in the cascading dynamic rupture process, 
whereby a small rupture induces the failure of a larger 
area, can be considered a building block in the overall 
rupture process. This small dynamic rupture process 
acts as a nucleation process for the larger area, which 
we term the target region. Therefore, it is a problem of 
nucleation process for the target region. In fact, such 
nucleation process has been commonly introduced in 
numerical simulations of earthquake dynamic rupture 
since the pioneering study of Day (1982). Since the 
process may sufficiently fast to radiate seismic waves, 
we call it dynamic nucleation process and distinguish 
it from quasi-static nucleation process. Although 
there are a few theoretical studies on dynamic nucle-
ation (Kame and Yamashita 1997; Madariaga and 
Olsen 2000; Bizzarri 2010), the quantitative difference 
between dynamic and static nucleation remains largely 
unknown. Since static nucleation is based on the equi-
librium equation of the continuum medium, such that 
there is no inertia term (i.e. considered an extremely 
slow nucleation process), an important character-
istic that needs to be quantified is the dependence of 
dynamic nucleation behavior on the rupture propaga-
tion velocity. Here, we investigate dynamic nucleation 
conditions, with a focus on the rupture velocity inside 
the nucleation zone, to clarify the difference between 
dynamic and static nucleation processes.

Theoretical background
We first outline the theoretical framework for a simple 
dynamic nucleation process, which we treat as a crack 
problem, whereby a small crack propagates at a constant 
rupture velocity within a target region that possesses a 
constant fracture energy. Let us consider either an anti-
plane or in-plane crack on a planar fault in a two-dimen-
sional infinite homogeneous Poissonian elastic medium 
with rigidity, µ , and shear-wave velocity, vs . Since the 
absolute value of the residual stress has no effect on 
these calculations, the shear stress is defined relative to 
the residual frictional stress, which is assumed to be con-
stant and sufficiently high to prohibit slip in the opposite 
direction. We assume that the initial shear stress, σ0 , is 
also homogeneously loaded on the fault plane, and intro-
duce a linear slip-weakening friction law (Ida 1972) that 
is characterized by a peak stress, σp , and slip-weakening 
distance, DC (Fig.  1a). The uniform stress condition is 
simple and sufficiently generic, as suggested by the scale 
invariance of the apparent stress over a broad range of 
earthquake sizes (Mw − 4 to 8; e.g. Ide and Beroza 2001; 
Kanamori and Rivera 2004; Baltay et al. 2011). This uni-
form stress condition has been effectively utilized in pre-
vious numerical studies (e.g. Ide and Aochi 2005).

We generate spontaneous rupture propagation at a con-
stant rupture velocity in the numerical simulations by 
assuming that the fracture energy within the nucleation 
zone increases linearly with the increasing spatial extent of 
the crack (e.g. Andrews 1976; Aochi and Ide 2004) until the 
rupture encounters the target region boundary (Fig. 1). The 
fracture energy (Fig. 1a), GC , can change by several orders 
of magnitude, as has been suggested by the large discrepan-
cies in the GC estimates for large earthquakes (Beroza and 
Spudich 1988; Ide 2003; Tinti et al. 2005; Abercrombie and 
Rice 2005; Mai et al. 2006) and those from laboratory rock 
experiments (Ohnaka 2003; Scholz 2019).

Our assumption of a homogeneous stress condition 
allows us to define DC as a function of distance from the 
initial rupture point, r = |x| (Fig. 1b):

where D′
C is a constant showing the spatial gradient of 

DC . There is a sudden jump in DC from D′
CR

dyn to D∞
C  , 

which is constant in the target region, at the edge of the 
nucleation zone ( r = Rdyn ). The effect of this jump on 
numerical result will be discussed later. The size of this 
discontinuity is represented by the fracture energy step 
ratio, γ , which is defined as

(1)DC(r) =
{

D′
C × r for r < Rdyn

D∞
C for r ≥ Rdyn

(2)γ ≡ D∞
C /D′

CR
dyn.
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We recall that the rupture velocity in the nucleation 
zone, vi , is constant. The rupture velocity is determined 
entirely by the energy budget beyond the rupture tip in 
the stationary condition. This equilibrant condition is 
given analytically [Eq. (6.9.148) in Broberg (1999)]:

where R is the half-length of a self-similar crack; K  = 1/π ; 
E(·) is a complete elliptic integral of the second kind; vs is 
S-wave velocity; and ν is the Poisson ratio. The left- and 
right-hand sides of Eq. (3) are the energy release rate and 
fracture energy at both crack tips, respectively.

We can define the non-dimensional spatial gradient of 
the fracture energy, ξ , in the nucleation zone as

(3)
σ 2
0 R

Kµ
·

√

1− (vi/vs)
2

[

E
(

√

1− (vi/vs)
2
)]2

= σpD
′
CR,

Since ξ is a monotonic function of vi/vs , Eq. (4) can be 
rewritten as

The energy balance equation [Eq. (3)] is more compli-
cated for an in-plane crack, as given by Eq.  (6.9.90) in 
Broberg (1999). Nevertheless, we can also derive a simi-
lar function between ξ and vi/vs for 0 < vi < vR , where 
vR is the Rayleigh-wave velocity.ξ is directly related to 
a non-dimensional parameter, κ , that has been intro-
duced by Madariaga and Olsen (2000) as

(4)ξ = K
µσpD

′
C

σ 2
0

=
√

1− (vi/vs)
2

[

E
(

√

1− (vi/vs)
2
)]2

.

(5)vi/vs = f (ξ).

Fig. 1 Schematic illustration of the numerical setting of the dynamic rupture simulations. a Slip-weakening friction law used in this study. 
σp , σ0, and DC are the peak stress, initial stress, and slip-weakening distance, respectively. This study treats the residual friction as zero owing 
to the symmetry of the problem. The shaded region represents the fracture energy, GC . b Spatial distribution of DC (Eq. 1). The model space 
is divided into an inner nucleation zone and outer target region, with the two separated at |x| = Rdyn . The step in GC at |x| = Rdyn is quantified 
by the proportionality constant, γ . c, d Time evolution of slip (black line) for an anti-plane case, where the seismic nucleation initiated at x = 0 
as a crack with a half-width of 20�x , which is negligible, under the DC distribution indicated by the blue line. The following parameters are used 
in the simulations: σ0 = 4MPa , σp = 12MPa , D′

C
= 6× 10

−4 , and D∞
C = 0.06�x . The time interval between each adjacent pair of solid lines 

is 160�t , and each gray dashed line is spaced 80 �t from the next solid line to clarify the self-similarity. c Example of a failed nucleation, whereby 
the rupture decelerates and terminates. d Example of a successful nucleation, whereby rupture propagation initially decelerates until the crack 
reaches the static critical crack size RstaC  , and rupture propagation then accelerates again. The difference between D∞

C  in c and d is 0.6%
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where L is the characteristic length scale. With respect to 
Eq. (4), we can regard that L = Rdyn and DC = Rdyn · D′

C , 
and therefore, ξ = K/κ . Rupture can only propagate 
when κ is larger than a critical value, κc , which is esti-
mated as either κc = 1/π (anti-plane), κc = 1/{π(1− ν)} 
(in-plane), or κc = 7π/24 (circular crack in three 
dimensions).

