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Background
The relativistic equations of motion for charged particles 
are important for planetary and space science studies, 
especially for relativistic particle accelerations at colli-
sionless shocks (Umeda and Yamazaki 2006; Nakanotani 
et al. 2018) and in planetary radiation belts (Katoh 2014; 
Katoh and Omura 2016; Hiraga and Omura 2020; Omura 
2021; Fujiwara et  al. 2022). The classic fourth-order 
Runge–Kutta integrator (RK4) (Runge 1895; Kutta 1901) 
has been used over many years for solving the relativistic 
equations of motion for charged particles. Although RK4 
has a high numerical accuracy, it does not satisfy any of 
conservation laws.

As an alternative to RK4, the Boris integrator (Boris 
1970) has been used over fifty years in particle-in-cell 
simulations. The Boris integrator has the second-order 
accuracy in time. The Boris integrator conserves the 
kinetic energy during the gyration of charged particles 
in a magnetic field. This property makes the phase-space 
trajectories of particles with the Boris integrator more 
accurate than with the classic RK4 in a long-term time 
integration (Qin et  al. 2013; He et  al. 2015). The Boris 
integrator also provides the exact non-relativistic E × B 
drift velocity. It has been known, however, that the Boris 
integrator has a numerical error in the gyration angle per 
time step.

It is also known that the Boris integrator has a large 
numerical error in the drift velocity of the relativistic 
E × B drift (Vay 2008; Zhang et  al. 2015; Higuera and 
Cary 2017; Ripperda et al. 2018). There have been several 
attempts for obtaining a more accurate relativistic E × B 
drift velocity, such as the Vay integrator (Vay 2008) and 
the Higuera–Cary integrator (Higuera and Cary 2017). 
These explicit integrators reduce numerical errors in 
the phase-space trajectories of particles when a particle 
velocity vector is close to the guiding-center velocity vec-
tor only. For a velocity vector far from the guiding-center 
velocity vector, a numerical error in the phase-space tra-
jectories of particles with the Boris integrator is smaller 
than that with the Vay or the Higuera–Cary integrators.

Based on the analytic solution to the relativistic E × B 
drift motion, a new explicit integrator for the relativis-
tic equations of motion for a charged particle has been 
developed recently (Umeda 2023). The new integrator 
(hereafter the Umeda integrator) has the second-order 
accuracy in time and provides the exact relativistic 
E × B drift velocity. However, the Umeda integrator has 
a numerical error in the gyration angle per time step as 
the Boris integrator. A purpose of the present study is to 
increase the numerical accuracy of the Umeda integrator.

Brief introduction to the Umeda integrator
Let us start with the relativistic equations of motion for a 
charged particle with a position vector r , a velocity vector 
v , a mass m, and a charge q, which expresses the accelera-
tion of charged particles by electric field E and magnetic 
field B : 

 where γ is the relativistic Lorentz factor given as:

with c being the speed of light.
To simplify Eq.(1b), a motion of a charged particle is 

separated into motions in the directions parallel and per-
pendicular to a magnetic field. The velocity components 
parallel and perpendicular to a magnetic field are given 
as follows: 

 Then, Eq.(1b) is separated into two components parallel 
and perpendicular to the magnetic field as follows: 

 where u ≡ γ v is a momentum vector and vE is the E × B 
drift velocity vector

with E‖ and E⊥ being the electric field components paral-
lel and perpendicular to the magnetic field, respectively,

(1a)
dr

dt
= v,

(1b)
d

dt
(γ v) =

q

m
(E + v × B),

(2)γ =
c

√

c2 − |v|2
,

(3a)v� =
(v · B)B

|B|2
,

(3b)v⊥ = v − v� = −
(v × B)× B

|B|2
.

