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Abstract 

We introduce a new flexible one-dimensional photochemical model named Photochemical and RadiatiOn Transport 
model for Extensive USe (PROTEUS), which consists of a Python graphical user interface (GUI) program and Fortran 90 
modules. PROTEUS is designed for adaptability to many planetary atmospheres, for flexibility to deal with thousands 
of or more chemical reactions with high efficiency, and for intuitive operation with GUI. Chemical reactions can be 
easily implemented into the Python GUI program in a simple string format, and users can intuitively select a planet 
and chemical reactions on GUI. Chemical reactions selected on GUI are automatically analyzed by string parsing 
functions in the Python GUI program, then applied to the Fortran 90 modules to simulate with the selected chemi-
cal reactions on a selected planet. We performed a benchmark test of PROTEUS to confirm its validity, by applying it 
to the Martian atmosphere and the Jovian ionosphere. PROTEUS can significantly save the time for those who need 
to develop a new photochemical model; users just need to write chemical reactions in the Python GUI program 
and just select them on GUI to run a new photochemical model.
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Graphical Abstract

Introduction
One-dimensional photochemical and transport models 
are essential for investigating the typical vertical chemical 
structure of planetary atmospheres and their evolution 
throughout the history of the planets. They solve conti-
nuity-transport equations considering production and 
loss of each atmospheric species by numerous chemical 
reactions including photolysis. So far, plenty of photo-
chemical models have been developed for various plan-
etary atmospheres in the solar system (e.g., Kasting et al. 
1979; Nair et al. 1994; Kim and Fox 1994; Fox and Sung 
2001; Krasnopolsky 2009, 2012; Chaffin et al. 2017) and 
terrestrial exoplanets (e.g., Rugheimer et al. 2013; Lustig-
Yaeger et  al. 2019; Grenfell et  al. 2013). As the mass 
and spectral resolutions of measurements for detecting 
chemical species in planetary atmospheres increase and 
the theory of chemical kinetic systems becomes more 
complex, the need for photochemical models with hun-
dreds or thousands of chemical reactions increases.

There are roughly three approaches to develop a 
numerical code for solving a lot of chemical reactions 
(Damian et al. 2002). The first approach is a hard-coding 
approach, in which the developer analyzes the chemical 
reactions, derives all the production and loss rate terms 
for each chemical species, and codes them into a pro-
gram by hand. This approach is easy to develop when the 
number of chemical reactions is smaller than a hundred, 
however, it takes a lot of time to develop a code when the 
number of reactions becomes larger than hundreds or 
more. It is also difficult to add new chemical reactions 
into an already hard-coded program.

The second approach is a totally integrated approach, 
in which the chemical reactions are listed in a specific 
file in a certain format, and they are parsed by a program 
and stored in a memory at a run time. This approach is 
flexible in adding new chemical reactions after the devel-
opment of the core program, and easy to deal with hun-
dreds of chemical reactions without developer’s manual 
derivation. This approach was used in the Atmos model 
in Fortran language for instance, which was originally 
developed by Kasting et  al. (1979), updated by Zahnle 
et al. (2006) and recently described in Arney et al. (2016). 
Recently an integrated Martian photochemical model 
was developed by Chaffin et  al. (2017) in Julia language 
with a more flexible way of describing reactions and rate 
coefficients.

The third approach is a preprocessing approach, in 
which the chemical reactions are listed in a specific file 
like the totally integrated approach but are parsed by 
a preprocessor to generate a hard-coded program in 
a high-level language such as Fortran or C language 
(Damian et  al. 2002). This approach is also flexible in 
implementing hundreds of chemical reactions and is as 
efficient as the hard-coding approach. This approach was 
used in the kinetic preprocessor (KPP) originally devel-
oped by Damian et al. (2002), which has been widely used 
for chemical kinetic models for Earth’s atmosphere (e.g., 
Roldin et al. 2019).