In the outer target region, which is where D∞
C  is 

assumed, there is a critical size for the static nucleation 
zone, Rsta

C  , that can be determined via the Griffith’s frac-
ture criterion (e.g. Ida 1972) as

where K  is 1/π [the same as Eq.  (3)] and 1/{π(1− ν)} 
in the anti-plane and in-plane cases, respectively. While 
Rsta
C  is the size of the nucleation zone for a static problem, 

where vi = 0 , we expect the critical size of the nuclea-
tion zone to change when vi > 0 . We define this as the 
critical size of dynamic nucleation zone, Rdyn

C  , which we 
will quantitatively estimate in the following sections. We 
note that Rdyn

C  is related to the critical size of the frac-
ture energy step ratio as γc = D∞

C /D′
CR

dyn
c  from Eq.  (2). 

Furthermore, we can reorganize Eqs. (2), (5), and (7) to 
obtain the following relationship:

Numerical method
We conducted dynamic rupture simulations along a 
planar fault in a two-dimensional medium using the 
Boundary Integral Equation Method (BIEM) (Tada and 
Madariaga 2000) for both the anti-plane and in-plane 
cases in a homogeneous, infinite elastic medium. This is 
a scale-free problem and the fault size can be that of real 
earthquakes of any size. The fault was discretized by 1024 
or 2048 elements. We started with the coarser grid size 
(e.g. Fig.  1) and then the simulations from two different 
resolutions confirm that the results are identical and the 
simulation resolutions are sufficiently good. The follow-
ing simulation results are shown from the finer resolution 
simulations. The DC-value distribution was determined via 
Eq. (1). The time step, �t , was set to �x/2vs for the anti-
plane case and reduced to �x/4vs for in-plane cases to 
resolve P-wave. Rupture was initiated by a sudden reduc-
tion in yield strength from σp to zero at t = 0 in a small 
region at the center of the model ( |x| < rini) . Figure 1c, d 
illustrates two slip evolutions when slightly different frac-
ture energy values (0.6%) are employed in the target region 

(6)κ =
σ0

2

µσp

L

DC
,

(7)Rsta
C = K

µσpD
∞
C

σ 2
0

,

(8)R
dyn
C /Rsta

C = 1/γc(vi)ξ(vi).

for the anti-plane case. There was a self-similar increase in 
slip within the nucleation zone as the rupture propagated 
from the center of the model space at a constant veloc-
ity. The rupture did not abruptly stop when it reached the 
edge of the nucleation zone and entered the target region, 
but it also could not maintain a constant rupture velocity. 
The rupture terminated when there was a sufficiently large 
fracture energy to stop the propagation (Fig.  1c). Other-
wise, the crack accelerated again and ruptured the entire 
model space (Fig.  1d); we defined this latter simulation 
result a successful dynamic nucleation process, or simply a 
single cascade-up process.

We sought the condition that controlled this bifurca-
tion through a bisection method, whereby we changed 
the model parameter ( γ ) with respect to several given 
parameters ( D′

C ,D
∞
C , σp, and σ0 ). We note that Rdyn was 

determined once γ was given. Once rupture has initiated 
and stabilized, it will then propagate at a constant veloc-
ity owing to the proportional increase in DC with dis-
tance (Aochi and Ide 2004); this has been numerically 
confirmed in Fig.  2. We measured the rupture velocity 
based on the expansion of the crack tip, with the crack tip 
at a given time step corresponding to the leading edge, 

0
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Fig. 2 Example of the simulated rupture velocity with rupture 
growth for an anti-plane case. The distance, r, and time are 
given by discrete units. The rupture velocity, vi , is normalized 
by shear-wave velocity, vs , in the upper panel. Small fluctuation 
in the velocity is due to quantization in space and time. The 
bold black and thick gray curves correspond to the rupture 
front (leading edge) and cohesive zone end (trailing edge), 
respectively. The theoretical RstaC  is indicated by vertical dashed 
line. The artificial effect of sudden rupture onset disappears 
quickly by r/RstaC ∼ 0.2 , and the rupture velocity then remains 
quasi-constant until r/RstaC ∼ 0.7 . The rupture velocity drops suddenly 
at around r/RstaC ∼ 0.8 , because we introduce a fracture energy 
step, which controls the successful/unsuccessful rupture growth 
on the target region. This size is not always the same as RstaC
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which is at the point of peak stress. We note that it is also 
possible to define the rupture velocity based on the trail-
ing edge, which is where the stress has decreased to the 
residual stress level, namely, the end of the cohesive zone 
(e.g. Andrews 2004), with a high degree of similarity 
obtained using the leading and trailing edge approaches 
(Fig. 8). Furthermore, we note that the effects of artificial 
rupture initiation are negligible, and that the rupture 
velocity rapidly approaches a constant value.

In practice, the initial crack size, rini , in our numerical 
simulations was assumed to be at least 15 times smaller 
than Rdyn , empirically based on our preliminary study. 
This artificial influence of the initiation process is limited 
in the beginning of simulations as demonstrated in Fig. 2. 
The rupture velocity gets stable at a distance of 0.2× Rsta . 
Although we do not introduce any renormalization pro-
cess (Aochi and Ide 2004), which showed a constant 
rupture velocity after twice the renormalizations, our 
resolutions are entirely sufficient except for the beginning 
of rupture process. We set Rdyn to be smaller than Rsta , 
as we expect energetic impact of the dynamic rupture. 
The model parameters are summarized in Table  1. The 
slip amount and DC values were normalized by 10−3�x , 
where �x is the element size. The assumed range of D′

C 
values (0.001–0.1) is consistent with earthquake observa-
tions, where a DC value in the ~ 0.1 −  1.0  m range cor-
responds to a crack with a half-width of ~ 10 km (e.g., Ide 
and Takeo 1997; Olsen et  al. 1997; Mikumo et  al. 2003; 
Kaneko et al. 2017; Aochi and Twardzik 2020). 