(4a)
du�

dt
=

q

m
E�,

(4b)

du⊥
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=

q

m
(v × B)+

q

m
E⊥ =

q

m
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=
q

m
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q
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(

E × B

|B|2
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)

=
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m
(v × B)+

q
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{
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(E · B)B

|B|2

}

,

vE =
E × B

|B|2
,
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Let us take a coordinate system such that B ‖ z and 
E ‖ y (i.e., E × B � x ). For the relativistic E × B drift (i.e., 
c|B| > |E| ) with a constant electromagnetic field, the 
perpendicular component of the momentum vector in 
the present coordinate system, i.e., u⊥ = (ux,uy) moves 
along the following elliptical trajectory (Friedman and 
Semon 2005):

where C is a constant, γE is the Lorentz factor of the 
E × B drift velocity vE = Ey/Bz,

and γB is a correction factor due to the gradient-B-type 
drift caused by dγ /dt  = 0 , which is also known as a 
“boosted” Lorentz factor (Ripperda et al. 2018):

The boosted Lorentz factor is constant on the elliptical 
trajectory in Eq.(5), which is obtained by taking the time 
derivative of γB as follows:

E� =
(E · B)B

|B|2
,

E⊥ = E − E� = −
(E × B)× B

|B|2
= −vE × B.

(5)(ux − γBγEvE)
2 + γ 2

E u
2
y = C ,

γE ≡
c

√

c2 − v2E

,

(6)

γB ≡
c2 − vEvx

√

(c2 − v2E)(c
2 − v2x − v2y − v2z )

≡ γE

(

γ −
vE · u

c2

)

.

Here, a similar approach to Zenitani and Umeda (2018) 
for the Boris integrator is used. The elliptical trajectory 
in the ux − uy space is written by using the elliptical rota-
tion matrix as follows:

where ωc ≡ q|B|/m is the gyro frequency and τ is the 
proper time in relativity,

This is rewritten by using the half-angle formula of trigo-
nometric functions together with Eq.(6) as follows:

vE

c2
·
du

dt
=

E × B

c2|B|2
·
q

m
(E + v × B)

=
q

mc2|B|2
(E × B) · (v × B)

=
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mc2
E · v =
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dt
.




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The gyration angle per proper time step �τ is approxi-
mated as:

Equation (8) is then rewritten in the following vector 
form:

where

The time-development equation for the momentum vec-
tor u is obtained by adding the momentum component 
parallel to the ambient magnetic field u‖ to Eq.(9):

The proper time step is approximated by:

The previous study (Umeda 2023) chose

which has been used in the Boris integrator (Boris 1970).
Note that the Boris integrator (Boris 1970) is also 

rewritten with the same form as Eq.(10):

where

tan

(

ωc�τ

2γE

)

≈
q�τ

2mγE
|B|.

(9)

u
t+ �t

2

⊥ = u
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2
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(
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)
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(
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2m
|B|

)2
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2
q�τ

m
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(

q�τ
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|B|

)2
.
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u
t+ �t
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t− �t
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m
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q�τ

m

(

u
t− �t
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)

+ 2βU

(
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}
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(
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|B|

)2
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+

(
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m
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2
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m

)
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(11)
∫ τ+�τ

2
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2

γ (τ ′)dτ ′ ≈ Ŵ�τ = �t.
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√
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∣
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∣

∣

∣

2

c
,

(12)

u
t+ �t
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2 +
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m
E + βB

q�t
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(

u
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)
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(
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)
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}
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(
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)2
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m
(1− βB)(vE × B),

The Umeda integrator (Umeda 2023) corresponds to the 
Boris integrator (Boris 1970) if E = 0 . The Umeda inte-
grator also approaches to the non-relativistic Boris inte-
grator as c → ∞ (i.e., γ → 1).

Construction of higher‑order integrator
For an arbitrary time step �t , the momentum vector u 
obtained with the Umeda integrator (Umeda 2023) is 
always on the elliptical trajectory, which is the analytic 
solution to the relativistic E × B drift in a uniform and 
constant electromagnetic field. That is, the Umeda inte-
grator satisfies dγB/dt = 0 and gives the exact relativ-
istic E × B drift velocity. However, a numerical error in 
the gyration angle becomes larger as the time step �t 
becomes larger. Below, numerical techniques for reduc-
ing numerical errors are given.

