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Abstract 

Physics-based simulations are important for elucidating the fundamental mechanisms behind the time-varying 
complex ionospheric conditions, such as ionospheric potential, against unprecedented solar wind variations incident 
on the Earth’s magnetosphere. However, carrying out an extensive parameter survey for comprehending the non-
linear solar wind density dependence of the ionospheric potential, for example, requires state-of-the-art global 
magnetohydrodynamic (MHD) simulations, which cannot be executed efficiently even on large-scale cluster comput-
ers. Here, we report the performance of a machine-learning based surrogate model for estimating the ionospheric 
potential outputs of a global MHD simulation, using the reservoir computing technique called echo state network 
(ESN). The trained ESN-based emulator demonstrates exceptional speed in conducting the parameter survey, which 
can lead to the identification of a solar wind density dependence of the ionospheric polar cap potential. Finally, we 
discuss future directions including the promising application for space weather forecasting.
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Main text
Introduction
Machine learning (ML) techniques have been recog-
nized as a useful tool for predicting geomagnetic activ-
ity indices, as represented by the AE, Kp, and Dst indices, 
using solar wind parameters as inputs, such as the solar 
wind speed (Vsw), proton density (Np), and interplan-
etary magnetic field (IMF). Many such attempts have 
been thoroughly reviewed by Liemohn et al. (2018). One 
of the latest studies used the ML technique called echo 
state network (ESN) to successfully predict the AE index 
and diagnose the nonlinearity of a magnetosphere–iono-
sphere coupled system using a synthetic solar wind time 
series (Nakano and Kataoka 2022).

Detailed patterns of ionospheric potential can be 
empirically modeled as a function of the solar wind 
parameters (e.g., Weimer 1995; 2005). The empirical 
models, however, have limitations in that they predict 
the averaged observed patterns and cannot account for 
dynamic solar wind variations or unprecedented solar 
wind variations.

To overcome the limitations, a straightforward phys-
ics-based approach is to solve the idealized magneto-
hydrodynamic (MHD) equations for the solar wind and 
magnetospheric plasma flows, setting the appropriate 
height-integrated ionospheric conductivity layer as one 
of the boundary conditions (e.g., Tanaka et al. 2022a, b). 

State-of-the-art global MHD simulations are also essen-
tial for understanding the mechanism behind the dynam-
ically changing auroral oval distribution (e.g., Ebihara 
and Tanaka 2022). Further parameter surveys using such 
simulations are still necessary to understand the nonlin-
ear effects, for example, the nonlinear density effect on 
the ionospheric potential or energy deposition (Kha-
chikjan et al. 2008; Ebihara et al. 2019; Yang et al. 2020; 
Nakano and Kataoka 2022). However, the practical use 
of the global MHD simulation for such a parameter-sur-
vey purpose is still limited because it is computationally 
expensive.

A reasonable next approach to addressing the time-
consumption issue is to emulate the computationally 
expensive physics-based global MHD simulation by ML 
techniques, although the mechanism behind the simu-
lation becomes a black box. Once such an ML-based 
emulator is developed, we can predict the dynamically 
changing ionospheric potential instantaneously. It is, 
therefore, practically possible for a small computer to 
make a thorough parameter survey by the ML-based 
emulator.

The purpose of this study is to show the very first 
attempt of such an ML-based emulator to imply the 
potential impacts. While an emulation that works with 
a global MHD simulation was attempted for parame-
ter tuning (Kleiber et al. 2013; Heaton et al. 2015), here 
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we develop an ESN-based emulator for predicting the 
dynamic ionospheric potential responses of the mag-
netosphere–ionosphere system to variable solar-wind 
time-series input. The methods of emulating global MHD 
simulation results by the ESN model are briefly intro-
duced in the following Sections. In Section “Results and 
Discussions”, we examine the obtained results from the 
newly developed ESN-based emulator. In Sect. 4, we dis-
cuss the possible capabilities of the ESN-based emulator 
and some future directions.

