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Abstract 

The predictability of the nighttime equatorial spread-F (ESF) occurrences is essential to the ionospheric disturbance 
warning system. In this work, we propose ESF forecasting models using two deep learning techniques: artificial 
neural network (ANN) and long short-term memory (LSTM). The ANN and LSTM models are trained with the iono-
gram data from equinoctial months in 2008 to 2018 at Chumphon station (CPN), Thailand near the magnetic equator, 
where the ESF onset typically occurs, and they are tested with the ionogram data from 2019. These models are trained 
especially with new local input parameters such as vertical drift velocity of the F-layer height (Vd) and atmospheric 
gravity waves (AGW) collected at CPN station together with global parameters of solar and geomagnetic activity. 
We analyze the ESF forecasting models in terms of monthly probability, daily probability and occurrence, and diurnal 
predictions. The proposed LSTM model can achieve the 85.4% accuracy when the local parameters: Vd and AGW are 
utilized. The LSTM model outperforms the ANN, particularly in February, March, April, and October. The results show 
that the AGW parameter plays a significant role in improvements of the LSTM model during post-midnight. When 
compared to the IRI-2016 model, the proposed LSTM model can provide lower discrepancies from observational data.
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Graphical Abstract

Introduction
The equatorial spread-F (ESF) is a nighttime ionospheric 
irregularity near the magnetic equatorial region. ESF 
is observed on ionogram images from the Frequency 
Modulated Continuous Wave (FMCW) ionosonde, Abdu 
et al. (1981). The appearance of ESF is represented by the 
spreading of the ionogram trace along height and fre-
quency axes on the ionogram image, indicating irregu-
larities in the F-layer bottom-side. Generation of the ESF 
is observed after post-sunset due to plasma instabilities, 
which is explained through the Rayleigh–Taylor instabil-
ity, Woodman and La Hoz (1976). The ESF generation 
depends on precursor conditions such as the evening 
prereversal enhancement in the vertical plasma drift 
(PRE), the F-layer bottom-side density gradient, seeding 
perturbations, and wave structures in the plasma den-
sity and initiated polarization electric field, Abdu (2019). 
The ESF characteristics are basically understood and 
described through numerous parameters. Therefore, this 
fundamental knowledge can contribute to an effective 
development of the ESF forecasting model.

The generation and development of ESF phenomena 
are triggered by the large-scale wave structures (LSWS) 
in F-layer heights and together with the PRE verti-
cal drift during the afternoon until post-sunset hours, 
Abdu et  al. (2015). In some cases, the ESF occurrence 

rate can approach 100% if the vertical plasma drift 
velocity is higher than 40  m/s, Abadi et  al. (2020). The 
study of Tulasi et  al. (2017) also reports that increased 
drift velocities of the post-sunset (post-midnight) at 
around 45–256  m/s (26–128  m/s) can cause the iono-
spheric plasma irregularity. Additionally, atmospheric 
gravitational waves (AGWs) play a significant role on 
the development of the seed plasma perturbations 
from AGW-driven neutral wind perturbations. Also, 
the study of Tsunoda (2010) emphasizes that the seed-
ing perturbations are crucial in the development of ESF 
occurrences. The amplitude of the the seed perturba-
tions with F-layer height variations plays a significant 
role in the ESF occurrence or nonoccurrence, Manju 
et  al. (2016). The latitudinal expansion of ESF/equato-
rial plasma bubble (EPB) occurrences is found due to the 
F-layer height bottom-side changes (Saito and Maruy-
ama 2006; Rungraengwajiake et  al. 2013). Also, the ESF 
characteristics over longitudinally  close  stations are not 
necessarily the same due to their local conditions, Tham-
mavongsy et al. (2022). The high ESF occurrence rate is 
observed in the high solar activity and near the magnetic 
equatorial region. The high and low probabilities of the 
ESF occurrences are noticed in equinoctial and solstice 
months, respectively, Klinngam et  al. (2015). In con-
trast, the suppression and time delay (3–9 h) of the ESF 
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commencement can be caused by high magnetic activi-
ties, Li et  al. (2009). Several evidences are investigated 
under boundary of all possible local and global condi-
tions. However, the local conditions are uniquely crucial 
and necessary to extend the understandability and pre-
dictability of the ionospheric irregularity.

The climatological characteristics of the ESF occur-
rence are well in terms of controlling factors and physical 
mechanisms for longitudinal variations, seasonal vari-
ations, and solar activity. However, the day-to-day and 
short-term variabilities in the ESF occurrence are still 
difficult to be accurately predicted with the long-term 
controlling factors, Li et al. (2021). The efforts of devel-
oping the ESF forecasting model have been attempted in 
space weather studies. The development of the forecast-
ing model on long-term variability of the ESF occurrence 
is designed over large longitudinal areas, for example, 
the monthly probability of the ESF occurrence can be 
successfully modeled using the cubic B-spline method, 
Abdu et  al. (2003), the ESF forecasting models are also 
developed using the neural networks over Brazil and 
Thailand (McKinnell et  al. 2010; Thammavongsy et  al. 
2020), thresholding determined by the hʹF and S4 scin-
tillation can be used to forecast the ESF events in Peru-
vian and Indian sectors (Anderson and Redmon 2017; 
Aswathy and Manju 2018), and the post-sunset ESF pre-
diction model is accomplished using the logistic regres-
sion in Southeast Asia, Abadi et al. (2022). These studies 
exhibit the development of methods for ESF forecast-
ing models and they discussed the important role of the 
space weather parameters such as diurnal, seasonal, solar 
indices, and magnetic indices. In contrast, the utilization 
of local parameters with machine learning is not consid-
ered. Then this might be an important key to improve the 
ESF forecasting model.