In this paper, we present a new integrated photochemi-
cal model named Photochemical and RadiatiOn Trans-
port model for Extensive USe (PROTEUS), with a totally 
integrated approach. PROTEUS couples Python and 
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Fortran modules, which is designed for adaptability to 
many planetary atmospheres, for flexibility to deal with 
thousands of or more chemical reactions with high effi-
ciency, and for intuitive operation with a graphical user 
interface (GUI). A Python GUI program integrates a list 
of chemical reactions, GUI functions controlling the 
behavior of GUI operation, and a string parsing func-
tions analyzing chemical reactions that output a Fortran 
90 module. Fortran 90 modules solve differential equa-
tions numerically. Chemical reactions are written in a 
simple and flexible string format in the Python GUI pro-
gram, making it easy to add new chemical reactions into 
the Python GUI program. The feature of PROTEUS that 
the Python GUI program outputs a Fortran 90 module is 
similar to the preprocessing approach, leading to a high 
efficiency, however, the Fortran modules in PROTEUS 
are not hard-coded but is rather generic.

PROTEUS has been newly developed and independent 
of other photochemical models or KPPs that have been 
developed so far.

Model descriptions
Equations
PROTEUS is a one-dimensional photochemical model 
that solves a system of continuity equations for each spe-
cies as follows:

where ni is the number density of i th species, Pi is the 
production rate of i th species, Li is the loss rate of i th 
species, z is the altitude and �i is the vertical flux of i th 
species. The vertical flux �i for both neutral and ionized 
species can be expressed as follows:

where Di is the binary diffusion coefficient between i th 
species and the background atmosphere, Hi = kBTi/mig 
is the scale height of i th species, mi is the mass of i th 
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species, kB is the Boltzmann constant, g is the gravita-
tional acceleration, qi is the charge of i th species, qe is 
the elementary charge, Te and Ti are the temperatures of 
electrons and i th species, respectively, Pe = nekBTe is the 
electron pressure, ne is the electron number density, αi is 
the thermal diffusion coefficient, K  is the eddy diffusion 
coefficient, H = kBT/mg is the mean scale height of the 
background atmosphere, m is the mean molecular mass 
of the atmosphere, and T  is the neutral temperature. 
The temperature profiles are assumed to be stationary in 
time. The third term in Eq. (2) is the ambipolar diffusion 
term, which is applied only to charged species. The alti-
tude-dependent gravitational acceleration g is calculated 
by using the mass and radius of the planet.

We referred to the numerical method for solving the 
system of continuity equations for the photochemical 
model described in Catling and Kasting (2017) with 
some corrections. The vertical flux in Eq. (2) can be re-
written as follows:

The spatial derivative of the vertical flux is expressed 
in a second-order central difference as follows:

where superscripts j + 1/2 and j − 1/2 are the upper 
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Then the spatial derivative of the vertical flux can be 
described as follows:

Equation (1) can then be written as follows:

where Ai
j , Bi
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j are expressed as follows except 

for lower and upper boundaries:
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or they are set to zero if not needed. If the lower bound-
ary condition of the i th species is the constant density, 
Ai

1 , Bi
1 , Ci1 , and Di

1 are set to zero. Note that the velocity 
and flux with positive values at the lower boundary con-
ditions direct vertically upward. At the upper boundary, 
Ai

J , Bi
J , CiJ , and Di

J are expressed as follows:

where J  is the number of vertical layers, and viJ+1/2 and 
�i

J+1/2 are the fixed velocity and flux of i th species at 
the upper boundary escaping the atmosphere. Either 
vi
J+1/2 or �i

J+1/2 is given for each i th species as an upper 
boundary condition, or they are set to zero if not needed. 
Note that the velocity and flux with positive values at 
upper boundary conditions also direct vertically upward.

The basic equations of the photochemical model are 
stiff equations in which some of the variables such as 
the number densities of short-lived species change more 
quickly than others. Therefore, PROTEUS has applied an 
implicit scheme described by Catling and Kasting (2017), 
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functions of the number density. Jacobian components 
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 1014  s, allowing us to investigate from a sporadic event 
response in several minutes to the evolution of planetary 
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transportation, but considers the rotation of a planet as 
options to obtain a simplified global distribution. PRO-
TEUS has four options for the simulation geometry: (1) 
one-dimensional simulation at a given latitude at noon, 
(2) two-dimensional simulation at noon at each latitude 
from the north pole to the south pole, (3) two-dimen-
sional simulation at a given latitude with rotation, and 
(4) three-dimensional simulation at all latitudes with 
rotation. The three-dimensional simulation has already 
been applied by Nakamura et  al. (2022) for the Jovian 
ionosphere. Note that our model is fundamentally a one-
dimensional model that can only deal with the temporal 
variation of the solar zenith angle and is not able to solve 
horizontal transport, which is different from the state-of-
the-art three-dimensional photochemical and transport 
models (e.g., Braam et al. 2022; Cooke et al. 2023; Chen 
et al. 2018).