Global MHD simulation
REPPU (REProduce Plasma Universe) is an MHD simu-
lation code developed for studying the global magneto-
sphere–ionosphere coupling (Tanaka 1995; 2015). The 
REPPU code is characterized by an excellent ionospheric 
reproduction of fundamental auroral phenomena such 
as substorms (Ebihara and Tanaka 2015a; 2015b), sun-
aligned arcs (Tanaka et  al. 2017), and the theta aurora 
(Tanaka et al. 2018). In this study, we used an improved 
REPPU simulation code, including the effects of a tilted 
dipole axis and seasonal changes of solar zenith angles. 
The total number of grid cells in the magnetosphere 
is 30722 (horizontal) times 240 (vertical), where the 
unstructured grid system described by Moriguchi et  al. 
(2008) is employed. The number of grid cells in the ion-
osphere is 30722. The improved REPPU simulation is 
essentially the same as that used for the real-time REPPU 
simulation of space weather forecast executed by the 
National Institute of Information and Communications 
Technology (Nakamizo and Kubota 2021). We used high-
resolution OMNI-2 one-min data (Bx, By, Bz, Np, Vx, Vy, 
Vz, and proton temperature) for input to run the REPPU 
simulation. Note that we used B vectors in the GSM 
coordinate system and we provisionally used V vectors in 
the GSE coordinate system. The GSE coordinates for V 
were originally introduced to show the simulation’s capa-
bility to capture the Vy and Vz components as directly 
obtained from the OMNI data. Note that the OMNI data 
has only GSE coordinates for velocity. This study ignored 
the contribution of Vy and Vz, and since the dominant Vx 
component is common in GSE and GSM, we utilized the 
simulation results as they were, considering the Vy and 
Vz contributions as artificially added noise.

We ran the REPPU simulation to obtain several-days 
worth of activity outputs for training and testing the emu-
lator. Note that the REPPU simulations have usually been 
done for an hour-long activity, and the several-days worth 
or an hundred hour-long activity output is approximately 
two orders of magnitude larger computations than usual. 
For preparing the training dataset, we selected four dif-
ferent long-term output datasets of moderate and intense 
magnetic storm events as driven by corotating interaction 

regions (CIR) or coronal mass ejections (CME) (see Kata-
oka and Miyoshi (2006) and Borovsky and Denton (2006) 
for the difference between CIR and CME driven storms): 
Intense (Dst peak = −  130  nT) CIR storm (~ 24  h from 
2015/10/7 0000 UT), moderate (Dst peak = − 56 nT) CIR 
storm (~ 21 h from 2015/10/18 0000 UT), moderate (Dst 
peak = −  87  nT) CME storm (~ 34  h from 2015/11/06 
1200 UT), and intense (Dst peak at – 166 nT) CME storm 
(~ 36 h from 2015/12/19 1200 UT). Further, we utilized 
the testing data from non-storm time of 16.5 h data from 
2015/09/06 0000  UT. In this study, we trained the ESN 
model using a wide range of solar wind parameters with 
very limited simulation data. This is why we chose the 
non-storm time dataset for testing. In other words, if you 
use storm-time data for testing, ESN cannot learn from 
the precious storm-time data. We discarded the first 1 h 
of data for each run, in which the global plasma distribu-
tion cannot yet be physically realistic. In this study, these 
different simulation runs are simply stitched together in 
time.

We used 10  min averaged output data for the iono-
spheric potential. After filling the data gap with linear 
interpolation, the solar wind data were also 10-min aver-
aged when they were fed into the ML model. For coarse-
graining purpose, we binned the ionospheric potential 
map for the northern polar region (> 50  deg latitude) 
into 15 × 32 in latitude and longitude, respectively, from 
the original resolution of 60 × 320. Although this binning 
process significantly reduces the original information 
especially for small-scale features, the binning results still 
capture the essential global patterns such as dawn-dusk 
convection cells. However, note that the number of grids 
is better to be doubled for forecasting the field-aligned 
current, for example, because the narrow structures 
of Region-1 and Region-2 patterns are better resolved 
by ~ 1 deg in latitude.

We then applied the principal component analysis 
(PCA) to the simulation results to reduce the dimensions. 
Note that Cousins et al. (2015) applied a similar method 
to evaluate variable field-aligned current. In this study we 
used the PCA module of Python 3 scikit-learn (https:// 
scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. 
decom posit ion. PCA. html). To reproduce the > 90% vari-
ance of the original features, we decomposed the iono-
spheric potential pattern into 10 PCA components.