Recently, the artificial intelligence (AI) is widely applied 
in space weather forecasting models. In particular, deep 
learning networks are used to solve complex problems. 
One of the most powerful deep neural networks for the 
time series data is a long short-term memory (LSTM) 
network, (Hochreiter and Schmidhuber 1997; Liu et  al. 
2020; Tan et  al. 2018). In space weather studies, the 
LSTM model is successfully applied in the global and 
mid-latitude TEC forecasting, foF2 and hmF2 forecast-
ing models for both quiet and disturbed geomagnetic 
storms, geomagnetic Kp index forecasting, and SYM-H 
and ASY-H forecasting (Liu et  al. 2020; Ulukavak 2020; 
Kim et al. 2020; Tan et al. 2018; Collado-Villaverde et al. 
2021). Therefore, the multi-timesteps/loopbacks and 
advanced functionalities of the LSTM model are highly 
expected in improving the ESF forecasting model. The 
relationship between global and local conditions, and the 

ESF generation and development are well investigated in 
the literatures. To achieve better accuracy of long-term 
and short-term ESF prediction, the investigation of the 
new characteristic inputs is still needed for developing 
the ESF forecasting model based on prior knowledge.

In this work, we develop ESF forecasting models 
using Deep Learning techniques: artificial neural net-
work (ANN) and long  short-term memory (LSTM) for 
Chumphon (CPN) station, Thailand. The new local input 
parameters including the virtual height of F-layer (hʹF), 
F-layer drift velocity of the hʹF (Vd), and the atmospheric 
gravity waves (AGW) are considered. The efficiency 
between the ANN and LSTM models is compared in this 
study. In addition, the IRI-2016 model is validated with 
the observations. From the results, the predictive outputs 
are evaluated in three-dimensional analyses consisting 
of monthly probability, daily probability and occurrence, 
and diurnal predictions.

Data and methods
Description of input parameters
The input parameters of the ESF forecasting model in 
this study include the daily solar activity (F10.7 and SSN) 
downloaded from the Space Physics Data Facility (SPDF) 
OMNIWeb database at https:// omniw eb. gsfc. nasa. gov/ 
form/ dx1. html, the 3-hourly and daily averaged mag-
netic activity indices (ap3 and Ap; kp3 and Kp) from 
World Data Center for Geomagnetism, Kyoto Univer-
sity at https:// wdc. kugi. kyoto-u. ac. jp/ index. html, and 
the local hʹF parameter, F-layer drift velocity (Vd), and 
atmospheric gravity waves (AGW). The last three input 
parameters are gained by manually scaling the ionogram, 
differentiating the hʹF against the time, and analyzing 
wavelet transform, respectively. In addition, the diurnal 
and seasonal variations are represented by hour number 
(Hn) and day number (Dn), which are converted using 
the sine and cosine functions for the continuity in hour 
and day numbers as the following:

(1)Ts = sin

(
2π×Hn

24

)
,

(2)Tc = cos

(
2π×Hn

24

)
,

(3)Ds = sin

(
2π× Dn

365.25

)
,

(4)Dc = cos

(
2π× Dn

365.25

)
,

https://omniweb.gsfc.nasa.gov/form/dx1.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
https://wdc.kugi.kyoto-u.ac.jp/index.html
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where 24 is the total number of hours and 356.25 is used 
due to the included leap year in the data set, Watthana-
sangmechai et al. (2012).

ANN and LSTM algorithms
The ANN has been successfully deployed on time series 
data, Zhang (2012). One of the powerful ANNs is the 
LSTM network that can fulfill the short and long recog-
nitive terms on the time series data. The LSTM model is 
mainly designed to mitigate the vanishing gradient prob-
lem existing in the Recurrent Neural Network (RNN) and 
extend the ability of the model memorization (Hochre-
iter and Schmidhuber 1997; Alex Graves 2012). Then this 
leads to increments of the LSTM model learnability for 
both short and long terms on the time series data. The 
most significant components in the LSTM model struc-
ture are proposed including the cell state, input gate, for-
get gate, aggregated gate, and output gate as expressed in 
Eqs. (9)–(13). As shown in this study, the standard LSTM 
model with many inputs and single output is mainly used. 
The ANN and LSTM models are mathematically shortly 
expressed as the following:

The final output ŷt of the ANN at time tth is obtained 
by

where σ can be any activation functions such as hyper-
bolic tangent, rectified linear unit (ReLU), softmax, etc., 
l represents the layer number and Why and by are weight 
and bias vectors representing the connections between 
hidden and output layers. The current output signal 
depends on the output of the previous hidden layer as the 
following:

where Wxh is the weight connections between the input 
and the hidden layers, and x ∈ R1×d are the input vec-
tor to the network and d indicates number of the input 
features.