For each simulation, the fracture energy step ratio, γ , 
was calculated via Eq. (2). We sought the critical value, γc , 
which denotes the bisection between unsuccessful 
(Fig. 1c) and successful (Fig. 1d) triggering of the target 
region. We note that there were some limitations of the 
available parameter space for two reasons. One was the 
limitation of the numerical method, as the simulation 
had to thoroughly resolve the slip-weakening process 
occurring in the cohesive zone (Kame et al. 2003) during 
the entire simulation. We required 

(

vli − vti

)

/vli to be 
larger than 0.03 and 0.94 for the in-plane and anti-plane 
cases, respectively, where l and t refer to the leading and 
trailing edges, respectively. The other reason was to avoid 

any potential effects that depended on the details of the 
friction law. Rsta

C  is the size of a singular crack at a limit of 
infinite σp and zero D∞

C  , and a value between Rl and Rt , 
which are the sizes measured using the leading and trail-
ing edges, respectively. The region between Rl and Rt is 
the cohesive zone. Rl and Rt depend on the details of the 
friction law, and Rsta

C  might not be a good reference when 
Rl and Rt are very different and the cohesive zone is large. 
Therefore, we required Rt/Rl  >  0.70 as a condition for 
simulation. See Appendix for a detailed discussion of this 
requirement.

Results
Here we aim to analyze the scaling property of the simu-
lation results. Figure 3a shows the D′

C , parameter space 
corresponding to various vi values for the anti-plane case. 
We can explore a wide range of rupture velocities due 
to the scaling relation in the nucleation zone. Figure 3b 
shows the simulated rupture velocities within Rdyn as a 
function of ξ for the varied parameter values that were 
used in Fig.  3a. We observe that there appears to be a 
unique vi value for a given ξ value, with the numerically 
obtained relationships being very close to the theoreti-
cal curve given by Eq. (4). We observe a slight deviation 
in the simulations that employed a relatively low σp and 
a high ξ . The low σp simulations yield a rupture velocity 
that is faster than that determined via the analytic pre-
diction, which assumes an infinitely large σp . The high 
ξ simulations impose a large cohesive zone and induce 
a deviation from the analytic prediction, which has no 
cohesive zone. These deviations also affect other relation-
ships and are discussed below. The parameter space of 
the simulations for the in-plane case is shown in Fig. 9.

We searched independently for γc in two param-
eter spaces, (σ0,D′

C) and (σp,D′
C) , and kept the remain-

ing parameters invariant from the reference parameters 
given in Table 1. The obtained γc values with respect to 
different parameter combinations are shown for the anti-
plane case in Fig.  4. This includes the following (σ p, σ0) 
combinations: (14  MPa, 4  MPa), (14  MPa, 3  MPa), 
(20 MPa, 4 MPa), and (20 MPa, 3 MPa). Fixing either σp 
or σ0 , we can induce slight variations in γc . The compre-
hensive result highlights that nucleation becomes easier 
when σ0 is higher (Fig.  4a) or σp is lower (Fig.  4b). This 
can be interpreted exclusively in terms of ξ . However, a 
comprehensive investigation of the ξ − γc space (Fig. 4c) 
indicates that a global trend exists between ξ and γc , and 
γc is well-approximated as a function of ξ alone via Eqs. 
(4) and (5). Therefore, we do not lose this generality by 
focusing our study on a limited parameter space (Fig. 3).

We then investigate the influence of vi on γc . It is 
expected that γc = 1 at the limit of a static nucleation 

Table 1 Model parameters

Parameter Quantity (unit)

Rigidity µ 32.4 (GPa)

Normalized shear and compressional wave velocities 
vs and vp

1 and 1.73

Initial stress σ0 3–4 (MPa)

Peak strength σp 8–20 (MPa)

Slip weakening rate Dc’ (Fig. 3b) 0.001–0.1
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process ( vi → 0 ), such that a faster rupture velocity 
may trigger a region with a larger fracture energy. Fig-
ure 5a highlights the relationship between γc and vi from 
the previously simulated anti-plane cases (Fig.  3). We 
observe that γc increases monotonically with vi . A crack 
propagating at a slower rupture velocity is, therefore, 
likely to be terminated by smaller perturbations in the 
fracture energy. We also calculate the same relationship 
for the in-plane case in Fig. 5b, with its respective param-
eter space summarized in Fig.  9. We observe the same 
tendency in this case and note that the rupture veloc-
ity is saturated until the Rayleigh wave velocity reaches 

vi ∼ 0.92vs . Regardless of the difference in σp , γc can be 
approximated as a unique function of vi for both the anti-
plane and in-plane cases. We will further discuss the 
approximate theoretical background for this relationship 
in the Discussion section.

We can evaluate the minimum rupture propagation 
velocity that is required to overcome a certain γ value 
from these results. For example, we consider the rup-
ture velocity to overcome a gap of γ = 2 , which is the 
ratio used in the Ide and Aochi (2005) fractal patch 
model. In this case, vi must be larger than 0.4vs and 
0.6vs . respectively. The ability to trigger a gap of γ = 4 , 
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which means skipping one discrete scale in the Ide and 
Aochi (2005) model, is influenced by a more strict con-
dition, and vi must be larger than ~ 0.8vs for both cases.

Discussion
Comparison with a singular crack model
We have investigated the dependence of γc on vi using 
a numerical approach. Here, we take an alternative 
approach and derive the relationship using the energy 
balance of an analytical solution. We begin by explain-
ing the anti-plane problem in this context, and then 
extend the discussion to the in-plane problem.

We find that the function (1− vi/vs)
−1 is a good 

approximation of γc(vi) , as shown in Fig.  5a, for 
the following reason. At the edge of the nucleation 
zone, where R = Rdyn , the rupture velocity suddenly 
decreases to a small value ( < 0.1vs ), because it takes 
time to slip a longer D∞

C  (Fig. 2). Given that the rupture 
velocity suddenly decreases to zero, the stress inten-
sity factor for the anti-plane problem changes from 
KIII (vi) to KIII

arrest , obeying the following relationship 
[Eq. (6.12.39) in Broberg (1999)]:

The corresponding energy release rate, Garrest , is

where Gss(vi) is the energy release rate of a self-sim-
ilar anti-plane crack propagating at vi [i.e. the left-
hand side of Eq.  (3)]. At the critical state ( γ = γc ), 

(9)
KIII (vi)√
1− vi/vs

= KIII
arrest.