Machine learning technique
We require an ML technique that can be trained by a 
relatively small training dataset because the REPPU 
simulation is still computationally expensive for long 
runs. Therefore, standard deep learning techniques are 
not appropriate for this study. We also need a specific 
ML technique suitable for the time-series prediction, 

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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because the ionosphere dynamically changes following 
the time history of the magnetosphere and ionosphere. 
Both needs can be satisfied by the reservoir comput-
ing method ESN (Jaeger 2001; Jaeger and Haas 2004), 
as reviewed by Tanaka et al. (2019). We used essentially 
the same ESN method as documented by Kataoka and 
Nakano (2021) and Kataoka et al. (2022). In this study, we 
used the ESN module of Python 3 as developed by Tan-
aka et al. (2022a, b) (See https:// github. com/ GTANA KA- 
LAB/ DTS- ESN/).

The basic ESN model used in this study is described 
by the reservoir sate vector x and the model output vec-
tor y (time series of the PCA components of ionospheric 
potential) at t = n + 1 steps as follows:

Here, the weight matrices Win and W are multiplied by 
the input vector u (the solar wind time series) and the 
reservoir state vector x, respectively. In this study, we 
set the number of the nodes (elements of x) to be 300. 
These Win and W are fixed, while only Wout is trained by 
the Ridge regularization with regularization parameter of 
 10–3.

We created the random and sparse node connections 
of W, where only 10% of the matrix elements are the 
random values between −  1.0 and 1.0, and the remain-
ing 90% are zero. We chose the optimal spectral radius 
(maximum eigenvalue of W) to be 0.65, by evaluating the 

(1)x(n+ 1) = tanh

{

W
inu(n+ 1)+Wx(n)

}

(2)y(n+ 1) = W
outx(n+ 1)

normalized root-mean square errors using both training 
and testing data. As the input vectors u, the solar wind 
speed and density are normalized as  log10 Vsw—2.5, and 
 log10 Np—1.0 before training the ESN model. It is note-
worthy here that both the speed and density follow log-
normal distributions (Burlaga and Lazarus 2000).

Results and discussions
An example result from the ESN-based emulator com-
pared with a REPPU simulation is shown in Fig.  1. We 
can see a reasonable agreement between the results from 
ESN-based emulator and REPPU simulation; such as 
two-cell convection patterns.

Figure 2 shows the performance of training and testing 
the ESN emulator of the ionospheric potential. The input 
solar wind parameters are shown in the top panel. The 
top five PCA components and the prediction from the 
ESN model are also shown. The training interval is t < 664 
steps. The trained ESN model reproduces the time vari-
ation of the PCA variables for both the training and the 
testing intervals.

Instead of directly comparing the emulation results 
with the observation data, which are available only 
for spatially limited areas, we benchmark the emula-
tion results against the standard empirical models (e.g., 
Weimer 2005, Fig. 2). Figure 3 shows an example of the 
IMF clock-angle dependence of ionospheric potential 
using the synthetic solar wind data, fixing the density at 
Np = 5/cc, the solar wind speed at Vsw = 400  km/s, and 
the IMF strength at B = 5  nT. We selected the results 
from quasi-steady state time steps for each IMF direction 

Fig. 1 Snapshot example of the ionospheric potential as obtained from ESN-based emulator (left) and REPPU simulation (right) at a testing time 
of t = 712 steps

https://github.com/GTANAKA-LAB/DTS-ESN/
https://github.com/GTANAKA-LAB/DTS-ESN/
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(i.e., 15 steps = 150  min after the IMF changes). Note 
that the ~ 100 min to reach the quasi-steady state under 
the constant solar wind conditions is roughly the same 
amount of the REPPU modeling time. The IMF clock 
angle dependence of the overall ionospheric potential, 
such as round-cell and crescent-cell convection patterns, 
shows a reasonable agreement with those as they appear 
in the empirical models (e.g., Weimer 2005, Fig. 2).

The ESN-based emulator is exceptionally fast (approxi-
mately million times faster than the REPPU simulation) 
to run and it is, therefore, useful for a thorough param-
eter survey of so-called heatmap analysis, which cannot 
be done by observations or simulations. As an example, 
we input the synthetic solar wind variations to the ESN-
based emulator to examine the nonlinear density effect 

on the cross-polar cap potential (CPCP). Note here that 
we fixed the solar wind speed in the input and changed 
the density, so that the dynamic pressure also changes 
accordingly. Again, only steady state results at 150  min 
past, or 15 steps later, after discontinuously changing the 
solar wind parameters, were used when generating the 
pixels in the heat maps.