For the LSTM model, the final output ŷt is computed 
depending on the hidden state as the following:

(5)ŷt = σ

(
y
[l]
t ·Why + by

)
,

(6)y
[l]
t = σ(xt ·Wxh + bh),

(7)ŷt = σ
(
ht ·Why + by

)
,

(8)ht = ot8⊙ tanh(ct),

(9)ot = σ
(
xt ·Wxo + ht−1 ·Who + bo

)
,

(10)ct = ft ⊙ ct−1 + it ⊙ gt ,

where ht and ct are hidden and cell states, respectively. 
ot , ft , it , and gt , respectively represent the out, forget, 
input, and aggregated gates. As above expression, the 
final output is compared to the desired output or target 
label for measuring the error/loss value. In this work, the 
mean squared error (MSE) is used as:

where N  is the total number of the outputs. In order to 
derive the predicted value close to the actual or desired 
value, the error function needs to be minimized as much 
as possible. The gradient descent (GD) method is used 
to minimize the error function. For simplicity, suppose 
that all weights and biases of those above models are 
defined as θ = {W,b} , the new weights and biases 

(
θ
∗
)
 

are adjusted or corrected by the following delta rule, i.e.,

where η is the learning rate. The ∂E
∂θ

 is the partial deriva-
tive of the E with respect to θ . For the ANN, the gradi-
ents are computed on a single pair input and output. On 
the other hand, the gradients in the LSTM model must 
be calculated through times depending on the network 
learning timesteps/loopbacks. Finally, the derived gradi-
ents are propagated backward through the network for 
updating or correcting the weights and biases. This pro-
cess is repeated over the given epoch number or until the 
minimum error goal is reached.

Model performance analysis
The ESF forecasting model works on classification prob-
lem following the ESF labels as 0 and 1, thereby the model 
performance is evaluated using the confusion matrix. 
The model performance can be biased when the imbal-
anced data are presented to the model. Hence, besides 
the accuracy, another confusion matrix factor is consid-
ered including the recall (sensitivity), precise (positive 
predictive value), and F1 score (Fawcett 2006; Sokolova 
and Lapalme 2009). The above performance metrics are 
defined as:

(11)ft = σ

(
xt ·Wxf + ht−1 ·Whf + b

f

)
,

(12)it = σ
(
xt ·Wxi + ht−1 ·Whi + bi

)
,

(13)gt = tanh
(
xt ·Wxg + ht−1 ·Whg + b

g

)
,

(14)E
(
ŷt , yt

)
=

1

N

N∑

i=1

(
ŷi − yi

)2
,

(15)θ
∗ = θ− η

∂E

∂θ
,
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where TP , TN , FP , and FN are true positive (true one), 
true negative (true zero), false positive (false one), and 
false negative (false zero), respectively. These metrics 
represent the counted number between the model’s pre-
dicted and actual observed values.

Furthermore, the root mean squared error (RMSE) is 
used to evaluate the difference between the model pre-
dictions and the actual observations of the ESF probabil-
ity, i.e.,

where ESF_modi and ESF_obsi represent the predicted 
and observed ESF values and N  is the total number of the 
sequence data.

Data preprocessing
The ESF data are manually obtained at every 15  min 
using the ionogram scaler software. The ESF labels are 
represented by 0 and 1 which indicate the absence and 
presence of the ESF events, respectively. In this study, we 
consider the occurrence period of ESF events at least 1 h 
in the data selection. This means that one detected ESF 
event consists of two consecutive 30-min intervals with 
observed ESF. That is, we have two counted ESF events 
within an entire hour. For the input parameters, the Vd 
parameter is retrieved by differentiating the hʹF with 
respect to the time, Abadi et al. (2022). The AGW param-
eter is derived by the wavelet transformation (Morlet 
Wavelet) analyzing on the foF2 signal in the range of 
30–90  min of the wavelet’s periodicities (Manju et  al. 
2016; Torrence and Compo 1998). Note that the miss-
ing foF2 values are replaced using the linear interpola-
tion with nonmonotonically increasing sample points. 
The averaged power spectrum of the AGW is used in 
this study. Figure 1 shows the calculation procedures to 
obtain the AGW coefficients.  The foF2 signal xn is first 
taken into discrete Fourier transform (DFT) producing 

(16)Accuracy =
TP+ TN

TP+ TN + FP+ FN
,

(17)Recall =
TP

TP+ FN
,

(18)Precise =
TP

TP+ FP
,

(19)F1 score =
2(

1
Recall

+ 1
Precise

) ,

(20)RMSE =

√√√√ 1

N

N∑

i=1

(ESF_modi − ESF_obsi)
2,

x̂k . The obtained power spectrum of the wavelet trans-
form at each time (17:00 to 22:30 LT) and wavelet scale 
is stored in Wn(s) . The averaged power spectrum of the 
wavelet transform is obtained by summing up entire 30 
to 90-min periodicities at each time of the wavelet power 
spectrum Wn(s).

The diurnal and seasonal parameters are represented 
by hour and day numbers passed through sine and cosine 
functions for obtaining the cyclical time and seasonal 
variations (McKinnell and Poole 2000; Watthanasangme-
chai et al. 2012). Before training the model, all the input 
parameters are scaled using the standardization method 
as shown in Eq. (21). The predicted output of the models 
is obtained in floating number according to the activation 
function of the neuron at the output layer, then it is clas-
sified whether class 0 or class 1 using 0.5 as the threshold 
value:

where µx and σx are the mean and standard deviation 
values.