(10)Garrest =
(

KIII
arrest

)2

2µ
=

Gss(vi)

1− vi/vs
=

σpD
′
CR

dyn

1− vi/vs
,

this approximate energy release rate must be close to 
2GC = 2 · σpD∞

C /2 during deceleration before reach-
ing Rsta

C

(

Rdyn < R < Rsta
C

)

 . From Garrest(vi) = σpD
∞
C  , we 

obtain:

The problem is qualitatively the same for the in-plane 
problem, but the ratio of the stress intensity factors (Eq. 9) 
is expressed in a complicated form:

where:

and vR and vp denote the Rayleigh and compressional-
wave velocities, respectively [Eq.  (6.11.51) in Broberg 
(1999)]. γc , therefore, becomes [kII (vi)]−2 . This theoretical 
value is plotted in Fig. 5b and modestly agrees with our 
numerical results.

Although these analytical approximations explain the 
behavior of γc well, it is difficult to explain the qualitative 

(11)γc =
1

1− vi/vs
.

(12)
KII (vi)

kII (vi)
= KII

arrest,

(13)kII (vi) =
1− vi/vR√
1− vi/vs

S
(

−v−1
i

)

,

(14)S(ζ ) = exp

{

−
∫ 1

vs

1
vp

g(1/η)dη

(η + ζ )

}

,

(15)g(v) =
1

π
atan

4v3s

√

v2p − v2
√

v2 − v2s

v3p
(

v2 − 2v2s
)2

,
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of σ0 = 3 MPa. The curves in (a) and (b) are given by Eq. (11) and 

[

kII(vi)
]−2 in Eq. (13), respectively. See Fig. 3 for the parameter space
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relation between the ratio between dynamic and static 
nucleation zone sizes, Rdyn

C /Rsta
C  , and the nucleation rup-

ture velocity. Since Rdyn
C /Rsta

C  is represented by γc and ξ 
using Eq. (8), we can predict this ratio using Eqs. (5) and 
(11); the result is shown in Fig.  6. Although good fits to 
the curves in Figs. 3b [ ξ(vi) ] and 5a [ γc(vi) ] are obtained, 
as demonstrated for the anti-plane case, our numerical 
simulations do not match well with this theoretical predic-
tion, which is formulated in the stationary condition for 
an infinitely strong medium without a cohesive zone. In 
particular, the theoretical curve predicts a very strong trig-
gering effect (a small Rdyn

C /Rsta
C  ) for a high rupture velocity 

( vi > 0.8vs ), whereas the dynamic influence is still limited 
down to around Rdyn

C /Rsta
C = 0.6 . This is probably due to 

relatively large discrepancies in approximating both curves 
at a high rupture propagation velocity. At the limit of 
vi → vs , ξ(vi) → 0 and γc(vi) → ∞ , which highlights that 
we need a better approximation for γc(vi) than Eq. (11).

Effect of smoothing
Our simplified fault model assumes an abrupt increase 
in fracture energy at the edge of the nucleation zone, as 
previously suggested in Ide and Aochi (2005) and other 
studies. However, the question arises of what happens 
if the heterogeneity varies smoothly. We, therefore, 
checked the validity of our discussion. Let us consider 
that the abrupt increase of DC is smoothed by tak-
ing the simple central moving average of DC on a fault 
with L = 2n + 1[n = 0, . . . , 6] nodes around the edge 
at |x| = Rdyn . We note that the moving average of DC is 
identical to the original value of DC in the nucleation 
zone, since DC either increases linearly along the fault 
or is constant, such that vi is constant in the nucleation 

zone. Figure  7 shows the effect of different smooth-
ing lengths on DC . The estimated Rdyn

C  changes slightly 
according to the degree of smoothing (Fig.  7a), and the 
variation in γc due to the difference in L is at most 3% at 
vi = 0.87vs (Fig.  7b). This test, therefore, confirms that 
the assumption of an abrupt change is sufficiently simple 
but does not alter the generality of our discussion.

Conclusions
The dynamic rupture process of an earthquake requires 
some nucleation process that occurs along part of the fault 
system. Furthermore, there is increasing evidence that 
an earthquake rupture can be approximated as a cascad-
ing process (e.g. Ellsworth and Beroza 1995; McLaskey 
and Lockner 2014; McLaskey 2019), whereby there are 
many stages of triggering from small to large faults. In this 
case, the source area of each stage requires some nuclea-
tion process. Such a nucleation process may not occur in a 
quasi-static way, but rather in a dynamic way at some rup-
ture propagation velocity. While the quasi-static nuclea-
tion problem has been well-studied (e.g. Dieterich 1992; 
Rubin and Ampuero 2005), the behavior of such a dynamic 
nucleation process has not been comprehensively studied.

We investigated an aspect of the dynamic nucleation 
process through the implementation of self-similar crack 
propagation at a constant rupture propagation within a 
homogeneous target region. We estimated the critical 
fracture energy step ratio, γc , which is uniquely related 
to the size of the critical dynamic nucleation zone, Rdyn

C  , 
using a range of parameter sets for the initial stress, σ0 , 
yield strength, σp , and gradient of the slip-weakening dis-
tance during self-similar rupture growth, D′

C . We found 
that γc increased as a function of the rupture velocity, 
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vi , within the nucleation zone, whereas Rdyn
C  decreased 

to ~ 70% of the static nucleation size.
Intuitively, it is not surprising that a rapidly propagat-

ing rupture can extend into a region with a high fracture 
energy, because inertia helps continuing the crack propaga-
tion owing to the higher rupture velocity. Nevertheless, it 
is notable that γc increases quite rapidly with vi at a rupture 
velocity of > 0.6vs and approaches infinity at the limit of vi . 
This strong velocity dependence may explain why there are 
few earthquakes with slow rupture propagation velocities 
(< 0.5vs ), given several cascade-up processes are repeated 
in the growing process of earthquakes. If the likelihood of 
successful dynamic nucleation depends exponentially on the 
nucleation velocity, then a slower rupture is more likely to 
be arrested by fluctuating fracture energy on a fault system 
that possesses multiscale heterogeneity. Slow rupture prop-
agation is suggested for some tsunami earthquakes (Kan-
amori 1972), but these events are quite rare.