As shown in Fig. 4, the CPCP has a negative depend-
ence on the density during strong southward Bz (SBZ). 
In fact, a similar trend has been identified by Khachik-
jan et  al. (2008) using active-time SuperDARN obser-
vations, as they discussed that the shrinking dayside 
magnetopause by high dynamic pressure may be relevant 
to reduce the possible effect of dayside reconnection that 
is powering the CPCP.

Fig. 2 Solar wind parameters (a) and top five PCA components (b–f) for ionospheric potential. Black curves show the REPPU simulation results 
and the red curves are from the ESN-based emulator. The testing time interval, which is not used for training, is shown by the gray hatched time 
interval
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Recognizing that the overall IMF By dependence was 
fairly reproduced by the ESN-emulator as shown in 
Fig. 2, e.g., round dusk cells for positive By and crescent 
dusk cells for negative By, we further diagnose the den-
sity dependence by changing the IMF By component, and 
turning off the contribution of SBZ. From the heatmap 
analysis without SBZ component, Fig.  5 shows that the 
density dependence is positive when By < 4 nT, while it is 
negative for larger By. The By-asymmetric density effect 
is a new result “predicted” from the ESN-based emula-
tor, which suggests that the nonlinear density effect on 

CPCP can be more complex than imagined from the 
SBZ reconnection hypothesis. Note that the IMF By 
dependence does not clearly appear if we integrate the 
obtained By-Np heatmap in density, which is consistent 
with SuperDARN observations (Mori and Kustov 2013). 
Related future works therefore include the observation-
based identification of the By-asymmetric density effect 
as well as the detailed analysis of the global MHD simu-
lation results of both magnetosphere and ionosphere to 
identify the exact mechanism that causes the By-asym-
metric density effect.

Fig. 3 Quasi-steady state ionospheric potential patterns as obtained from the ESN-based emulator for different IMF clock angles using synthetic 
solar wind data of Vsw = 400 km/s, Np = 5.0/cc, and IMF strength = 5.0 nT
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In this study, we used simulation data for CIR- and 
CME-driven magnetic storm events that occurred in 
the fall to winter seasons. The training data set is, there-
fore, limited to the particular situation where the auro-
ral activity is high and the northern hemisphere is darker 
than the southern hemisphere. A detailed discussion of 
the sunlight effect associated with solar zenith angles and 
the general north–south asymmetry are, therefore, inter-
esting future subjects of study when we have accumu-
lated longer term REPPU simulation results, including 
different seasons. When such solar zenith angle effect is 
included, the future emulator will be ready for the opera-
tional space weather forecast via simply replacing the 
input file with the real-time solar wind data.

This paper presented the very first attempt to dem-
onstrate the potential impact of the ESN-based emu-
lator. Future studies using the ESN-based emulator 
of the REPPU simulation include an examination of 

the accuracy in reproducing observation data, such 
as SuperDARN convection maps. Any partial data 
or point data can also be used with cutting-edge data 
assimilation techniques (Nakano et al. 2020). For a data 
assimilation, we need to increase the ensemble number 
of simulation runs for integrating large probabilistic 
ensembles, and the ESN-based emulator will play an 
essential role. In this manner, the ESN-based emulator 
can be expected to become a basic technique for future 
space weather reanalysis studies.

Further, note that the OMNI data can be different 
from the actual incident solar wind at the magneto-
sphere, because it is computed using different space-
craft data, also relying on an analytic time-shift method 
from those spacecraft positions. The possible errors as 
investigated by Vokhmyanin et  al. (2019) can, there-
fore, be used as an important probability distribution to 
work on the data assimilation applications in future.

Fig. 4 Heatmap analysis of the parameter survey to examine the nonlinear density effect on the cross polar-cap potential, changing the SBZ 
strength, fixing the solar wind speed at 400 km/s
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Conclusions
Using the ESN model trained by the outputs of long-term 
REPPU simulation runs, we showed the very first attempt 
of an ML-based emulator to instantaneously reproduce 
the REPPU simulation results of the ionospheric poten-
tial patten by inputting the solar wind parameter time 
series. The ESN-based emulator reasonably reproduces 
the observed IMF clock-angle dependence of the iono-
spheric potential pattern, as well as the IMF and density 
dependence of the CPCP. The ESN-based emulator can 
contribute to the real-time space weather forecasting 
operations, as well as for accelerating the data assimila-
tion studies in near future.
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CPCP  Cross-polar cap potential
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Acknowledgements
We acknowledge the use of NASA high-resolution OMNI data (https:// omniw 
eb. gsfc. nasa. gov/ ow_ min. html). The REPPU simulation was performed with 
the computing facilities at the Center for Engineering and Technical Support 
of the Institute of Mathematical Statistics and the Polar Science Computer 
System at the National Institute of Polar Research (NIPR). This research was 
supported by “Challenging Exploratory Research Projects for the Future” grant 
from the Research Organization of Information and Systems (ROIS). This study 
is part of the Science Program of Japanese Antarctic Research Expedition 
(JARE) Prioritized Research Project AJ1007 (Space environmental changes and 
atmospheric response explored from the polar cap), supported by NIPR under 
MEXT.