Experimental design and input combinations
In this study, the ANN and LSTM models are developed 
using the 30-min interval data and the output labels with 
0 and 1. The best network structure and input parame-
ters are determined through varying neurons and input 
features. The neuron numbers are varied from 10 to 50. 
The LSTM loopback learning is started from 30 to 90 min 

(21)xnew =
x − µx

σx
,

Fig. 1 Flowchart of the calculation procedure of the averaged power 
spectrum from the wavelet transformation
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for finding the optimal one. These loopbacks are given 
depending on possible period relationships between the 
influencing input parameters and the ESF generation. 
The F-layer height and its drift velocity play a significant 
role on the ESF post-sunset events (Abadi et  al. 2020, 
2022; Anderson and Redmon 2017; Aswathy and Manju 
2018). Also, the seeding perturbations are revealed to 
exhibit significant evidences before the ESF generations 
in both post-sunset and post-midnight (Manju et  al. 
2016; Otsuka 2018). The models are trained and tested 
with the data in 2008 to 2018 and 2019, respectively.

Selection of the input parameters is considered through 
direct and indirect influencing parameters which are 
investigated in previous studies. Correlative measure-
ments between input parameters against the ESF are 
mainly relied on reported information in previous stud-
ies. The input combinations are designed to investigate 
the significant input feature and case study of the new 
local parameters for improving the ESF model. The entire 
input features are included as hour number ( Ts and Tc ), 
day number ( Ds andDc ), F10.7, SSN, ap3 and Ap, kp3 
and Kp, hʹF, F-layer drift velocity (Vd), and atmospheric 
gravity waves (AGW). The input-based parameter is first 
defined as the input A for finding the best network struc-
ture and loopbacks. Later, the best network with input-
based parameters is onward utilized to find the best input 
combination as the following.

The optimal network structure is derived by consider-
ing the confusion matrix factors. The prediction step of 

the ANN and LSTM models is made at 0.5 h or 30-min 
ahead.

The proposed LSTM model for ESF forecasting 
The LSTM structure for ESF forecasting model is shown 
in Fig. 2. The standard LSTM model is used in this study 
(Hochreiter and Schmidhuber 1997; Alex Graves 2012). 
The LSTM model learning depends on multi-timesteps/
loopbacks over the time series data and produces a sin-
gle output at the next time step. The LSTM hidden layer 
contains the identical neuron over each loopback. Lastly, 
the output of the LSTM model is converted into 0 and 1 
using threshold with 0.5. The LSTM model hyperparam-
eters are determined as 150 training epochs, and 0.001 
of the learning step. The error function is represented by 
the mean squared error (MSE). Initial weights are rand-
omized under the normal distribution. The bias initializa-
tion is given as zeros. The weight and bias corrections are 
adjusted using the gradient descent (GD) method.

Data preparation and selection
This study utilizes the ionogram data from the Frequency 
Modulated Continuous Wave (FMCW) ionosonde at 
the CPN station. The dataset covers the 24th cycle of the 
solar activity from 2008 to 2019. The data in equinoctial 
months only are only utilized including February, March, 
April, August, September, and October. The ESF data are 
manually collected every 15  min. We resample the data 
every 30  min in this study. Scant data are available for 

Fig. 2 The proposed LSTM network for the ESF forecasting model
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some years, such as 2010, 2012, and 2017 due to the miss-
ing data, which are excluded in this study. The period 
of the data is considered from 17:00 LT to 06:30 LT. 
As mentioned above, the space input parameters are 
designed including diurnal variations, seasonal varia-
tions, F10.7 solar flux, sun spot number (SSN), magnetic 
3-hourly averaged ap index (ap3) and magnetic daily 
averaged Ap index (Ap), magnetic 3-hourly averaged 
kp index (kp3) and magnetic daily averaged Kp index 
(Kp), local ionospheric F-layer height (hʹF), local vertical 
drift velocity (Vd), and averaged power spectrum of the 
atmospheric gravity waves (AGW). The AGW is derived 
by analyzing the wavelet transform of the foF2 signal 
within 30–90  min of the wavelet’s periodicities, Manju 
et al. (2016).

The available ESF data at the CPN station, Thailand, 
cover 2008 to 2019 as depicted in Fig.  3. The available 
number of days in each month for the training set from 
2008 to 2018 is summarized as shown in Fig. 4. More data 
are from March and April than other months. Table  1 

shows the data quantity in ESF absence and presence for 
training and testing sets.

Results and discussions
Selection of the optimal network structure and input 
parameters for the ESF forecasting model
The optimal network structure and input parameters 
are determined using the 30-min interval data. We first 
investigate the optimal input parameter for both ANN 
and LSTM models. The time and seasonal factors are 
always used in the models. The solar and magnetic indi-
ces such as F10.7, SSN, ap3, Ap, kp3, and Kp are orderly 
considered for investigating the optimal one. These 

Fig. 3 The statistics of the available ESF data at Chumphon station from 2008 to 2019

Fig. 4 The available number of days of the training set from 2008 
to 2018 (2017 is excluded)

Table 1 The training and testing data samples between ESF 
class 0 and 1

ESF-classes

ESF-1 ESF-0

Training set = 19,600 4340 (22.1%) 15,260 (77.9%)