It is the first time to have estimated the critical size of 
a dynamic nucleation zone for a rupture propagating at 
a constant velocity. We found that the dynamic size was 
smaller than the static size, but the difference was rela-
tively small, with a maximum difference of up to 30%. This 
maximum difference is within the range of any uncertainty 
associated with the rupture process estimates from seismo-
logical observations. However, given that such a dynamic 
nucleation process is simply a building block in a cascad-
ing rupture process, with similar processes being repeated 
many times during the rupture process of a large earth-
quake, a 30% difference becomes significant in terms of 
forecasting the final size of the earthquake.

These findings provide important information for 
numerical simulations of earthquake rupture as a cascad-
ing process from one scale to another (e.g. Ide and Aochi 

2005; Aochi and Ide 2009; Noda et al. 2013). While many 
simulations of an earthquake scenario generally employ a 
quasi-dynamic approximation, their difference from a fully 
dynamic nucleation approach is likely non-negligible, even 
in an earthquake cycle. This difference has not been well-
documented or discussed in previous studies but should 
be given more attention to advance our understanding of 
earthquake nucleation and rupture.

Appendix
See Figs. 8, 9
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Definition of the nucleation rupture velocity 
in the numerical simulation
Averaging in both time and space is required in the 
numerical simulations to estimate vi , because the result-
ant crack propagation is discretized in both spatial ( �x ) 
and time ( �t ) steps. We calculated the nucleation rup-
ture velocity defined by the leading edge, vli , as

where tl(R) denotes the time when the half-width of 
the leading edge becomes R . For the trailing edge, vti  is 
defined using the average time for the rupture to move 
from tl(R1) to tl

(

Rdyn
)

:

where Rt [t] denotes the half-width of the trailing edges 
at time t. We set R1 = 2/3Rdyn to ensure that the rupture 
velocity has converged sufficiently. Figures 2 and 8 show 
the convergence properties of the rupture velocity. The 
rupture velocity at each spatial grid in Fig. 2a is obtained 
by dividing �x by the time that it took for the crack tip 
to propagate to the next grid. The rupture velocity is 
quantized owing to the discretization in time. A moving 
average over five grids is used. There is good coherence 
between the two rupture velocities, vli and vti  , as shown in 
Fig. 8. vli tends to be slightly faster than vti  , which suggests 
that there may be a slight delay in the breakdown zone 
progress. However, this difference is negligible, such that 
the presented generality in our discussions in the main 
text remains valid. Here, we use vli for vi in our numerical 

vli =
Rdyn − R1

tl
(

Rdyn
)

− tl(R1)
,

vti =
Rt
[

tl
(

Rdyn
)]

− Rt
[

tl(R1)
]

tl
(

Rdyn
)

− tl(R1)
,

simulations, because the leading edge is intuitively easier 
to recognize.

Since the BIEM requires a cohesive zone that is no 
smaller than four grid points (Kame et al. 2003) to appro-
priately resolve the weakening process, in practice, we used 
parameter sets that were chosen for a rupture velocity ratio 
of 
(

vli − vti

)

/vli > 0.04 in the anti-plane case. This ensures 
that the numerical expression of the cohesive zone includes 
more than four grids for a crack that is larger than a half-
width of 100 grids. For the in-plane problems, we loosened 
the restriction to 

(

vli − vti

)

/vli > 0.03 , since the smaller 
time step and faster wave propagation improve the conver-
gence of the rupture velocity. We also imposed the restric-
tion that the cohesive zone must remain small enough to 
ensure that the shape of the slip distribution does not devi-
ate too much from that of the analytical self-similar crack. 
While this latter restriction is not a physical requirement, it 
does avoid potential effects that depend on the details of 
the friction law. In practice, we require a crack size ratio of 
Rt/Rl > 0.70.

Acknowledgements
We thank Dr. Martin Mai and an anonymous reviewer for their constructive 
and insightful comments, which greatly improved the manuscript. We used 
the computer systems at the Earthquake and Volcano Information Center 
of the Earthquake Research Institute, the University of Tokyo, Japan, for the 
numerical simulations in this study.

Author contributions
KU conducted the numerical simulations, and drafted the manuscript. SI and 
HA planned the study, and participated in the interpretation of the results. KU 
and HA prepared the figures. All of the authors contributed to the writing of 
the manuscript.

0.0

0.2

0.4

0.6

0.8

1.0

v i
/v

S

0.0 0.2 0.4 0.6 0.8 1.0

ξ

(b)

σp

20 (MPa)
17 (MPa)
14 (MPa)
11 (MPa)
8  (MPa)

0.0

0.2

0.4

0.6

0.8

1.0
v i

/v
S

0.001 0.01 0.1

Dc’

(a)

Fig. 9 a Simulated vi values in the nucleation area using given D′
C values for the in-plane case. DC is normalized by 0.001 �x . b Plot of the same 

vi values against the normalized fracture energy rate, ξ = KµσpD
′
C/σ

2
0

 , from Eq. (5). The colors indicate different σp values for a fixed value of σ0 = 
3 MPa



Page 12 of 13Uemura et al. Earth, Planets and Space          (2023) 75:123 

Funding
This research was supported by JSPS Kakenhi (16H02219, 21H04505), MEXT 
Kakenhi (16H06477, 21H05200, 21H05206), and the Earthquake and Volcano 
Hazards Observation and Research Program of MEXT.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Yamagata University, Yamagata, Japan. 2 Department of Earth and Planetary 
Science, The University of Tokyo, Tokyo, Japan. 3 Laboratoire de Géologie, Ecole 
Normale Supérieure, CNRS, UMR 8538, PSL Research University, Paris, France. 
4 Bureau de Recherches Géologiques et Minières, Orléans, France. 

Received: 2 February 2023   Accepted: 29 June 2023

References
Abercrombie R, Mori J (1994) Local observations of the onset of a large earth-

quake: 28 June 1992 Landers, California. Bull Seismol Soc Am 84:725–734. 
https:// doi. org/ 10. 1785/ BSSA0 84003 0725

Abercrombie RE, Rice JR (2005) Can observations of earthquake scaling 
constrain slip weakening? Geophys J Int 162:406–424. https:// doi. org/ 10. 
1111/j. 1365- 246X. 2005. 02579.x

Ampuero J-P, Ripperger J, Mai PM (2006) Properties of dynamic earthquake 
ruptures with heterogeneous stress drop. In: Abercrombie R, McGarr A, 
Kanamori H, di Toro G (eds) Earthquakes: radiated energy and the physics 
of faulting. American Geophysical Union (AGU), Washington, pp 255–261

Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 
1896–1977(81):5679–5687. https:// doi. org/ 10. 1029/ JB081 i032p 05679