Taylor series expansion of tangent function
The Taylor series expansion of the tangent function in 
Eq.(8) with Eq.(11) is given as follows (Kato and Zenitani 
2021):

The Boris integrator (Boris 1970) and the previous study 
(Umeda 2023) used the first (i.e., �t ) term only. The 
time-development equation for the momentum vector u 
is written in the following form by using Eq.(13): 

βB =
1

1+

(

q�t
2mγ−

|B|

)2
.

(13)

tan

(

q�τ

2mγE
|B|

)

≈
q�t

2mγEŴ
|B|

{

1+
1

3

(

q�t

2mγEŴ
|B|

)2

+
2

15

(

q�t

2mγEŴ
|B|

)4

+ · · ·

}

.

(14a)u
t+�t

2 = u
t−�t

2 + F

(

1

Ŵ
,�t

)

,

(14b)

F

(

1

Ŵ
,�t

)

≡
q�t

m
E + f1

(

u
t−�t

2 × B

)

+ f2

{(

u
t−�t

2 × B

)

× B

}

+ f3vE + f4(vE × B),

(14c)

f1 =
γE

|B|
sin

(

q�t

mγEŴ
|B|

)

= 2βU
γE

|B|
tan

(

q�t
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)
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q�t

mŴ

{

1+
1

3

(
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|B|

)2

+
2
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(
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2mγEŴ
|B|

)4

+ · · ·

}

,
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 Here, an operator F  with arguments of 1/Ŵ and �t is 
defined for simplicity. The operator F  has three forms as 
described below.

Taylor series expansion: If γ 2
E > 1 , i.e., |vE | < c , the 

numerical error of the Taylor series expansion from the 
tangent function becomes larger as the argument 
q�t

2mγEŴ
|B| approaches to π/2 , which appears as a numer-

ical error in the gyration angle. The operator F  with the 
Taylor series expansion has an upper-bound in the 
numerical gyration angle per time step, q

mγEŴ
|B|�t < π . 

If γ 2
E = ∞ , i.e., |vE | = c , γE disappears from the numera-

tor of the operator F  with the Taylor series expansion. 
Hence, the operator F  is computationally stable. If 
γ 2
E < 0 , i.e., |vE | > c ; however, the operator F  with the 

Taylor series expansion becomes unstable numerically 
for βU < 0 , i.e., 

(

q�t
2mγEŴ

|B|

)2

≤ −1 (Umeda 2023). 
Although higher-order terms of the Taylor series relax 
the numerically unstable condition, a safety factor 
given in the previous study (Umeda 2023) is necessary 
to avoid the numerical instability.

(14d)
f2 =

1

|B|2

{

1− cos

(

q�t

mγEŴ
|B|

)}

= 2βU
1

|B|2
tan

2

(

q�t

2mγEŴ
|B|

)

≈ 2βU

(

q�t

2mγEŴ

)2
{

1+
1

3

(

q�t

2mγEŴ
|B|

)2

+
2

15

(

q�t

2mγEŴ
|B|

)4

+ · · ·

}2

,

(14e)
f3 = γBγE

{

1− cos

(

q�t

mγEŴ
|B|

)}

= 2βUγBγE tan
2

(

q�t

2mγEŴ
|B|

)

≈ 2βU
γB

γE

(

q�t

2mŴ
|B|

)2
{

1+
1

3

(

q�t

2mγEŴ
|B|

)2

+
2

15

(

q�t

2mγEŴ
|B|

)4

+ · · ·

}2

,

(14f )
f4 =

q�t

m
−

γ t−�t
2 γE

|B|
sin

(

q�t

mγEŴ
|B|

)

=
q�t

m
− 2βU

γ t−�t
2 γE

|B|
tan

(

q�t

2mγEŴ
|B|

)

≈
q�t

m

[

1− βU
γ t−�t

2

Ŵ

{

1+
1

3

(

q�t

2mγEŴ
|B|

)2

+
2

15

(

q�t

2mγEŴ
|B|

)4

+ · · ·

}]

,

(14g)
βU =

1

1+ tan
2

(

q�t

2mγEŴ
|B|

)

≈
1

1+

(

q�t

2mγEŴ
|B|

)2
{

1+
1

3

(

q�t

2mγEŴ
|B|

)2

+
2

15

(

q�t

2mγEŴ
|B|

)4

+ · · ·

}2
.