Testing set = 3080 398 (12.9%) 2682 (87.1%)

Table 2 Designs of the input combinations for the ANN and 
LSTM models

Input Input feature

A Ts, Tc, Ds, Dc, SSN, ap3

B Ts, Tc, Ds, Dc, SSN, ap3, hʹF
C Ts, Tc, Ds, Dc, SSN, ap3, Vd

D Ts, Tc, Ds, Dc, SSN, ap3, AGW 

E Ts, Tc, Ds, Dc, SSN, ap3, Vd, AGW 
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parameters are put together as combinations in data set 
with diurnal and seasonal parameters as seen in Table 2. 
The structure of the ANN model includes 1 to 4 hidden 
layers, while the LSTM model includes only one hidden 
layer. As shown in Tables 3 and 4, the confusion matrix 
factors of the models are obtained and evaluated on each 
given input parameter. As we can see from these tables, 
both SSN and ap3 indices clearly improve the models. 
Therefore, the following input-based parameters are 
selected including Ts , Tc , Ds , Dc , SSN, and ap3. They 
are extensively used to determine other optimal param-
eters such as the neuron numbers of the ANN and LSTM 
models, and learning loopback of the LSTM model.

Figure  5 shows the performance of the ANN model 
with different neuron numbers on four factors. We 
obtain the optimal number of neurons and hidden layers 
for the ANN model through considering various network 
structures. It is noticed that the ANN network with three 
and four hidden layers tends to meet with overfitting and 
underfitting while training. Thus, the ANN network with 
two hidden layers is selected because the model train-
ing and validating have robustness over underfitting and 
overfitting problems. Note that the result of the ANN 
network with two hidden layers is only shown here in 
Fig. 5. As a result, the total accuracy is slightly different at 
given neuron numbers. However, it can be distinguished 

Table 3 The performances of the ANN and LSTM models for each solar index

Trained ANN and LSTM models with the SSN index are obtained with acceptable performance as seen in bold text

Accuracy Recall Precise F1 score

ANN LSTM ANN LSTM ANN LSTM ANN LSTM

F10.7 cm 0.82 0.83 0.13 0.22 0.2 0.29 0.16 0.25

SSN 0.81 0.83 0.3 0.24 0.29 0.32 0.3 0.28
F10.7 + SSN 0.84 0.83 0.1 0.2 0.25 0.28 0.15 0.23

Table 4 The performances of the ANN and LSTM models for each magnetic index

The determination of magnetic indices is seen that the ap3 index can provide an optimal performance for both ANN and LSTM models as seen in bold text

Accuracy Recall Precise F1 score

ANN LSTM ANN LSTM ANN LSTM ANN LSTM

ap3 0.83 0.84 0.32 0.29 0.33 0.34 0.32 0.31
kp3 0.84 0.83 0.22 0.26 0.33 0.3 0.26 0.28

Ap 0.84 0.83 0.23 0.26 0.34 0.31 0.28 0.28

Kp 0.84 0.83 0.23 0.26 0.34 0.31 0.28 0.28

Fig. 5 The performance of ANN model on different neuron numbers
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at 30 neurons which yield high values in recall and F1 
score. Therefore, the 30 neurons are selected for the 
ANN model in this work.

Similarly, we also find the optimal cell/neuron number 
for the LSTM model by increasing the cell number from 
10 to 50 with the step of 5 and the learning loopbacks 
are given with a fixed hour. As shown in Fig. 6, the total 
accuracy is above 77% and slightly different in given cell 
numbers. The LSTM model with 35 cells yields high per-
formance as indicated in recall and F1 score. The 35 cells 
are then selected and used onward to determine the opti-
mal learning loopback for the LSTM model. The result of 
determining the learning loopbacks is shown on Fig.  7. 

Fig. 6 The performance of LSTM model on different cell numbers

Fig. 7 The performance of LSTM model on different learning loopbacks

Fig. 8 The performances of the ANN model with each input 
combination



Page 10 of 16Thammavongsy et al. Earth, Planets and Space          (2023) 75:118 

The result denotes that enhancement of the learning 
loopbacks causes declination of the LSTM model per-
formance, thereby, this implies that the sufficient LSTM 
learnability depends on the prior information which is 
very close to the present time of the prediction. An hour 
of the learning loopbacks is majorly chosen for the LSTM 
model in this work.

In summary, from Figs. 5, 6 and 7, we choose two hid-
den layers containing 30 neurons for the ANN model, 
and one hidden layer containing 35 cells and an hour of 
the loopback for the LSTM model.

In this section, we investigate the combination of the 
new local input parameters in Table  2 labeled as A to 
E, respectively. Figure  8 shows the ANN model perfor-
mances on each input combination. Importantly, for the 
ANN model, the input D which contains the local AGW 
index produces an 83% accuracy over other input com-
binations. Benefits of using the input D with the AGW 
index can improve the precision, total accuracy, and F1 
score of the ANN model. In contrast, the ANN model 
without the AGW index can only gain the high recall 

by the input C which contains the Vd index. Therefore, 
the reduction of the false prediction of the ESF absence 
can be improved using the local Vd index, while the false 
prediction of the ESF presence is reduced with the AGW 
index.