Radiative transfer
PROTEUS uses the solar EUV irradiance model for 
aeronomic calculations (EUVAC) (Richards et  al. 1994) 
for the reference irradiance spectrum of solar extreme 
ultraviolet (EUV) flux to calculate the photoionization 
rates of atmospheric species. EUVAC model provides 
the solar EUV flux in 37 wavelength bins ranging from 
5 to 105 nm. EUVAC model requires the input of F10.7 
value and its 81  days running average value. High reso-
lution solar EUV reference flux model such as the high-
resolution version of EUVAC (HEUVAC) (Richards et al. 
2006) and the Flare Irradiance Spectral Model-Version 
2 (FISM2) (Chamberlin et al. 2020) will be implemented 
into PROTEUS in the future. For calculating the photo-
dissociation rates of atmospheric species, we used the 
reference irradiance spectrum of the solar flux in the 
wavelength range 0.05–2499.5  nm taken from Woods 
et al. (2009). Adopting the solar flux taken from EUVAC 
model and Woods et  al. (2009), the radiative transfer is 
solved by considering the absorption of the solar irra-
diation by atmospheric species. In PROTEUS, users 
can flexibly change the wavelength bin size for the solar 
irradiance of Woods et  al. (2009) and absorption/disso-
ciation cross sections of chemical species at each wave-
length. The solar flux and cross section data can be 
provided in any wavelength bins, which are automatically 
interpolated linearly and binned to the wavelength bin 
given by the user. The automatically binning algorithm is 
especially useful when users need high resolution wave-
length bins in a limited wavelength range. For example, if 
users need to resolve the Schumann-Runge bands of the 
oxygen molecule, the user can set a 0.01  nm resolution 
at 176–192.6  nm and 1  nm at other wavelength range, 
which could reduce the computational cost in solving 
radiation transfer and dissociation rate of atmospheric 

species even fully resolving the structured Schumann-
Runge bands of the oxygen molecule. This algorithm is 
also useful for resolving a slight difference in absorption 
cross sections between isotopes (Yoshida, et al. 2023).

The reference solar irradiance spectra are then divided 
by the square of the distance r in the unit AU between 
the planet and the Sun. The distance r between the planet 
and the Sun at a given solar longitude Ls is given by

where rm is the mean distance in unit AU between the 
planet and the Sun, e is the eccentricity of the planetary 
orbit, and Ls,P is the solar longitude at perihelion. The 
solar longitude is defined as the angle along the planet’s 
orbit, starting from zero at the northern spring equinox, 
dividing the season from the northern spring equinox to 
the northern summer solstice into 90 degrees. The solar 
zenith angle at latitude θ and an hour angle η is given by

where δ is solar declination. δ and η are given by

where ε is the tilt angle of the rotational axis, tL is the 
time in second measured from the local noon, and Tp 
is the rotational period of the planet. The optical depth 
τ (z, �,χ) and the photon flux I(z, �,χ) at the altitude z 
and the solar zenith angle χ as a function of wavelength � 
can be calculated as follows:

where ns is the number density of the s th species, σ a
s  is 

the absorption cross section of the s th species, I∞ is the 
solar flux at the top of the atmosphere, and Ch(z,χ) is the 
Chapman’s grazing incidence integral described in Smith 
III and Smith (1972) with the improved approximation of 
complementary error functions from Ren and ManKen-
zie (2007).