Tangent function: If γ 2
E > 1 , i.e., |vE | < c , the tangent 

function leads to overflow or underflow at 
q�t

2mγEŴ
|B| = π/2 with some compilers. It is recom-

mended to use cosine and sine functions instead. If 
γ 2
E = ∞ , i.e., |vE | = c , γE tan

(

q�t
2mγEŴ

|B|

)

 in Eq.(14) is 

replaced with q�t
2mŴ

|B| . If γ 2
E < 0 , i.e., |vE | > c , tan θ in 

Eq.(14) is replaced with −ι tanh(ιθ) , where ι is the imag-
inary unit. The operator F  with the hyperbolic tangent 
function is computationally stable, since tanh2(ιθ) < 1.

Cosine and sine functions: If γ 2
E > 1 , i.e., |vE | < c , the 

cosine and sine functions do not lead to overflow or 
underflow for any argument. If γ 2

E = ∞ , i.e., |vE | = c , 
γE sin

(

q�t
mγEŴ

|B|

)

 and γ 2
E

{

1− cos

(

q�t
mγEŴ

|B|

)}

 in Eq.(14) 

is replaced with q�t
mŴ

|B| and 2
(

q�t
2mŴ

|B|

)2

 , respectively. 

That is, f1 = q�t
mŴ

 , f2 = f3 = 0 , and f4 =
q�t
m

(

1− γ t+�t
2 /Ŵ

)

 . 
If γ 2

E < 0 , i.e., |vE | > c , sin θ and cos θ in Eq.(14) is 
replaced with −ι sinh(ιθ) and cosh(ιθ) , respectively. The 
operator F  with the hyperbolic cosine and sine func-
tions is computationally stable as well.
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Multi‑stepping with Runge–Kutta methods
To evaluate Ŵ in Eq.(14) more accurately, the time inte-
gration of γ in Eq.(11) is performed with multi-step (or 
multi-stage) numerical integrators based on the Runge–
Kutta methods (Runge 1895; Kutta 1901; Butcher 1996). 
This subsection provides the numerical integration with 
the classic fourth-order Runge–Kutta (RK4) method. The 
multi-step numerical integrations with other methods, i.e., 
Euler integrator, mid-point rule, trapezoidal rule, Heun3 
integrator (Heun 1900), RK3 integrator (Kutta 1901), and 
Kutta-3/8 rule (Kutta 1901), are provided in Appendix A.

RK4 integrator is widely used in scientific computing 
in various fields, which has the fourth-order accuracy in 
time (Kutta 1901). The momentum vector at time t1 ≈ t 
is estimated with the Euler integrator at the first step. The 
momentum vector at time t2 ≈ t is re-estimated with the 
mid-point rule at the second step. The momentum vector 
at time t3 ≈ t +�t/2 is estimated with the mid-point rule 
at the third step. Then, the time integration is performed 
based on the Simpson integration rule by using 1/γ t−�t

2  , 
1/γ t1 and 1/γ t2 (at time t), and 1/γ t3 (at time t +�t/2 ). 
Finally, the momentum vector at time t +�t/2 is obtained 
at the fourth step as follows: 

(15a)u
t1 = u
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







c
�
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�
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





,
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
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2
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2
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


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�
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�

2
,�t



,

Numerical tests
Numerical errors of the present integrators from the 
theoretical solution to the relativistic E × B drift in a uni-
form and constant electromagnetic field (Friedman and 
Semon 2005; Umeda 2023) are examined. For evaluating 
the relativistic gyration angle, the �t term only, up to �t3 
terms, up to �t5 terms of the Taylor series, and the tan-
gent function are used. For the integration of 1/Ŵ , Euler, 
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Table 1  Order of accuracy for various combinations of Taylor 
series terms and multi-stage integrators

Integrator Taylor series terms

�t �t
3

�t
5 tan

Euler 1st 1st 1st 1st

Mid-point 2nd 2nd 2nd 2nd

Trapezoid 2nd 2nd 2nd 2nd

Heun3 2nd 3rd 3rd 3rd

RK3 2nd 3rd 3rd 3rd

RK4 2nd 4th 4th 4th

Kutta-3/8 2nd 4th 4th 4th

Fig. 1  Relative error η of the momentum vector u = (ux , uy) 
and position vector r = (x , y) from the theoretical solution 
as a function of �t for the present integrators with the combination 
of RK4 and different number of Taylor series terms. The circle, triangle, 
square, and x-mark show the results with �t term only, up to �t3 
terms, up to �t5 terms, and tangent function, respectively
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mid-point, trapezoidal, Heun3, RK3, RK4, and Kutta-3/8 
integrators are used.

