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Abstract 

Equatorial plasma bubble (EPB) is a phenomenon characterized by depletions in ionospheric plasma density being 
formed during post-sunset hours. The ionospheric irregularities can lead to disruptions in trans-ionospheric radio 
systems, navigation systems and satellite communications. Real-time detection and classification of EPBs are crucial 
for the space weather community. Since 2020, the Prachomklao radar station, a very high frequency (VHF) radar sta-
tion, has been installed at Chumphon station (Geographic: 10.72° N, 99.73° E and Geomagnetic: 1.33° N) and started 
to produce radar images ever since. In this work, we propose two real-time plasma bubble detection systems based 
on support vector machine techniques. Two designs are made with the convolutional neural network (CNN) and sin-
gular value decomposition (SVD) used for feature extraction, the connected to the support vector machine (SVM) 
for EPB classification. The proposed models are trained using quick look (QL) plot images from the VHF radar system 
at the Chumphon station, Thailand, in 2017. The experimental results show that the combined CNN-SVM model, 
using the RBF kernel, achieves the highest accuracy of 93.08% while the model using the polynomial kernel achieved 
an accuracy of 92.14%. On the other hand, the combined SVD-SVM models yield the accuracies of 88.37% and 85.00% 
for RBF and polynomial kernels of SVM, respectively.
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Graphical Abstract

Introduction
Equatorial plasma bubbles (EPBs) refer to the plasma 
depletion region in the ionosphere. They typically 
originate at the bottom-side of the F-layer after sun-
set, particularly, near the magnetic equator, forming 
bubble-shaped structures, Abadi et  al. (2014). The ini-
tiation mechanism of the post-sunset EPBs are known 
to be caused by the Rayleigh–Taylor instability, Kelly 
(2009). Global-scale geomagnetic storms can also further 
increase the severities and occurrences of EPBs, Deepak 
et al. (2023). The scale size of the EPBs ranges from a few 
kilometers to several hundred kilometers. The EPBs typi-
cally extend in higher latitudes via the magnetic flux tube 
(Huba 2008), which also reach higher altitudes along the 
magnetic field lines. The plasma bubbles can cause signal 
fading and scintillation, which can lead to degradation in 
communication, positioning and navigation, Alison et al. 
(2018).

To observe EPBs, since the 1960s, researchers have 
been using remote-sensing based on radio waves to 
investigate ionospheric irregularities such as equato-
rial plasma bubbles (EPBs). Ionosondes, all-sky airglow 
imagers, Global Navigation Satellite System (GNSS) 
receivers, in  situ satellites, very high frequency (VHF) 
radar stations, equatorial atmosphere radar (EAR), and 
incoherent scatter radar (ISR) are some of the tech-
niques that have been widely utilized. For example, the 

ionosonde system measures the electron density profile 
of the ionosphere by sending a radio signal upward and 
receiving the echo signals in return, Wei et  al. (2021). 
Global Navigation Satellite Systems (GNSS) receivers 
are also utilized to detect the ionospheric irregular-
ity through the analysis of pseudo range information, 
Chendong et al. (2022). The parameters of the plasma in 
the ionosphere can be directly measured by in situ satel-
lites, Wernik et al. (2007). These properties include the 
temperature, electron density and drift velocity.

Very high frequency (VHF) radar is another power-
ful tool for observing plasma bubbles in the ionosphere. 
Compared to other observation methods, VHF radar 
offers several advantages. It provides high spatial reso-
lution (on the order of meters) and high temporal reso-
lution (on the order of seconds), allowing for detailed 
observations of plasma bubble evolution. VHF radar 
can also cover a large portion of the ionosphere, mak-
ing it possible to study the large-scale structure and 
dynamics of plasma bubbles. Additionally, VHF radar 
can monitor plasma bubbles in real-time, making it 
useful for space weather forecasting and studying the 
effects of plasma bubbles on communication and navi-
gation systems. VHF radar has been applied in various 
fields, including sea surface current detection and wind 
direction estimation, Cochin et al. (2005). Importantly, 
VHF radar useful for space weather forecasting and, 



Page 3 of 15Thanakulketsarat et al. Earth, Planets and Space          (2023) 75:161  

particularly, the structures of plasma bubbles. In the 
ionosphere, VHF radar has been used to detect bound-
ary irregularities in the F-region at night in Kototabang, 
Indonesia, Otsuka et al. (2009), and to observe plasma 
bubbles at the bottom-side of the F-layer, Tsunoda et al. 
(1982).