Structure of PROTEUS
PROTEUS consists of a Python GUI program and of For-
tran 90 modules. The Python GUI program contains a 
list of chemical reactions for each planet, string parsing 
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Fig. 1 Schematic illustration of the structure of PROTEUS

Fig. 2 Schematic illustration of the structure of Fortran codes
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functions that parse the reactions and reaction rate coef-
ficients selected in GUI, and GUI functions that con-
trol the behavior of GUI. Python language was adopted 
because of its flexibility in parsing strings and its capa-
bility in operating GUI. Fortran language was adopted 
to solve differential equations numerically. The structure 
of PROTEUS is illustrated in Fig.  1. Chemical reactions 
listed in the Python file are first read by GUI functions 
(arrow 1 in Fig.  1). Then, users select reactions on GUI 
(arrows 2 in Fig.  1), which will be analyzed by string 
parsing functions (arrow 3 in Fig. 1) to output a Fortran 
90 module named “v__in.f90” and data files (in directo-
ries “PLJ_list” and “settings”) including information of 
the selected chemical reactions (arrow 4 in Fig.  1). The 
Fortran 90 module “v__in.f90” is the only module that 
includes information of chemical reactions, and other 
Fortran 90 modules are independent of chemical reac-
tions to be used in the simulation. Datafiles of initial 
density profiles and temperature profiles are read by “v__
in.f90” (arrow 5 in Fig. 1). The selected reactions, settings 
such as temperature profile and initial density profiles are 
applied to the Fortran 90 model when the main Fortran 
90 routine “e__main.f90” call subroutines in “v__in.f90” 
(arrow 6 in Fig. 1). Users can then run the Fortran model 
by compiling all the Fortran 90 modules (indicated as “7” 
in Fig. 1).

The structure of the Fortran codes is illustrated in 
Fig.  2. It should be noted that each Fortran 90 file con-
tains several modules with distinct functions, but only 
the Fortran 90 file is indicated for simplicity. The main 
routine “e__main.f90” consists of three parts, (1) initiali-
zation, (2) calculation, and (3) finalization. The descrip-
tion of each parts and each Fortran 90 files are as follows.

(1) All derived data types are defined in “v__tdec.f90”. 
Information of the chemical reactions, boundary condi-
tions, and calculation settings are defined in “v__in.f90”. 
Physical constants and parameters of the planetary orbit 
are given in “c__prm.f90”. Production rates calculated by 
other models (e.g., ionization rate calculated by a mete-
oroid model (Nakamura et  al. 2022)) can be input in 
“p__Mars.f90” and “p__Jupiter.f90″. The solar EUV flux 
is calculated by the EUVAC model and the absorption 
and ionization cross sections are defined in “p__EUVAC.
f90″. The solar flux of Woods et al. (2009) is defined and 
absorption and dissociation cross sections are calculated 
in”p__UV.f90”.

(2) The radiative transfer is solved and the optical depth 
is calculated in “p__photochem_opticaldepth.f90”. Ioni-
zation and dissociation rates, reaction rate coefficients 
and production and loss rates of each species are cal-
culated in “p__photochem_rate.f90”. The vertical diffu-
sion flux is calculated in “p__photochem_transport.f90”. 
The eddy and binary diffusion coefficients are defined in 

“p__eddy_diffusion.f90” and “p__molecular_diffusion.
f90”, respectively. “p__photochem_scheme.f90” calculates 
the Jacobian matrix and advances the timestep using the 
implicit method.

(3) At last, “p__io.f90” outputs the calculated simula-
tion results.

Graphical user interface
The Python GUI program uses the tkinter package, a 
standard library of Python to use the Tcl/Tk GUI toolkit 
(https:// docs. python. org/3/ libra ry/ tkint er. html). The 
Python GUI allows users to easily and intuitively select a 
planet, chemical reactions of interest, and run the simula-
tion. An example of GUI is shown in Fig. 3, and the oper-
ation of GUI is as follows. Once the user runs the Python 
GUI program, one can select a planet as indicated (“1” in 
the upper panel of Fig.  3). After selecting a planet, one 
can create a new project directory, or select or rename 
a pre-existing project directory as indicated (“2” in the 
upper panel of Fig.  3). Then the chemical reaction list 
for the selected planet appears in the window (the lower 
panel of Fig. 3). Chemical reactions and their rate coef-
ficients written in the Python GUI program are automati-
cally converted into Unicode and displayed, making them 
easy to read. One can select or clear reactions by clicking 
on the checkbox at each reaction (“3” in the lower panel 
of Fig. 3). By inserting chemical species, reference or label 
into a search box, only related reactions appear in the 
window. One can set upper and lower boundary condi-
tions, initial density profiles, vertical grid size, and other 
calculation settings such as dimension of the simulation, 
season, latitude, integration time, maximum timestep 
(“4” in the lower panel of Fig. 3). After all the settings are 
done, one can press “Output f90 module”, then the follow-
ing files are generated in the selected project directory: a 
Fortran 90 module named “v__in.f90”, setting files stored 
in the directory “settings”, and information about pro-
duction and loss reactions of each chemical species, rate 
coefficient labels, and Jacobian matrix analyzed by the 
string parsing function stored in the directory “PLJ_list”. 
The list of chemical species, the number of chemical spe-
cies, indices, mass, and charge of each chemical species 
are automatically determined and written in “v__in.f90” 
at this time. Those text files are read by the Fortran 90 
module “v__in.f90”. One can also output those files, com-
pile and run the Fortran codes by pressing “Output f90 
module & Run model”, which requires the installation of 
an open source software CMake into user’s computer (“5” 
in the lower panel of Fig. 3). All the settings and selected 
reactions are saved, and users can use the same settings 
and selected reactions the next time they run GUI. At the 
end of the simulation, users can quickly plot the density 