The order of accuracy for various combinations of the 
Taylor series terms and the multi-stage integrators is 
summarized in Table  1. The �t term, up to �t3 terms, 
and up to �t5 terms of the Taylor series have the second-, 
fourth-, and sixth-order accuracy in time. However, the 
Euler integrator, i.e., 1/Ŵ = 1/γ t−�t

2  has the first-order 
accuracy in time independently of the number of the 
Taylor series terms. Note that the previous Umeda inte-
grator with the �t term only and 1/Ŵ = 1/γ− has the 
second-order accuracy in time (Umeda 2023), the choice 
of which is not so bad. Both of the mid-point rule and the 
trapezoidal rule have the second-order accuracy in time 
independently of the number of the Taylor series terms. 
The accuracy of the trapezoidal rule is slightly higher 
than that of the mid-point rule (not shown). The Heun3 
and RK3 integrators have the third-order accuracy in 
time with the Taylor series terms higher than �t but have 
the second-order accuracy in time with the �t term only. 
The accuracy of Heun3 is almost the same as that of RK3 
(not shown). The RK4 integrator and the Kutta-3/8 rule 
have the fourth-order accuracy in time with the Taylor 
series terms higher than �t but have the second-order 
accuracy in time with �t term only. The accuracy of the 
Kutta-3/8 rule is almost the same as that of RK4 (not 
shown). These results suggest that the order of accuracy 
is determined by the lowest order of accuracy of either 
the Taylor series terms or the multi-stage integrators.

Numerical tests are performed with a uniform, con-
stant and time-independent electromagnetic field 
E = (0,Ey, 0) and B = (0, 0,Bz) . The E × B drift veloc-
ity vE = Ey/Bz = 0.8c and the initial velocity vector 
v0 = (0.5c, 0, 0) are used. The time step is varied from 
ωc�t = 23 to 2−9 , where ωc = qBz/m is the non-relativ-
istic gyro frequency, The numerical results at ωct = 24 is 
compared against the theoretical solution.

Figure  1 shows the relative error η of the momentum 
vector u = (ux,uy) and position vector r = (x, y) from 
the theoretical solution as a function of �t with the com-
bination of RK4 and different number of Taylor series 
terms. The circle, triangle, square, and x-mark show the 
results with �t term only, up to �t3 terms, up to �t5 
terms, and tangent function, respectively. It is clearly 
shown that the order of accuracy is second in time with 
�t term only. The order of accuracy is fourth in time with 
more than �t3 terms. As the number of Taylor series 
terms increases, the numerical accuracy approaches to 
that with the tangent function. The numerical error with 
the Taylor series expansion is enhanced for an extremely 
large time step, ωc�t

γEŴ
≥ π , because of a large numerical 

error in the gyration angle. In Fig. 1, the maximum argu-
ment is ωc�t = 8 with γE = 5/3 and 1.15 < Ŵ < 2.7 . The 
computational cost is also measured on a single compute 
core of the Intel Xeon Gold 6342 processor with the Intel 
oneAPI compiler ver.2021.5.0. The compile options are 
“-ipo -ip -O3 -xICELAKE-SERVER.” The elapsed time 
per particle and per time step with �t term only, up to 

Fig. 2  Relative error η of the momentum vector u = (ux , uy) 
and position vector r = (x , y) from the theoretical solution 
as a function of �t for the present integrators with the combination 
of the tangent function and different integrators. The circle, triangle, 
square, and x-mark show the results with Euler, trapezoidal, Heun3, 
and RK4 integrators, respectively

Fig. 3  Relative error η of the momentum vector u = (ux , uy) 
and position vector r = (x , y) from the theoretical solution 
as a function of �t for the previous and present integrators. The 
circle, triangle, square, and x-mark show the results with Boris (1970), 
Umeda (2023), fourth-order Runge–Kutta integrators (RK4 to Eq.
(1) directly), and the present study with the combination of RK4 
and the tangent function, respectively
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�t3 terms, up to �t5 terms, and tangent function is 67.7 
ns, 73.3 ns, 76.2 ns, and 94.2 ns, respectively.