Andrews DJ (2004) Rupture models with dynamically determined breakdown 
displacement. Bull Seismol Soc Am 94:769–775. https:// doi. org/ 10. 1785/ 
01200 30142

Aochi H, Ide S (2004) Numerical study on multi-scaling earthquake rupture. 
Geophys Res Lett. https:// doi. org/ 10. 1029/ 2003G L0187 08

Aochi H, Ide S (2009) Complexity in earthquake sequences controlled by mul-
tiscale heterogeneity in fault fracture energy. J Geophys Res Solid Earth. 
https:// doi. org/ 10. 1029/ 2008J B0060 34

Aochi H, Twardzik C (2020) Imaging of seismogenic asperities of the 2016 
ML 6.0 Amatrice, Central Italy, earthquake through dynamic rupture 
simulations. Pure Appl Geophys 177:1931–1946. https:// doi. org/ 10. 1007/ 
s00024- 019- 02199-z

Baltay A, Ide S, Prieto G, Beroza G (2011) Variability in earthquake stress drop 
and apparent stress. Geophys Res Lett 38:1–6. https:// doi. org/ 10. 1029/ 
2011G L0466 98

Beroza GC, Spudich P (1988) Linearized inversion for fault rupture behavior: 
application to the 1984 Morgan Hill, California, earthquake. J Geophys 
Res Solid Earth 93:6275–6296. https:// doi. org/ 10. 1029/ JB093 iB06p 06275

Bizzarri A (2010) How to promote earthquake ruptures: different nucleation 
strategies in a dynamic model with slip-weakening friction. Bull Seismol 
Soc Am 100:923–940. https:// doi. org/ 10. 1785/ 01200 90179

Broberg KB (1999) Cracks and fracture. Academic Press, San Diego, pp 753–754
Candela T, Brodsky EE (2016) The minimum scale of grooving on faults. Geol-

ogy 44:603–606. https:// doi. org/ 10. 1130/ G37934.1
Candela T, Renard F, Klinger Y et al (2012) Roughness of fault surfaces over nine 

decades of length scales. J Geophys Res Solid Earth. https:// doi. org/ 10. 
1029/ 2011J B0090 41

Colombelli S, Zollo A, Festa G, Picozzi M (2014) Evidence for a difference in 
rupture initiation between small and large earthquakes. Nat Commun 
5:3958. https:// doi. org/ 10. 1038/ ncomm s4958

Das S, Scholz CH (1981) Theory of time-dependent rupture in the earth. J 
Geophys Res Solid Earth 86:6039–6051. https:// doi. org/ 10. 1029/ JB086 
iB07p 06039

Day SM (1982) Three-dimensional simulation of spontaneous rupture: the 
effect of nonuniform prestress. Bull Seismol Soc Am 72:1881–1902. 
https:// doi. org/ 10. 1785/ BSSA0 7206A 1881

Day-Lewis A, Zoback M, Hickman S (2010) Scale-invariant stress orientations 
and seismicity rates near the San Andreas Fault. Geophys Res Lett. https:// 
doi. org/ 10. 1029/ 2010G L0450 25

Dieterich JH (1992) Earthquake nucleation on faults with rate-and state-
dependent strength. Tectonophysics 211:115–134. https:// doi. org/ 10. 
1016/ 0040- 1951(92) 90055-B

Ellsworth WL, Beroza GC (1995) Seismic evidence for an earthquake nucleation 
phase. Science 268:851–855. https:// doi. org/ 10. 1126/ scien ce. 268. 5212. 
851

Ellsworth WL, Bulut F (2018) Nucleation of the 1999 Izmit earthquake by a trig-
gered cascade of foreshocks. Nature Geosci 11:531–535. https:// doi. org/ 
10. 1038/ s41561- 018- 0145-1

Galis M, Pelties C, Kristek J et al (2015) On the initiation of sustained slip-
weakening ruptures by localized stresses. Geophys J Int 200:890–909. 
https:// doi. org/ 10. 1093/ gji/ ggu436

Galis M, Ampuero JP, Mai PM, Cappa F (2017) Induced seismicity provides 
insight into why earthquake ruptures stop. Sci Adv 3:eaap7528. https:// 
doi. org/ 10. 1126/ sciadv. aap75 28

Hirata T (1989) Fractal dimension of fault systems in japan: fractal structure in 
rock fracture geometry at various scales. In: Scholz CH, Mandelbrot BB 
(eds) Fractals in geophysics. Birkhäuser, Basel, pp 157–170

Ida Y (1972) Cohesive force across the tip of a longitudinal-shear crack and 
Griffith’s specific surface energy. J Geophys Res 77:3796–3805. https:// doi. 
org/ 10. 1029/ JB077 i020p 03796

Ide S (2019) Frequent observations of identical onsets of large and small earth-
quakes. Nature 573:112–116. https:// doi. org/ 10. 1038/ s41586- 019- 1508-5

Ide S, Aochi H (2005) Earthquakes as multiscale dynamic ruptures with hetero-
geneous fracture surface energy. J Geophys Res Solid Earth. https:// doi. 
org/ 10. 1029/ 2004J B0035 91

Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geo-
phys Res Lett 28:3349–3352. https:// doi. org/ 10. 1029/ 2001G L0131 06

Ide S, Takeo M (1997) Determination of constitutive relations of fault slip based 
on seismic wave analysis. J Geophys Res Solid Earth 102:27379–27391. 
https:// doi. org/ 10. 1029/ 97JB0 2675

Ide S (2003) Fracture surface energy of natural earthquakes from the view-
point of seismic observations. 東京大学地震研究所彙報 78:59–65

Iio Y (1995) Observations of the slow initial phase generated by microearth-
quakes: implications for earthquake nucleation and propagation. J 
Geophys Res Solid Earth 100:15333–15349. https:// doi. org/ 10. 1029/ 95JB0 
1150

Kame N, Yamashita T (1997) Dynamic nucleation process of shallow earth-
quake faulting in a fault zone. Geophys J Int 128:204–216. https:// doi. org/ 
10. 1111/j. 1365- 246X. 1997. tb040 81.x

Kame N, Rice JR, Dmowska R (2003) Effects of prestress state and rupture 
velocity on dynamic fault branching. J Geophys Res Solid Earth 108:1–21. 
https:// doi. org/ 10. 1029/ 2002J B0021 89

Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Inter 
6:346–359. https:// doi. org/ 10. 1016/ 0031- 9201(72) 90058-1

Kanamori H, Rivera L (2004) Static and dynamic scaling relations for earth-
quakes and their implications for rupture speed and stress drop. Bull 
Seismol Soc Am 94:314–319. https:// doi. org/ 10. 1785/ 01200 30159