https://docs.python.org/3/library/tkinter.html
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Fig. 3 Overview of GUI and instruction of the operation
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profiles by pressing “Plot setting” button (“6” in the lower 
panel of Fig. 3).

Format of chemical reaction list
The main feature of PROTEUS is the simple format of 
chemical reaction list in the Python GUI program and on 
the GUI. Format of chemical reaction list in the Python 
GUI program and some examples are illustrated in Fig. 4.

Any reactions and their rate coefficients are described 
in the following string format in the Python GUI pro-
gram. Reaction and rate coefficient are separated by a 
colon “:”, and left- and right-hand sides of the reaction 
are separated by an arrow “–> ”. Chemical species can 
be written simply as string. For instance, ionized species 
“N2

+”, “CO2
+”, and “H+(H2O)4” are simply described as 

“N2+”, “CO2+”, and “H+(H2O)4”, respectively, and elec-
tron is described as “e–”. Isotope species such as “13CO2” 
can be written as “^13CO2”. Each chemical species and 
an addition operator “ + ” or an arrow “–>” should be 
separated by at least one space. PROTEUS also deals with 
three-body reactions with the expression “M” describ-
ing the total atmospheric number density. Tempera-
ture-dependent rate coefficient equation can be simply 
described as string in infix notation. Addition operator 
“ + ”, subtraction operator “−”, multiplication operator “*”, 
division operator “/”, exponentiation operator “^” or “**”, 
exponential function “exp()” square root function”sqrt()”, 
neutral, ion and electron temperatures “Tn”, “Ti”, and “Te”, 
respectively, altitude in km “h”, decimal fraction values 
such as “1.16”, integer values such as “300”, and values in 
E notation such as “4.9e−11” can be used in the rate coef-
ficient equation. If there is a temperature range  T1–T2 [K] 

in which the rate coefficient is valid, one can describe the 
temperature range by “for T =  T1 ~  T2 [K]”.

Reactions and their rate coefficients selected on GUI 
are parsed by the string parsing functions in the Python 
GUI program. Index for each chemical species is auto-
matically determined by the string parsing function, and 
mass and charge of each chemical species are also auto-
matically identified by the string parsing function. String 
of each species are automatically divided into constitu-
ent elements and mass is calculated by the sum of mass 
of all the elements, and charge is calculated by counting 
the number of “ + ” and “−” in the string of each species. 
The string parsing function analyzes which reaction pro-
duces or lose each chemical species. The rate coefficient 
expressions written in infix notation are first separated 
into tokens. Then the order of tokens in infix notation are 
converted into reverse Polish notation (i.e., postfix nota-
tion) and automatically labeled. The Fortran 90 modules 
calculates the reaction rate coefficient using the labeled 
tokens arranged in reverse Polish notation. This method 
allows PROTEUS to process a variety of expression of 
temperature- and altitude-dependent rate coefficients 
(as seen in Fig.  4) at high computational speed. All the 
information needed to calculate production rate, loss rate 
and Jacobian matrix are output as text files, which will 
be read by Fortran 90 module to apply the information 
about chemical reactions selected. The number of chemi-
cal species and reactions, mass and charge of chemical 
species, rate coefficient of each reaction and contribution 
of each reaction to production/loss of each species are 
automatically applied to Fortran 90 modules by reading 
those text files. Those features make PROTEUS a flexible 

Fig. 4 Format of the chemical reaction list in the Python GUI program. Examples of chemical reactions are taken from Nair et al. (1994), Fox 
and Sung (2001), Scott et al. (1999), Dotan et al. (1997), Chaffin et al. (2017), Troe (2005), Pavlov (2014), and Verronen et al. (2016)
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photochemical model that can be applied to many plane-
tary atmospheres with different set of chemical reactions.