Figure 2 shows relative error η of the momentum vec-
tor u = (ux,uy) and position vector r = (x, y) from the 
theoretical solution as a function of �t with the com-
bination of the tangent function and different integra-
tors. The circle, triangle, square, and x-mark show the 
results with Euler, trapezoidal, Heun3, and RK4 inte-
grators, respectively. It is clearly shown that the order 
of accuracy is first, second, third, and fourth in time 
with Euler, trapezoidal, Heun3, and RK4 integrators, 
respectively.

Figure  3 shows the relative error η of the momentum 
vector u = (ux,uy) and position vector r = (x, y) from 
the theoretical solution as a function of �t for the previ-
ous and present integrators. The circle, triangle, square, 
and x-mark show the results with Boris (1970), Umeda 
(2023), fourth-order Runge–Kutta integrators (RK4 to 
Eq.(1) directly), and the present study with the combi-
nation of RK4 and the tangent function, respectively. It 
is shown that the numerical error of direct RK4 is much 
lower than that of both Boris (1970) and Umeda (2023) 
integrators. The numerical error of the present study is 
two orders lower than that of direct RK4. The elapsed 
time per particle and per time step with the Umeda 

integrator is 58.4 ns. Hence, the numerical cost of the 
present study is much cheaper than that of the previous 
study.

A long-term numerical test is also performed with 
the same electromagnetic field E = (0,Ey, 0) and 
B = (0, 0,Bz) , the E × B drift velocity vE = Ey/Bz = 0.8c , 
and the initial velocity vector v0 = (0.5c, 0, 0) . The time 
step is fixed to ωc�t = 0.1 , and the numerical test is per-
formed up to ωct = 107 . Figure 4 shows the relative error 
η of the momentum vector u = (ux,uy) , the position vec-
tor r = (x, y) , the constant for the elliptical trajectory 
C in Eq.(5), and the boosted Lorentz factor γB in Eq.(6) 
from the theoretical solution as a function of time for the 
previous and present integrators.

For a short-term numerical test, the numerical errors 
in the momentum and position vectors with the second-
order (Boris and Umeda), RK4, and present integrators 
are ∼ 10−4 , ∼ 10−8 , and ∼ 10−10 , respectively, which is 
consistent with Fig.  3. The numerical error in the con-
stant for the elliptical trajectory C with the Boris inte-
grator varies between 10−6 and 10−2 at a certain period 
( T ≈ 20/ωc in the present case), which depends on γE 
and γB . This result indicates that the momentum vector 
moves along an elliptical trajectory with a wrong rela-
tivistic E × B drift velocity. The numerical error in the 

Fig. 4  Relative error η of the momentum vector u = (ux , uy) , the position vector r = (x , y) , the constant for the elliptical trajectory C in Eq.
(5), and the boosted Lorentz factor γB in Eq.(6) from the theoretical solution as a function of time for the previous and present integrators. (a) 
0 ≤ ωct ≤ 100 and (b) 0 ≤ ωct ≤ 107 . The circle, triangle, square, and x-mark show the results with Boris (1970), Umeda (2023), fourth-order Runge–
Kutta integrators (RK4 to Eq.(1) directly), and the present study with the combination of RK4 and the tangent function, respectively
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boosted Lorentz factor γB is related to the numerical 
error in C, because the center of the elliptical trajectory is 
given as (γBγEvE , 0) . The numerical error in the constant 
for the elliptical trajectory C with RK4 is ∼ 10−8 . On the 
other hand, the numerical errors in the constant for the 
elliptical trajectory C with the Umeda and present inte-
grators are ∼ 10−14.