Kaneko Y, Fukuyama E, Hamling IJ (2017) Slip-weakening distance and energy 
budget inferred from near-fault ground deformation during the 2016 
Mw7.8 Kaikōura earthquake. Geophys Res Lett 44:4765–4773. https:// doi. 
org/ 10. 1002/ 2017G L0736 81

Langenbruch C, Shapiro SA (2014) Gutenberg-Richter relation originates 
from Coulomb stress fluctuations caused by elastic rock heterogeneity. J 
Geophys Res Solid Earth 119:1220–1234. https:// doi. org/ 10. 1002/ 2013J 
B0102 82

Madariaga R, Olsen KB (2000) Criticality of rupture dynamics in 3-D. In: Mora P, 
Matsu’ura M, Madariaga R, Minster J-B (eds) Microscopic and macroscopic 
simulation: towards predictive modelling of the earthquake process. 
Birkhäuser, Basel, pp 1981–2001

Mai PM, Somerville P, Pitarka A et al (2006) On scaling of fracture energy and 
stress drop in dynamic rupture models: consequences for near-source 
ground-motions. In: Abercrombie R, McGarr A, Kanamori H, di Toro G 
(eds) Earthquakes: radiated energy and the physics of faulting. American 
Geophysical Union (AGU), Washington, pp 283–293

https://doi.org/10.1785/BSSA0840030725
https://doi.org/10.1111/j.1365-246X.2005.02579.x
https://doi.org/10.1111/j.1365-246X.2005.02579.x
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1785/0120030142
https://doi.org/10.1785/0120030142
https://doi.org/10.1029/2003GL018708
https://doi.org/10.1029/2008JB006034
https://doi.org/10.1007/s00024-019-02199-z
https://doi.org/10.1007/s00024-019-02199-z
https://doi.org/10.1029/2011GL046698
https://doi.org/10.1029/2011GL046698
https://doi.org/10.1029/JB093iB06p06275
https://doi.org/10.1785/0120090179
https://doi.org/10.1130/G37934.1
https://doi.org/10.1029/2011JB009041
https://doi.org/10.1029/2011JB009041
https://doi.org/10.1038/ncomms4958
https://doi.org/10.1029/JB086iB07p06039
https://doi.org/10.1029/JB086iB07p06039
https://doi.org/10.1785/BSSA07206A1881
https://doi.org/10.1029/2010GL045025
https://doi.org/10.1029/2010GL045025
https://doi.org/10.1016/0040-1951(92)90055-B
https://doi.org/10.1016/0040-1951(92)90055-B
https://doi.org/10.1126/science.268.5212.851
https://doi.org/10.1126/science.268.5212.851
https://doi.org/10.1038/s41561-018-0145-1
https://doi.org/10.1038/s41561-018-0145-1
https://doi.org/10.1093/gji/ggu436
https://doi.org/10.1126/sciadv.aap7528
https://doi.org/10.1126/sciadv.aap7528
https://doi.org/10.1029/JB077i020p03796
https://doi.org/10.1029/JB077i020p03796
https://doi.org/10.1038/s41586-019-1508-5
https://doi.org/10.1029/2004JB003591
https://doi.org/10.1029/2004JB003591
https://doi.org/10.1029/2001GL013106
https://doi.org/10.1029/97JB02675
https://doi.org/10.1029/95JB01150
https://doi.org/10.1029/95JB01150
https://doi.org/10.1111/j.1365-246X.1997.tb04081.x
https://doi.org/10.1111/j.1365-246X.1997.tb04081.x
https://doi.org/10.1029/2002JB002189
https://doi.org/10.1016/0031-9201(72)90058-1
https://doi.org/10.1785/0120030159
https://doi.org/10.1002/2017GL073681
https://doi.org/10.1002/2017GL073681
https://doi.org/10.1002/2013JB010282
https://doi.org/10.1002/2013JB010282


Page 13 of 13Uemura et al. Earth, Planets and Space          (2023) 75:123  

Mandal P, Rastogi BK (2005) Self-organized fractal seismicity and b value of 
aftershocks of the 2001 Bhuj Earthquake in Kutch (India). Pure Appl Geo-
phys 162:53–72. https:// doi. org/ 10. 1007/ s00024- 004- 2579-1

Matsuura M, Kataoka H, Shibazaki B (1992) Slip-dependent friction law and 
nucleation processes in earthquake rupture. Tectonophysics 211:135–
148. https:// doi. org/ 10. 1016/ 0040- 1951(92) 90056-C

McLaskey GC (2019) Earthquake initiation from laboratory observations and 
implications for foreshocks. J Geophys Res Solid Earth 124:12882–12904. 
https:// doi. org/ 10. 1029/ 2019J B0183 63

McLaskey GC, Lockner DA (2014) Preslip and cascade processes initiating 
laboratory stick slip. J Geophys Res Solid Earth 119:6323–6336. https:// 
doi. org/ 10. 1002/ 2014J B0112 20

Meier M-A, Heaton T, Clinton J (2016) Evidence for universal earthquake rup-
ture initiation behavior. Geophys Res Lett 43:7991–7996. https:// doi. org/ 
10. 1002/ 2016G L0700 81

Mikumo T, Olsen KB, Fukuyama E, Yagi Y (2003) Stress-Breakdown time and 
slip-weakening distance inferred from slip-velocity functions on earth-
quake faults. Bull Seismol Soc Am 93:264–282. https:// doi. org/ 10. 1785/ 
01200 20082

Mitchell TM, Faulkner DR (2009) The nature and origin of off-fault damage 
surrounding strike-slip fault zones with a wide range of displacements: a 
field study from the Atacama fault system, northern Chile. J Struct Geol 
31:802–816. https:// doi. org/ 10. 1016/j. jsg. 2009. 05. 002

Mori J, Kanamori H (1996) Initial rupture of earthquakes in the 1995 Ridgecrest, 
California Sequence. Geophys Res Lett 23:2437–2440. https:// doi. org/ 10. 
1029/ 96GL0 2491

Noda S, Ellsworth WL (2016) Scaling relation between earthquake magnitude 
and the departure time from P wave similar growth. Geophys Res Lett 
43:9053–9060. https:// doi. org/ 10. 1002/ 2016G L0700 69

Noda H, Nakatani M, Hori T (2013) Large nucleation before large earthquakes 
is sometimes skipped due to cascade-up—Implications from a rate and 
state simulation of faults with hierarchical asperities. J Geophys Res Solid 
Earth 118:2924–2952. https:// doi. org/ 10. 1002/ jgrb. 50211