Similarly, Fig. 9 shows results of the LSTM model per-
formance tested on each input combination. The 85% 
accuracy is clearly achieved with the input E over other 
input combinations. The high precision and accuracy are 
gained when both local Vd and AGW indices are simul-
taneously used. The LSTM model trained without the 
AGW index produces high values in recall and F-score, 
when hʹF is used. On the other hand, the LSTM model 
yields high accuracy and precision, when AGW is used. 
Consequently, the use of the AGW index is revealed 
with the improved performance on the ESF presence 
prediction, namely the reduction of the false ESF pres-
ence prediction. Hence, the input E contains both local 
Vd and AGW parameters, which significantly improves 
the LSTM model. This improvement is expected due to 
the non-directional relation of the AGW against the ESF 
events. Usually, the propagated AGW amplitudes and 
high drift velocity are early observed before the post-sun-
set ESF onset and the developed ESF events (Manju et al. 
2016; Tsunoda 2010; Tulasi et al. 2017; Abadi et al. 2020). 
The post-midnight ESF generation is also reported to be 
indicated by the AGW in solstice months, Otsuka (2018). 
On the other hand, we expect that the restrictions of the 
single time independent learning and the complicated 
feature of the ESF characteristics can negatively cause 
the ANN model while the improvement of the LSTM 
model can be clearly seen. This might also be one advan-
tage of the LSTM model in recognizing and character-
izing the complicated data features using the loopbacks. Fig. 9 The performance of LSTM model on each input combination

Fig. 10 Comparison of the best model between ANN and LSTM models
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Importantly, the LSTM model can gain higher accuracy 
using the AGW index than the ANN model.

As shown in Fig. 9, we can notice improvements of the 
model using input B and C more than input A through 
recall, precise, and F1 score factors. However, this still 
indicates that input A itself can give high accuracy value, 
with the drawback of other decreased parameters. Fur-
thermore, when we consider the local input parameters 
as Vd and AGW, the result exhibits that the input E can 
also significantly improve the proposed ESF model.

Next, the optimal models are retrained and retested 
for evaluating their predictive performance. As shown 
in Fig.  10, the comparative results between the ANN 
and LSTM models are shown through four confusion 
factors. Totally, the 85% and the 83% accuracies can be 
accomplished by the LSTM and ANN models. The LSTM 
model is more robust with the false positive prediction or 
false ESF presence prediction as exhibited in the precise 
score. On the other hand, the ANN model can attain high 
value in recall, namely its robustness against the false 
negative or false ESF absence prediction.

Therefore, the LSTM model with 35 neurons, one 
hour loopbacks, and input E is proposed in this work. 
The LSTM model with input E can achieve higher score 
of the accuracy and the precise over the ANN model 
with input D as shown in Fig. 10. This indicates that the 
LSTM model can gain more improvements from the use 
of the local AGW parameter than the ANN model. In 
addition, this work can exhibit the proof of utilizing the 

investigated important knowledge of the ESF events to 
design fundamental input features and new local param-
eters for improving the predictability of the ESF occur-
rence. It is realized that the input E with Vd and AGW 
indices can improve the LSTM model. Therefore, it is 
suggested to use the LSTM model trained with the input 
E for achieving the improvements of the ESF model as 
shown in Figs. 8, 9 and 10.

Although the recall, precise, and F1 score are below 
0.5, the overall accuracy of the spread-F presence and 
absence, is in the levels of 85% or higher. We understand 
that when these values are low, it means the false pre-
diction needs to be improved. These metric values are 
low possibly due to various reasons such as imbalanced 
data and complex input features. However, this work can 
exhibit the significant role of the new local Vd and AGW 
parameters can improve the model performance.

Prediction of the monthly probability percentage 
of the ESF events
Figure  11 shows the monthly probability percentage 
of the observed ESF events compared with the predic-
tions of the ANN, LSTM, and IRI-2016 models. This is 
to exhibit the model predictability on the unseen data 
(2019). The vertical axis represents the probability per-
centage of the ESF events. The horizontal axis is the local 
time from 17:00 to 06:30. In 2019, this year is on descend-
ing side of the minimum solar activity in the 24th solar 
cycle.

Fig. 11 Comparison of the observed values against the predicted values of the ANN, LSTM, and IRI-2016 models



Page 12 of 16Thammavongsy et al. Earth, Planets and Space          (2023) 75:118 

Compared with the observed ESF, the ANN model 
tends to overestimate the ESF probability percentage in 
March, April, and October, but underestimate the ESF 
probability percentage in February, August, and Sep-
tember as shown in Fig.  11. The overestimations of the 
ANN model are seen between 20:00 LT and 03:00 LT in 
March, April, September, and October, while the under-
estimated values are observed from 18:00 LT to 19:30LT 
in those months. The underestimation of the ANN model 
is mainly observed during 18:00 LT to 06:00 LT in Feb-
ruary and August more than in September and Octo-
ber. The false prediction percentages of the ANN model 
are between 10 and 40% in terms of RMSE as shown in 
Fig. 12, respectively. Both the LSTM and the ANN mod-
els also overestimate (underestimate) the ESF probability 
percentage in those months in Fig. 11. The LSTM model 
overestimates the ESF probability percentage in April 
and October. Underestimations of the LSTM model are 
clearly seen in February, August, and September. The 
errors of the LSTM are between 10 and 21%, as shown 
in Fig. 12. For the IRI-2016 model, it is clearly seen that 
it overestimates the ESF probability percentage in all 

months as shown in Fig. 11. The high overestimation of 
the IRI-2016 model is observed during 18:30 LT to 06:30 
LT in February, March, April, September, and October, 
except in August. The RMSE of the IRI-2016 model are 
between 19 and 37% in these months. The LSTM model 
is more appropriate than the ANN and IRI-2016 models 
for forecasting the ESF probability percentage at CPN 
station.