For a long-term numerical test, the numerical errors in 
the momentum vectors with the Boris and Umeda inte-
grators vary between 10−2 and 100 because of the accu-
mulation of the numerical error in the gyration angle. 
The numerical error in the momentum vectors with the 
present integrator is much lower than that with other 
integrators. Note that oscillations in the numerical errors 
in Fig.  4b are due to a data sampling rate. The numeri-
cal errors in the position vector with the Boris, Umeda, 
and present integrators are ∼ 10−4 , ∼ 10−5 and ∼ 10−8 , 
respectively. The numerical error in the constant for the 
elliptical trajectory C with RK4 increases to 10−2 , which 
indicates that the momentum vector deviates from the 
theoretical trajectory. On the other hand, the numerical 
error in C with the Boris integrator varies between 10−6 
and 10−2 , which indicates that the momentum vector is 
on the elliptical trajectory for a long term. The numerical 
errors in C and γB with the Umeda and present integra-
tors are ∼ 10−12 . The result clearly shows that the opera-
tor F  in Eq.(14) is well-designed for conserving both C 
and γB.

It is noted that the operator F(1/Ŵ,�t) is Eq.(14) is 
replaced with F [1/Ŵ,Et(rt),Bt(rt),�t] with the posi-
tion vector obtained with the multi-stage numerical 
integrator, if electromagnetic fields are non-uniform and 
time-dependent.

Conclusions
Instead of the classic Runge–Kutta (RK4) integrator 
(Runge 1895; Kutta 1901), the relativistic equations of 
motion for charged particles have been conventionally 
solved with the Boris integrator (or the Boris push) (Boris 
1970) in particle-in-cell (PIC) plasma simulations. The 
conventional Boris integrator (Boris 1970), the previous 
Vay (2008) and Higuera and Cary (2017) integrators con-
serve the kinetic energy of charged particles during the 
gyration but have large numerical errors in the relativ-
istic E × B drift velocity. Recently, a new integrator (the 
Umeda integrator) has been developed, which provides 
the exact relativistic E × B drift velocity (Umeda 2023). 
However, the Umeda integrator has the second-order 
accuracy in time and has a numerical error in the relativ-
istic gyration angle as well.

To reduce the numerical error of the Umeda inte-
grator and to make its order of accuracy higher, two 

advanced numerical techniques are adopted in the pre-
sent study. One is the Taylor series expansion of the 
numerical gyration angle (Kato and Zenitani 2021), 
and the other is multi-step (multi-stage) Runge–Kutta 
method (Butcher 1996) for the integration of the Lor-
entz factor. With the combination of the trigonometric 
function for the gyration angle and RK4 for the integra-
tion of the Lorentz factor, a new fourth-order integrator 
has been developed. The new integrator conserves both 
of the kinetic energy of charged particles during the 
gyration and the relativistic boosted Lorentz factor, but 
has a numerical accuracy much higher than the classic 
RK4. The computational cost of the new integrator is 
much cheaper than the Umeda integrator. Although the 
order of accuracy is extended up to fourth in the pre-
sent study, higher-order multi-stage integrators for the 
integration of the Lorentz factor could make the order 
of accuracy higher in time.

Appendix A: Multi‑stepping with other Runge–
Kutta methods
Euler integrator
The Euler integrator is known as an explicit time-for-
warding numerical procedure with the first-order accu-
racy in time. The momentum vector is updated with 
1/Ŵ = 1/γ t−�t

2  as follows: 

Mid‑point rule
The numerical integrator based on the mid-point rule 
has second-order accuracy in time. The momentum vec-
tor at time t is estimated with the Euler integrator at the 
first step. Then, by assuming that 1/Ŵ = 1/γ t is constant 
in time from t −�t/2 to t +�t/2 , the momentum vec-
tor at time t +�t/2 is obtained at the second step as 
follows: 
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Trapezoidal rule
The numerical integrator based on the trapezoidal rule 
has second-order accuracy in time. The momentum vec-
tor at time t1 ≈ t +�t/2 is estimated with the Euler 
integrator at the first step. By assuming that 1/γ changes 
linearly from 1/γ t−�t/2 to 1/γ t1 , 1/Ŵ is obtained with 
the numerical integration based on the trapezoidal rule. 
Then, the momentum vector at time t +�t/2 is obtained 
at the second step as follows: 