Ohnaka M (2003) A constitutive scaling law and a unified comprehension for 
frictional slip failure, shear fracture of intact rock, and earthquake rupture. 
J Geophys Res Solid Earth. https:// doi. org/ 10. 1029/ 2000J B0001 23

Okubo PG, Aki K (1987) Fractal geometry in the San Andreas Fault System. J 
Geophys Res Solid Earth 92:345–355. https:// doi. org/ 10. 1029/ JB092 iB01p 
00345

Okuda T, Ide S (2018) Streak and hierarchical structures of the Tohoku-
Hokkaido subduction zone plate boundary. Earth Planets Space 70:132. 
https:// doi. org/ 10. 1186/ s40623- 018- 0903-8

Olsen KB, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simu-
lation of the 1992 landers earthquake. Science 278:834–838. https:// doi. 
org/ 10. 1126/ scien ce. 278. 5339. 834

Olson EL, Allen RM (2005) The deterministic nature of earthquake rupture. 
Nature 438:212–215. https:// doi. org/ 10. 1038/ natur e04214

Power WL, Tullis TE (1991) Euclidean and fractal models for the description of 
rock surface roughness. J Geophys Res Solid Earth 96:415–424. https:// 
doi. org/ 10. 1029/ 90JB0 2107

Renou J, Vallée M, Aochi H (2022) Deciphering the origins of transient seismic 
moment accelerations by realistic dynamic rupture simulations. Bull 
Seismol Soc Am. https:// doi. org/ 10. 1785/ 01202 10221

Ripperger J, Ampuero J-P, Mai PM, Giardini D (2007) Earthquake source charac-
teristics from dynamic rupture with constrained stochastic fault stress. J 
Geophys Res Solid Earth. https:// doi. org/ 10. 1029/ 2006J B0045 15

Rubin AM, Ampuero J-P (2005) Earthquake nucleation on (aging) rate and 
state faults. J Geophys Res Solid Earth. https:// doi. org/ 10. 1029/ 2005J 
B0036 86

Savage HM, Brodsky EE (2011) Collateral damage: evolution with displace-
ment of fracture distribution and secondary fault strands in fault damage 
zones. J Geophys Res Solid Earth. https:// doi. org/ 10. 1029/ 2010J B0076 65

Scholz CH (2019) The mechanics of earthquakes and faulting. Cambridge 
University Press, Cambridge

Tada T, Madariaga R (2000) Dynamic modelling of the flat 2-D crack by a semi-
analytic BIEM scheme. Int J Numer Meth Eng 50:227–251. https:// doi. org/ 
10. 1002/ 1097- 0207(20010 110) 50:1% 3c227:: AID- NME166% 3e3.0. CO;2-5

Tinti E, Spudich P, Cocco M (2005) Earthquake fracture energy inferred from 
kinematic rupture models on extended faults. J Geophys Res Solid Earth. 
https:// doi. org/ 10. 1029/ 2005J B0036 44

Uchide T, Ide S (2007) Development of multiscale slip inversion method and 
its application to the 2004 mid-Niigata Prefecture earthquake. J Geophys 
Res Solid Earth. https:// doi. org/ 10. 1029/ 2006J B0045 28

Uchide T, Ide S (2010) Scaling of earthquake rupture growth in the Parkfield 
area: self-similar growth and suppression by the finite seismogenic layer. J 
Geophys Res Solid Earth. https:// doi. org/ 10. 1029/ 2009J B0071 22

Uenishi K, Rice JR (2003) Universal nucleation length for slip-weakening 
rupture instability under nonuniform fault loading. J Geophys Res Solid 
Earth. https:// doi. org/ 10. 1029/ 2001J B0016 81

Viesca RC, Garagash DI (2015) Ubiquitous weakening of faults due to thermal 
pressurization. Nature Geosci 8:875–879. https:// doi. org/ 10. 1038/ ngeo2 
554

Yamada T, Ide S (2008) Limitation of the predominant-period estimator for 
earthquake early warning and the initial rupture of earthquakes. Bull 
Seismol Soc Am 98:2739–2745. https:// doi. org/ 10. 1785/ 01200 80144

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s00024-004-2579-1
https://doi.org/10.1016/0040-1951(92)90056-C
https://doi.org/10.1029/2019JB018363
https://doi.org/10.1002/2014JB011220
https://doi.org/10.1002/2014JB011220
https://doi.org/10.1002/2016GL070081
https://doi.org/10.1002/2016GL070081
https://doi.org/10.1785/0120020082
https://doi.org/10.1785/0120020082
https://doi.org/10.1016/j.jsg.2009.05.002
https://doi.org/10.1029/96GL02491
https://doi.org/10.1029/96GL02491
https://doi.org/10.1002/2016GL070069
https://doi.org/10.1002/jgrb.50211
https://doi.org/10.1029/2000JB000123
https://doi.org/10.1029/JB092iB01p00345
https://doi.org/10.1029/JB092iB01p00345
https://doi.org/10.1186/s40623-018-0903-8
https://doi.org/10.1126/science.278.5339.834
https://doi.org/10.1126/science.278.5339.834
https://doi.org/10.1038/nature04214
https://doi.org/10.1029/90JB02107
https://doi.org/10.1029/90JB02107
https://doi.org/10.1785/0120210221
https://doi.org/10.1029/2006JB004515
https://doi.org/10.1029/2005JB003686
https://doi.org/10.1029/2005JB003686
https://doi.org/10.1029/2010JB007665
https://doi.org/10.1002/1097-0207(20010110)50:1%3c227::AID-NME166%3e3.0.CO;2-5
https://doi.org/10.1002/1097-0207(20010110)50:1%3c227::AID-NME166%3e3.0.CO;2-5
https://doi.org/10.1029/2005JB003644
https://doi.org/10.1029/2006JB004528
https://doi.org/10.1029/2009JB007122
https://doi.org/10.1029/2001JB001681
https://doi.org/10.1038/ngeo2554
https://doi.org/10.1038/ngeo2554
https://doi.org/10.1785/0120080144

	Dynamic nucleation as a cascade-up of earthquakes depending on rupture propagation velocity
	Abstract 
	Introduction
	Theoretical background
	Numerical method

	Results
	Discussion
	Comparison with a singular crack model
	Effect of smoothing

	Conclusions
	Appendix
	Definition of the nucleation rupture velocity in the numerical simulation
	Acknowledgements
	References