Software requirements
PROTEUS is compatible with Python 3 and does not 
support Python 2. The Python libraries, Matplotlib and 
Numpy, need to be installed on the user’s computer. 
Additionally, the open-source software CMake needs to 
be installed on the user’s system.

Application to planetary atmospheres
Mars
For the application to the Martian atmosphere, param-
eters of Mars and its orbit are implemented into PRO-
TEUS; The mean distance between Mars and the sun is rm 
= 1.524 AU, the eccentricity is e = 0.0934, the solar longi-
tude at perihelion is Ls,P = 250°, tilt angle of the rotational 
axis is ε = 25.2°, the rotational period is Tp = 88,775 s, the 
mass of Mars is 6.417 ×  1023 kg, and the mean radius of 
Mars is 3389.5 km (Patel et al. 2002; Williams 2021).

The cross sections implemented into PROTEUS for the 
application to Mars are as follows. Ionization cross sec-
tions of  CO2, CO,  O2,  N2, and O are taken from Schunk 
and Nagy (2009). Absorption cross sections and quan-
tum yields for calculating dissociation rates of atmos-
pheric molecules are listed in Table 1. In order to validate 
PROTEUS, we compared with one-dimensional Martian 
photochemical model by Chaffin et  al. (2017) (hereafter 
called as C17 model), using the same chemical reactions 
and their rate coefficients, boundary conditions, tem-
perature and water vapor profiles, and binary and eddy 
diffusion coefficient profiles. The neutral density profiles 
simulated by PROTEUS and C17 model are shown in 

Fig. 5. PROTEUS and C17 model are in good agreement 
except for small differences for  O3, OH,  HO2 and  H2O2. 
Those differences could be due to the difference in the 
photo-absorption and dissociation cross sections used in 
the two models.

Jupiter
For the application to the Jovian atmosphere, parameters 
of Jupiter and its orbit are implemented into PROTEUS; 
The mean distance between Jupiter and the sun is rm=5.2 
AU, the eccentricity e , the solar longitude at perihelion 
Ls,P , and tilt angle of the rotational axis ε are set to zero 
for simplicity, the rotational period is assumed to be the 
System III period related to the period of radio burst Tp = 
35,729.71 s, the mass of Jupiter is 1.898 ×  1027 kg, and the 
equatorial radius of Jupiter is 71,492 km (Williams 2021; 
Russell et al. 2001).

Ionization cross sections of hydrogen molecule and 
atom, helium atom, hydrocarbon molecules  (CH4,  C2H2, 
 C2H4, and  C2H6) and metallic atoms (Fe, Mg, Si, and Na) 
implemented into PROTEUS for the application to the 
Jovian ionosphere are found in Appendix of Nakamura 
et al. (2022) and references therein.

PROTEUS has recently been applied to the Jovian 
ionosphere by Nakamura et  al. (2022). Chemical reac-
tions regarding hydrocarbon ion chemistry used in the 
simulation are described in Nakamura et  al. (2022). Ion 
density profiles calculated by PROTEUS with 218 reac-
tions are shown in Fig.  6. Simulated ion density pro-
files are in good agreement with Kim and Fox (1994), as 
discussed in Nakamura et  al. (2022). Slight differences 
seen in the shape of profiles of hydrocarbon ions could 
result from the difference in the input density profiles of 

Fig. 5 Application of PROTEUS to the Martian atmosphere. 
Vertical profiles of neutral density simulated by PROTEUS (solid) 
and one-dimensional Martian photochemical model by Chaffin et al. 
(2017) (dashed). The same boundary conditions, chemical reactions 
and their rate coefficient, binary and eddy diffusion coefficients, 
and temperature profile, were used in both simulations for validation

Fig. 6 Application of PROTEUS to the Jovian ionosphere. Ion density 
profiles of the Jovian ionosphere simulated by PROTEUS. Profiles are 
the same as Fig. 3a in Nakamura et al. (2022) that used PROTEUS
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hydrocarbon molecules, which are not indicated in Kim 
and Fox (1994).