Heun3 integrator
The third-order Heun (Heun3) integrator is known as an 
explicit time-forwarding numerical procedure with the 
third-order accuracy in time (Heun 1900). The momen-
tum vector at time t −�t/6 is estimated with the Euler 
integrator at the first step. Then, the momentum vector 
at time t +�t/6 is estimated with the mid-point rule at 
the second step. Finally, the momentum vector at time 
t +�t/2 is obtained at the third step as follows: 
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RK3 integrator
The third-order Runge–Kutta (RK3) integrator is known 
as an explicit numerical procedure with the third-order 
accuracy in time (Kutta 1901). The momentum vector at 
time t is estimated with the Euler integrator at the first 
step. The momentum vector at time t1 ≈ t +�t/2 is esti-
mated at the second step. By assuming that 1/γ changes 
in a parabolic manner from 1/γ t−�t/2 to 1/γ t1 via 1/γ t , 
1/Ŵ is obtained with the numerical integration based on 
the Simpson integration rule. Finally, the momentum 
vector at time t +�t/2 is obtained at the third step as 
follows: 
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Kutta‑3/8 rule
There is another version of the fourth-order Runge–Kutta 
integrator, which is known as the Kutta-3/8 rule (Kutta 
1901). The momentum vector at time t − �t

6
 is estimated 

with the Euler integrator at the first step. The momentum 
vector at time t + �t

6
 is estimated at the second step. The 

momentum vector at time t1 ≈ t +�t/2 is estimated at 
the third step. Then, the time integration is performed 
based on the numerical integration of a cubic polyno-
mial function passing through four points of 1/γ t−�t

2  , 
1/γ t−�t

6  , 1/γ t+�t
6  , and 1/γ t1 (at time t +�t/2 ). Finally, 

the momentum vector at time t +�t/2 is obtained at the 
fourth step as follows: 

(A.5c)

u
t+�t

2 = u
t−�t

2

+ F









c

6

�

c2 +
�

�ut1
�

�

2
+

2c

3

�

c2 +
�

�ut
�

�

2
+

c

6

�

c2 +
�

�

�u
t−�t

2

�

�

�

2
,�t









,

(A.5d)
r
t+�t

2 = r
t−�t

2

+
�t

6









cut1

�

c2 +
�

�ut1
�

�

2
+

4cut

�

c2 +
�

�ut
�

�

2
+

cut−�t
2

�

c2 +
�

�

�u
t−�t

2

�

�

�

2









.

(A.6a)

u
t−�t

6 = u
t−�t

2 + F









c
�

c2 +
�

�

�u
t−�t

2

�

�

�

2
,
�t

3









,

(A.6b)

u
t+�t

6 =u
t−�t

2 + F









c
�

c2 +
�

�

�u
t−�t

6

�

�

�

2

−
c

3

�

c2 +
�

�

�u
t−�t

2

�

�

�

2
,
2�t

3









,

(A.6c)

u
t1 = u

t−�t
2 + F









c
�

c2 +
�

�

�u
t+�t

6

�

�

�

2
−

c
�

c2 +
�

�

�u
t−�t

6

�

�

�

2

+
c

�

c2 +
�

�

�u
t−�t

2

�

�

�

2
,�t









,

(A.6d)

u
t+�t

2 = u
t−�t

2 + F









c

8

�

c2 +
�

�ut1
�

�

2
+

3c

8

�

c2 +
�

�

�u
t+�t

6

�

�

�

2
+

3c

8

�

c2 +
�

�

�u
t−�t

6

�

�

�

2

+
c

8

�

c2 +
�

�

�u
t−�t

2

�

�

�

2
,�t









,



Page 12 of 12Umeda and Ozaki ﻿Earth, Planets and Space          (2023) 75:157 

Abbreviations
PIC	� Particle-in-cell
RK	� Runge–Kutta
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