Fig. 5 Heatmap analysis of the parameter survey to examine the asymmetric density effect on the cross polar-cap potential, changing the IMF By 
component, fixing the solar wind speed at 400 km/s

https://omniweb.gsfc.nasa.gov/ow_min.html
https://omniweb.gsfc.nasa.gov/ow_min.html


Page 9 of 10Kataoka et al. Earth, Planets and Space          (2023) 75:139  

Author contributions
RK conducted the research, developed the emulator code, and wrote the 
manuscript. SN contributed to the discussion and double-checked the 
machine learning code. SF ran the REPPU simulation to provide the iono-
spheric data set.

Funding
This research was supported by “Challenging Exploratory Research Projects for 
the Future” grant from the Research Organization of Information and Systems 
(ROIS).

Availability of data and materials
The python codes and the training dataset for the ESN-based emulator model 
used in this study is open to public at https:// github. com/ ryuho katao ka/ 
REPPU- ESN (v1.0.0 is released at https:// doi. org/ 10. 5281/ zenodo. 75190 25).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Author details
1 National Institute of Polar Research, Tachikawa 190-8518, Japan. 2 The Gradu-
ate University for Advanced Studies, SOKENDAI, Hayama, Japan. 3 The Institute 
of Statistical Mathematics, Tachikawa 190-8562, Japan. 4 Center for Data 
Assimilation Research and Applications, Joint Support Center for Data Science 
Research, Tachikawa, Japan. 

Received: 3 May 2023   Accepted: 5 September 2023

References
Borovsky JE, Denton MH (2006) Differences between CME-driven storms and 

CIR-driven storms. J Geophys Res. https:// doi. org/ 10. 1029/ 2005J A0114 47
Burlaga LF, Lazarus AJ (2000) Lognormal distributions and spectra of solar 

wind plasma fluctuations: wind 1995–1998. J Geophys Res 105(A2):2357–
2364. https:// doi. org/ 10. 1029/ 1999J A9004 42

Cousins EDP, Matsuo T, Richmond AD, Anderson BJ (2015) Dominant modes 
of variability in large-scale Birkeland currents. J Geophys Res Atmos 
120:6722–6735. https:// doi. org/ 10. 1002/ 2014J A0204 62

Ebihara Y, Tanaka T (2015a) Substorm simulation: formation of westward 
traveling surge. J Geophys Res Space Phys 120(12):10466–10484. https:// 
doi. org/ 10. 1002/ 2015J A0216 97

Ebihara Y, Tanaka T (2015b) Substorm simulation: insight into the mechanisms 
of initial brightening. J Geophys Res Space Phys 120(9):7270–7288. 
https:// doi. org/ 10. 1002/ 2015J A0215 16

Ebihara Y, Tanaka T (2022) Where is region 1 field-aligned current generated? J 
Geophys Res Space Phys. https:// doi. org/ 10. 1029/ 2021J A0299 91

Ebihara Y, Tanaka T, Kamiyoshikawa N (2019) New diagnosis for energy flow 
from solar wind to ionosphere during substorm: global MHD simulation. 
J Geophys Res Space Phys 124:360–378. https:// doi. org/ 10. 1029/ 2018J 
A0261 77

Heaton MJ, Kleiber W, Sain SR, Wiltberger M (2015) Emulating and calibrating 
the multiple-fidelity Lyon-Feddder-Mobarry magnetosphere-ionosphere 
coupled computer model. J Royal Stat Soc 64(1):93–113

Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems 
and saving energy in wireless communication. Science 304:78–80. 
https:// doi. org/ 10. 1126/ scien ce. 10912 77

Jaeger, H. (2001), The “echo state” approach to analysing and training recurrent 
neural networks GMD Report 148. GMD – German National Research 
Institute for Computer Science.