Conclusions
We have newly developed a flexible one-dimensional 
photochemical model named PROTEUS, which con-
sists of a Python GUI program and of Fortran 90 mod-
ules. Chemical reactions can be easily implemented 
into Python code as a simple string format, and users 
can intuitively select a planet and chemical reactions 
to be considered in their calculation on GUI. Chemi-
cal reactions selected on GUI are automatically ana-
lyzed by a string parsing code written in Python, which 
will be applied to Fortran 90 modules to simulate with 
selected chemical reactions on a selected planet. This 

paper presents examples of PROTEUS application to 
the Martian atmosphere and the Jovian ionosphere, 
which are in good agreement with previous numerical 
models. PROTEUS can significantly save time for those 
who need to develop a new photochemical model; they 
just need to add chemical reactions in the Python code 
and just select them on GUI to run a new photochemi-
cal model. PROTEUS can be easily extended to other 
planets and satellites, e.g., Venus, Earth, Titan, and exo-
planets in the future.

Appendix
See Tables 1 and 2.

Table 1 List of cross sections and quantum yields implemented into PROTEUS

Species or reactions Wavelength range References

σ a CO2 (absorption) 0.1254–138.8869 nm Huestis and Berkowitz (2011)a

138.8913–212.7660 nm Schmidt et al. (2013)

φ CO2 + hν → CO + O 138.8913–212.7660 nm (Assumed to be 1.0)

σ d CO2 + hν → CO + O(1D) 0.1–138 nm Huebner and Mukherjee (2015)b

σ a 13CO2 (absorption) 138.8913–212.7660 nm Schmidt et al. (2013)

σ a O2 (absorption) 0.99–43.5 nm Huffman (1969)a

49.043646–103.066357 nm Holland et al. (1993)a

103.62–107.74 nm Lee (1955)a

108.75–114.95 nm Ogawa and Ogawa (1975)a

115–130.02 nm Lu et al. (2010)a

130.04–175.24 nm Yoshino et al. (2005)a

175.4–204 nm Minschwaner et al. (1992)a

193–245 nm Yoshino et al. (1992)a

φ O2 + hν → O + O 103–242 nm Burkholder et al. (2015)

φ O2 + hν → O + O(1D) 103–175 nm Burkholder et al. (2015)

σ a H2O (absorption) 6.2–59.04 nm Chan et al. (1993)a

60.01–114.58 nm Gürtler et al. (1977)a

114.80–120.35 nm Mota et al. (2005)a

120.38–139.99 nm Yoshino et al. (1996, 1997)a

140.00–196.00 nm Chung et al. (2001)a

196.031–230.413 nm Ranjan et al. (2020)a

φ H2O + hν → H + OH 105 nm Burkholder et al. (2015)

φ H2O + hν →  H2 + O(1D) 105–145 nm Burkholder et al. (2015)

σ a O3 (absorption) 0.06—210 nm Huebner and Mukherjee (2015)b

213.330—1100 nm Gorshelev et al. (2014)

Serdyuchenko et al. (2014)

φ O3 + hν →  O2 + O(1D) 220—340 nm Matsumi et al. (2002)a

φ O3 + hν →  O2 + O 220—340 nm (Assumed to be 1− φ(O3 → O(1D)))

σ a HO2 (absorption) 190—260 nm Burkholder et al. (2015)

φ HO2 + hν → OH + O 190—260 nm Burkholder et al. (2015)

σ a H2O2 (absorption) 121.33—189.70 nm Schürgers and Welge (1968)a

190.00—255.00 nm Burkholder et al. (2015)
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σ a : Absorption cross section, σ d : dissociation cross section, φ : quantum yield, a: data files are taken from The MPI-Mainz UV/VIS Spectral Atlas (Keller-Rudek et al. 2013), 
b: data files are taken from PHIDRATES (Huebner and Mukherjee 2015), c: quantum yields for each photolysis reaction of  HNO3 were estimated by quantum yield of 
each product (OH, O, and O(1D)) obtained by Johnston et al. (1974), Turnipseed et al. (1992), and Margitan and Watson (1982).