In addition, this study reports that the overestima-
tions of the IRI-2016 model are observed in February, 
March, April, September, and October in 2019 at CPN 
station. This is consistent with other previous studies 
cover from 2004 to 2014 such as Klinngam et al. (2015) 
in CPN, Chiangmai (CMU) and Kototabang (KTB) sta-
tions, Afolayan et al. (2019) in CPN, Kwajalein (KWJ) and 
Jicamarca (JIC) stations, Thammavongsy et al. (2020) in 
CPN station, and Thammavongsy et  al. (2022) in CPN 
and Tirunelveli (TIR) stations. Therefore, one of the IRI-
2016 model’s errors is expected due to the uniquely local-
ized ESF characteristics applied in B-spline method.

From Fig.  11, the occurrence rates of the observed 
ESF events in the March equinoxes are higher than in 
September equinoxes. The high occurrence rates are 
observed during post-sunset in March equinoxes and in 
contrast, during post-midnight in September equinoxes. 
Therefore, this indicated that the high occurrence rate of 
the post-midnight irregularities can also be observed in 
equinoctial months as well as solstice months during the 
low solar activity, Otsuka (2018). The highest occurrence 
rate is literally around 60% in March equinoxes and 40% 
in September equinoxes.

Furthermore, we show the RMSE of the LSTM model 
trained with and without the AGW parameter in Table 5. 
The AGW role can only improve the LSTM models in 
post-midnight for March, April, August, September, and 
October; thereby, this agrees with the investigated posi-
tive AGW relations in post-midnight by Otsuka (2018). 
In particular, we found that the LSTM model can earn 
the improvements in September for all cases. Thus, this 
implies the significant role of the AGW in September. 

Fig. 12 The RMSE of the ANN, LSTM, and IRI-2016 models’ prediction 
in each month

Table 5 RMSE of the LSTM model trained with and without the use of the AGW parameter

Significant improvements of the ESF model are gained with the AGW index as shown in bold text

All nights Post-sunset Post-midnight

AGW No AGW AGW No AGW AGW No AGW 

Feb 15.9 10.6 19 9.6 12 11.5

Mar 14.3 13 19.4 16.5 5.7 8

Apr 32.8 23.5 44.5 29.5 12.9 15.4

Aug 20.4 20.1 14 12.4 25.2 25.6

Sep 7.4 11.1 6.5 12.2 8.3 9.7

Oct 27.2 20.3 37.7 27.6 7.3 8.1
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In contrast, the AGW index does not provide significant 
information in improving the LSTM model during the 
post-sunset.

Prediction of the daily probability percentage of the ESF 
events
Figure  13 shows the residual errors between the obser-
vations and predictions. The daily ESF percentage are 
computed by summing up the ESF presences from 17:00 
to 06:30 LT and dividing by the total number of the ESF 
presence and absence. The vertical axis represents the 
residual errors between the observations and the ESF 
models. The x-axis represents the day number in March 
and September equinoxes with 110 available days as 
February (1–20), March (21–46), April (47–64), August 
(65–81), September (82–99), and October (100–110). As 
a result, the residual error graphs are slightly different in 
each day between ANN and LSTM models. The ANN 

and LSTM models give the errors above 20% on days 
from March to August (35–77). In October (100–110), 
the ANN errors are seen to be higher than the LSTM. As 
a total RMSE result, we observe that the LSTM model 
achieves 21.38% of the RMSE and 23.19% is of the ANN 
model. Furthermore, the outperformance of the LSTM 
model is possibly derived from the new local input fea-
tures and advantages of the LSTM neuron design. How-
ever, the daily prediction of the ESF events is still a hard 
work due to the complex characteristics of the ESF events 
against input features and imbalanced data. This result 
can imply and exhibit toward the important role of local 
input features and the advanced LSTM model.

On the other hand, we can analyze performance of the 
ANN and LSTM models for the daily ESF prediction. In 
this case, the daily ESF percentage is greater than zero, 
which is defined as the ESF day (ESF-1) and otherwise, 
it is defined as non ESF day (ESF-0). Thus, the predictive 
performance of the models can be summarized into the 
confusion matrix as shown in Fig. 14. The total accuracy 
of the ANN model is about 57% (64) and 61% (67) is of 
the LSTM model. The correct prediction rate of the ESF 
day is obtained about 53% (47) and 68% (47) the ANN 
and LSTM models, respectively. The correct prediction 
of non ESF day is 60% (63) and 56% (63) in ANN and 
LSTM, respectively. Therefore, we notice that the preci-
sion of the ANN and LSTM models can achieve above 
50% for the daily ESF prediction.