Kataoka R, Miyoshi Y (2006) Flux enhancement of radiation belt electrons dur-
ing geomagnetic storms driven by coronal mass ejections and corotating 
interaction regions. Space Weather 4:S09004. https:// doi. org/ 10. 1029/ 
2005S W0002 11

Kataoka R, Nakano S (2021) Reconstructing solar wind profiles associated with 
extreme magnetic storms: a machine learning approach. Geophys Res 
Lett. https:// doi. org/ 10. 1029/ 2021G L0962 75

Kataoka R, Sato T, Kato C, Kadokura A, Kozai M, Miyake S, Murase K, Yoshida L, 
Tomikawa Y, Munakata K (2022) Local environmental effects on cosmic 
ray observations at Syowa station in the Antarctic: PARMA-based snow 
cover correction for neutrons and machine learning approach for neu-
trons and muons. J Space Weather Space Clim 12:37. https:// doi. org/ 10. 
1051/ swsc/ 20220 33

Khachikjan GY, Koustov AV, Sofko GJ (2008) Dependence of SuperDARN cross 
polar cap potential upon the solar wind electric field and magnetopause 
subsolar distance. J Geophys Res 113:A09214. https:// doi. org/ 10. 1029/ 
2008J A0131 07

Kleiber W, Sain SR, Heaton MJ, Wiltberger M, Reese CS, Bingham D (2013) 
Parameter tuning for a multi-fidelity dynamical model of the magneto-
sphere. Ann Appl Stat 7(3):1286–1310

Liemohn MW, McCollough JP, Jordanova VK, Ngwira CM, Morley SK, Cid C et al 
(2018) Model evaluation guidelines for geomagnetic index predictions. 
Space Weather 16:2079–2102. https:// doi. org/ 10. 1029/ 2018S W0020 67

Mori D, Kustov AV (2013) SuperDARN cross polar cap potential dependence on 
the solar wind conditions and comparisons with models. Adv Space Res 
52:1155–1167. https:// doi. org/ 10. 1016/j. asr. 2013. 06. 019

Moriguchi T, Nakamizo A, Tanaka T, Obara T, Shimazu H (2008) Current systems 
in the Jovian magnetosphere. J Geophys Res 113:A05204. https:// doi. org/ 
10. 1029/ 2007J A0127 51

Nakamizo A., and Y. Kubota (2021), Research and Development of Global 
Magnetosphere MHD Simulation, NICT Research Report, Vol. 67, No. 1 (in 
Japanese with English abstract), https:// www. nict. go. jp/ data/ resea rch- 
report/ index. html

Nakano S, Kataoka R (2022) Echo state network model for analyzing solar-wind 
effects on the AU and AL indices. Ann Geophys 40:11–22. https:// doi. org/ 
10. 5194/ angeo- 40- 11- 2022

Nakano S, Hori T, Seki K et al (2020) A framework for estimating spherical vec-
tor fields using localized basis functions and its application to SuperD-
ARN data processing. Earth Planets Space 72:46. https:// doi. org/ 10. 1186/ 
s40623- 020- 01168-4

Tanaka T (1995) Generation mechanisms for magnetosphere-ionosphere cur-
rent systems deduced from a three dimensional MHD simulation of the 
solar wind-magnetosphere-ionosphere coupling processes. J Geophys 
Res 100(A7):12,057–12,074. https:// doi. org/ 10. 1029/ 95JA0 0419

Tanaka T (2015) Substorm auroral dynamics reproduced by the advanced 
global M-I coupling simulation. In: Zhang Y (ed) Auroral Dynamics and 
Space Weather. Geophysical Monograph Series, vol 215. AGU, Washing-
ton DC, p 177?190

Tanaka T, Obara T, Watanabe M, Fujita S, Ebihara Y, Kataoka R (2017) Formation 
of the Sun-aligned arc region and the void (polar slot) under the null-
separator structure. J Geophys Res Space Phys 122(4):4102–4116. https:// 
doi. org/ 10. 1002/ 2016J A0235 84

Tanaka T, Obara T, Watanabe M, Fujita S, Ebihara Y, Kataoka R, Den M (2018) 
Cooperatives roles of dynamics and topology in generating the 
magnetosphere-ionosphere disturbances: case of the theta aurora. J 
Geophys Res Space Phys 123(12):9991–10008. https:// doi. org/ 10. 1029/ 
2018J A0255 14