Table 1 (continued)

Species or reactions Wavelength range References

φ H2O2 + hν →  HO2 + H 121—230 nm Burkholder et al. (2015)

φ H2O2 + hν → OH + OH 121—340 nm Burkholder et al. (2015)

σ a OH (absorption) 0.06–282.3 nm Huebner and Mukherjee (2015)b

σ d OH + hν → H + O 124.5–261.65 nm Huebner and Mukherjee (2015)b

σ d OH + hν → H + O(1D) 93–511.4 nm Huebner and Mukherjee (2015)b

σ a H2 (absorption) 0.1–110.86 nm Huebner and Mukherjee (2015)b

σ d H2 + hν → H + H 84.48–110.86 nm Huebner and Mukherjee (2015)b

σ a N2 (absorption) 0.1–103.8 nm Huebner and Mukherjee (2015)b

σ d N2 + hν → N + N(2D) 51.96–103.8 nm Huebner and Mukherjee (2015)b

σ a NO (absorption) 0.1–191 nm Huebner and Mukherjee (2015)b

σ d NO + hν → N + O 0.1–191 nm Huebner and Mukherjee (2015)b

σ a NO2 (absorption) 0.06–238 nm Huebner and Mukherjee (2015)b

238.08219–666.57808 nm Vandaele et al. (1998)a

σ d NO2 + hν → NO + O(1D) 108–243.88 nm Huebner and Mukherjee (2015)b

φ NO2 + hν → NO + O 108–238 nm Huebner and Mukherjee (2015)b

239–300 nm (Assumed to be 1)

300–422 nm Burkholder et al. (2015)

σ a NO3 (absorption) 400–691 nm Wayne et al. (1991)a

φ NO3 + hν →  NO2 + O 400–640 nm Johnston et al. (1996)a

φ NO3 + hν → NO +  O2 586–640 nm Johnston et al. (1996)a

σ a N2O (absorption) 16.8–59.0 nm Hitchcock et al. (1980)a

60.0–99.9 nm Cook et al. (1968)a

108.20–122.18 nm Zelikoff et al. (1953)a

122.25–172.88 nm Rabalais et al. (1971)a

173–210 nm Selwyn et al. (1977)a

φ N2O + hν →  N2 + O(1D) 140–230 nm Burkholder et al. (2015)

σ a N2O5 (absorption) 152–198 nm Osborne et al. (2000)a

200–260 nm Burkholder et al. (2015)

260–410 nm Burkholder et al. (2015)

φ N2O5 + hν →  NO3 +  NO2 248–410 nm Burkholder et al. (2015)

φ N2O5 + hν →  NO3 + NO + O 152–289 nm Burkholder et al. (2015)

σ a HNO2 (absorption) 184–396 nm Burkholder et al. (2015)

φ HNO2 + hν → NO + OH All Burkholder et al. (2015)

σ a HNO3 (absorption) 192–350 nm Burkholder et al. (2015)

φ HNO3 + hν →  HNO2 + O 193–260 nm Estimatedc

φ HNO3 + hν →  HNO2 + O(1D) 193–222 nm Estimatedc

φ HNO3 + hν → OH +  NO2 193–350 nm Estimatedc

σ a HO2NO2 (absorption) 190–280 nm Burkholder et al. (2015)

280–350 nm Burkholder et al. (2015)

φ HO2NO2 + hν →  HO2 +  NO2 190–350 nm Burkholder et al. (2015)

φ HO2NO2 + hν → OH +  NO3 190–350 nm Burkholder et al. (2015)

σ a H2CO (absorption) 224.56–376 nm Meller and Moortgat (2000)a

φ H2CO + hν →  H2 + CO 250–360 nm Burkholder et al. (2015)

φ H2CO + hν → H + HCO 250–360 nm Burkholder et al. (2015)
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Photoabsorption, dissociation cross sections and quan-
tum yield implemented into PROTEUS are listed in 
Table 1. Photoionization cross sections implemented into 
PROTEUS are listed in Table 2.
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