Prediction of the short ESF events within 30-min ahead
The proposed ESF forecasting model is mainly designed 
to work on one step prediction ahead for both ANN and 
LSTM models. In Fig.  15, the ANN and LSTM models 
could provide 83.3% (2566) and 85.4% (2672) accura-
cies. Predictability of the ANN and LSTM models on the 
ESF-0 is higher than on the ESF-1. This is caused by the 

Fig. 13 Comparison of the observed ESF daily percentage 
against the ANN and LSTM models

Fig. 14 Confusion matrix of the (a) ANN and (b) LSTM models on the daily ESF prediction. The top and right panels, respectively, represent 
the model and observation based on the classification of two desired classes. Inside panels with two left diagonal green boxes represent 
the numbers of the correct prediction against observed values for both ESF-0 and ESF-1 classes. The two right diagonal green boxes represent 
the false prediction for both classes. The bottom green box is the total number of correct predictions of both classes. The two bottom orange boxes 
represent the total number of false and correct predictions of the model, and the right gold boxes are also the total number for the observation
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data ratio on two ESF classes are not equivalent as shown 
on Table 2. Anyway, the data imbalancing techniques are 
inappropriately used on this ESF time series data because 
cyclic components of the diurnal and seasonal indices 
can be affected. As a result, the correct prediction of the 
ESF-0 is gained about 90.4% (2682) and 89.5% (2825) for 
the ANN and LSTM models, respectively. For the ESF-1 
prediction, the ANN and LSTM models achieve 35.5% 
(397) and 39.7% (252). The LSTM model still outperforms 
the ANN for this ESF short-term prediction. Besides, we 
still notice the difficulties of the model predictability on 
the ESF-1 prediction. This might be caused by several 
possible factors and dimensions such as the relationships 
between the ESF and input characteristics are unclear for 
short-term variability, Li et  al. (2021), the restriction of 
the available data can be a cause for losing the significant 
information, and the data portion can negatively affect 
the model recognizability producing the biased result. 
However, this study can exhibit the potential of LSTM 
model for the ESF forecasting. It is clearly revealed that 
development of the ESF forecasting model is still a chal-
lenging work.

Based on the previous study of Abadi et al. (2022) can 
achieve ~ 80% accuracy for predicting the post-sunset 
ESF occurrence over stations in Southeast Asia. Also, 
~ 80% accuracy of predicting the post-sunset ESF events 
is exhibited over stations, Anderson and Redmon (2017). 
In this study, the ANN and LSTM models can achieve 
83.3% (2566) and 85.4% (2627) for the post-sunset and 
post-might ESF predictions. This can imply that the local 
information is more important and necessary for devel-
oping the ESF forecasting model. In addition, this would 
be suggested to use the model learning with loopback 
capability for the ESF forecasting model and the coeffi-
cient parameters should be designed separately particu-
larly for each season.

Conclusions
In this work, we develop the ESF forecasting models 
using ANN and LSTM models. The new local F-layer 
drift velocity and power spectrum of the atmospheric 
gravity waves are successfully presented to improve the 
ESF forecasting model. Use of the AGW index is first 
found to improve the LSTM model during the post-
midnight rather than the post-sunset. The proposed 
LSTM model is able to give a favorable performance for 
developing the ESF forecasting model. The LSTM model 
achieves 85.4% accuracy and 83.3% is of the ANN net-
work. Development of the daily ESF prediction is first 
studied in this work; it can complete about 55% accuracy 
for both ANN and LSTM models. The proposed LSTM 
model works effectively in reducing the overestimation 
compared to the ANN model. For the monthly prob-
ability predictions, the proposed LSTM model yields the 
RMSE below 20%. The IRI-2016 model overestimates the 
ESF probability more than 20% (RMSE) for all months. 
Also, the IRI-2016 model provides higher RMSE than the 
proposed LSTM model. Furthermore, the three-dimen-
sional aspects of the performance analyses show that the 
day-to-day prediction of the ESF events is still in difficult 
task. The low F1 score of around 0.3 suggests that the 
model improvement in the future for more accurate pre-
diction of the LSTM model. One of the possible solutions 
is the new input features which can exhibit characteristics 
of the ESF presence based on physical mechanisms. The 
restriction of the available data is one issue in this study. 
Therefore, we expect that the near future development 
of the ESF forecasting model should go onto the atten-
tive model learnings and new local input parameters in 
enhancing the input intelligence and model learnability.

Fig. 15 Confusion matrix of the (a) ANN and (b) LSTM models on the 30-min prediction ahead. Description of each inside panel is the same 
as Fig. 14
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Abbreviations
AI  Artificial intelligence
AGW   Atmospheric gravity wave
ANN  Artificial neural network
Ap  Geomagnetic activity index
CPN  Chumphon
Dn  Day number
ESF  Equatorial spread-F
EPB  Equatorial plasma bubble
foF2  Critical frequency of F2-layer
FMCW  Frequency Modulated Continuous Wave
FN  False negative
F10.7  Solar flux emission with 10.7 cm radio wavelength
GD  Gradient descent
HF  High frequency
hʹF  Virtual height of F layer
Hn  Hour number
RNN  Recurrent Neural Network
SSN  Sunspot number
SPDF  Space Physics Data Facility
Kp  Disturbance indictor of the Earth’s magnetic field
LSTM  Long short- term memory
IRI  International Reference Ionosphere
MSE  Mean squared error
RMSE  Root mean squared error
TP  True positive
FP  False positive
TN  True negative
LSWS  Large-scale wave structure
PRE  Pre-reversal enhancement
Vd  Vertical drift velocity
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