Tanaka G, Yamane T, Heroux JB, Nakane R, Kanazawa N, Takeda S et al (2019) 
Recent advances in physical reservoir computing: a review. Neural Netw 
115:100–123. https:// doi. org/ 10. 1016/j. neunet. 2019. 03. 005

Tanaka G, Matsumori T, Yoshida H, Aihara K (2022a) Reservoir computing with 
diverse timescales for prediction of multiscale dynamics. Phys Rev Res 
4:L032014. https:// doi. org/ 10. 1103/ PhysR evRes earch.4. L0320 14

Tanaka T, Watanabe M, Ebihara Y, Fujita S, Nishitani N, Kataoka R (2022) Unified 
theory of the arc auroras: formation mechanism of the arc auroras con-
forming general principles of convection and FAC generation. J Geophys 
Res Space Phys. https:// doi. org/ 10. 1029/ 2022J A0304 03

Vokhmyanin MV, Stepanov NA, Sergeev VA (2019) On the evaluation of data 
quality in the OMNI interplanetary magnetic field database. Space 
Weather 17(3):476–486. https:// doi. org/ 10. 1029/ 2018S W0021 13

https://github.com/ryuhokataoka/REPPU-ESN
https://github.com/ryuhokataoka/REPPU-ESN
https://doi.org/10.5281/zenodo.7519025
https://doi.org/10.1029/2005JA011447
https://doi.org/10.1029/1999JA900442
https://doi.org/10.1002/2014JA020462
https://doi.org/10.1002/2015JA021697
https://doi.org/10.1002/2015JA021697
https://doi.org/10.1002/2015JA021516
https://doi.org/10.1029/2021JA029991
https://doi.org/10.1029/2018JA026177
https://doi.org/10.1029/2018JA026177
https://doi.org/10.1126/science.1091277
https://doi.org/10.1029/2005SW000211
https://doi.org/10.1029/2005SW000211
https://doi.org/10.1029/2021GL096275
https://doi.org/10.1051/swsc/2022033
https://doi.org/10.1051/swsc/2022033
https://doi.org/10.1029/2008JA013107
https://doi.org/10.1029/2008JA013107
https://doi.org/10.1029/2018SW002067
https://doi.org/10.1016/j.asr.2013.06.019
https://doi.org/10.1029/2007JA012751
https://doi.org/10.1029/2007JA012751
https://www.nict.go.jp/data/research-report/index.html
https://www.nict.go.jp/data/research-report/index.html
https://doi.org/10.5194/angeo-40-11-2022
https://doi.org/10.5194/angeo-40-11-2022
https://doi.org/10.1186/s40623-020-01168-4
https://doi.org/10.1186/s40623-020-01168-4
https://doi.org/10.1029/95JA00419
https://doi.org/10.1002/2016JA023584
https://doi.org/10.1002/2016JA023584
https://doi.org/10.1029/2018JA025514
https://doi.org/10.1029/2018JA025514
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1103/PhysRevResearch.4.L032014
https://doi.org/10.1029/2022JA030403
https://doi.org/10.1029/2018SW002113


Page 10 of 10Kataoka et al. Earth, Planets and Space          (2023) 75:139 

Weimer DR (1995) Models of high-latitude electric potentials derived with 
a least error fit of spherical harmonic coefficients. J Geophys Res 
100(10):19595–19607. https:// doi. org/ 10. 1029/ 95JA0 1755

Weimer DR (2005) Improved ionospheric electrodynamic models and applica-
tion to calculating joule heating rates. J Geophys Res 110:A05306. https:// 
doi. org/ 10. 1029/ 2004J A0108 84

Yang Z, Zhang B, Lei J, Dang T (2020) Nonlinear response of the cross polar cap 
potential to solar wind density under northward interplanetary magnetic 
field. Geophys Res Lett. https:// doi. org/ 10. 1029/ 2020G L0875 59

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1029/95JA01755
https://doi.org/10.1029/2004JA010884
https://doi.org/10.1029/2004JA010884
https://doi.org/10.1029/2020GL087559

	Machine learning emulator for physics-based prediction of ionospheric potential response to solar wind variations
	Abstract 
	Main text
	Introduction
	Global MHD simulation
	Machine learning technique

	Results and discussions
	Conclusions
	Acknowledgements
	References