VHF radars operate in the VHF band between 30 and 
300  MHz and they can observe ionospheric irregulari-
ties such as EPBs by transmitting a radar signal upward 
and receiving the signal after it has been scattered by the 
irregularities, Nakata et al. (2005). The equatorial atmos-
phere radar, also known as the EAR, is a specialized type 
of VHF radar that was developed for the purpose of 
researching the equatorial ionosphere and has been put 
to extensive use in researching EPBs, Pavan et al. (2017). 
The incoherent scatter radar at Jicamarca Radio Obser-
vatory among others is another powerful tool used to 
study the ionosphere, including EPBs, by transmitting 
a high-power radio signal and observing the scattered 
signal, Woodman et  al. (2019). VHF radars can gener-
ate daily images, however, real-time monitoring of these 
often times noisy or distorted images require careful data 
cleaning and efficient classification system.

Recently, artificial intelligence (AI), particularly, 
machine learning algorithms have been applied in 
space weather forecasting and prediction, for example, 
Atabati et  al. (2021); Razin et  al. (2021); Tang (2022). 
In Tang (2022), the  authors proposed deep learning 
techniques for forecasting ionospheric total electron 
content (TEC). The proposed model is based on a com-
bination of a convolutional neural network (CNN) for 
feature map as well as rotation of data to try to expand 
its outstanding features, long-short term memory 
(LSTM) neural network, and attention mechanism. The 
model uses data from 24 GNSS stations in China and 
is driven by six parameters, including TEC time series, 
Bz, Kp, Dst, F10.7 indices, and hour of day (HD), In Ata-
bati et  al. (2021), the authors used an artificial neural 
network (ANN) integrated with the genetic algorithm 
(GA) to predict ionospheric scintillation for the GUAM 
station. However, the feature extractions from the data 
can enhance the accuracy and processing time for real-
time prediction systems. Singular value decomposition 
(SVD) is a powerful tool for decomposing images into 
their constituent parts and analyzing the structure of 
the image. Its ability to reduce the dimensionality of the 
image and extract important features makes it useful for 
a wide range of image processing tasks, including com-
pression, denoising, and feature extraction. Recently, 
Razin et al. (2021) proposed a new method for modeling 
the spatio-temporal variations in the ionosphere’s total 
electron content (TEC) during periods of intense solar 
activity. The approach utilizes a support vector machine 

(SVM) as the modeling tool to predict TEC values 
across the ionosphere. By leveraging the SVM’s ability 
to handle complex and high-dimensional datasets, the 
method can effectively capture the complex relation-
ships between TEC values and the various geophysical 
factors that influence them.

In this work, we propose equatorial plasma bubble 
classification models using machine learning techniques 
on the quick look (QL) plot images from the Chumphon 
VHF radar station. The proposed models classify the 
presence or absence of plasma bubbles on the images 
using two different approaches: combined convolutional 
neural networks (CNNs) and support vector machines 
(SVM), as well as combined singular value decomposi-
tion (SVD) methods and SVM. In the models, SVD and 
CNNs are used to extract the features from the images 
before sending them to the SVM for classification.

Data and methodology
In this work, we consider using a support vector machine 
(SVM) for classification, and then we use singular value 
decomposition (SVD) and a convolutional neural net-
work (CNN) for feature extraction and size reduction.

Support vector machine
Support vector machine (SVM) is a linear model for clas-
sification and regression, introduced by Vapnik et  al. 
(1963). It is capable of handling both linearly separa-
ble and non-linearly separable data through the use of 
a kernel trick. The algorithm creates a decision bound-
ary, called “a hyperplane”, that separates the positive and 
negative classes by maximizing the margin and reducing 

Fig. 1 Illustration of optimal decision boundary in support vector 
machine
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classification errors. The margin is the distance between 
the hyperplane and the closest data points from each 
class, known as “support vectors”. Figure  1 shows the 
illustration of a supporting vector apparatus to summa-
rize the optimal separating hyperplane in the linearly iso-
lated data.

From Fig. 1, for 2 types of scattering data vectors, the 
SVM algorithm seeks to find the weight vector, w , and 
bias, b, that define the optimal hyperplane separating 
the classes with the maximum margin m. Given a set 
of training samples, xi ∈ Rn , and their corresponding 
classes, yi = ±1, the distance between a sample set xi and 
the hyperplane is given by the expression (wT · xi + b) . In 
SVM, the margin ( m ) width must be maximized accord-
ing to

The objective function of the SVM can be written in 
the Lagrangian formula as:

subject to yi(w
T · xi + b)− 1+ ξi ≥ 0, where ξi ≥ 0, 

where C is the penalty parameter and αi are the Lagrange 
multipliers.

For non-linearly separable data, nonlinear kernel func-
tions are used to map the data into higher-dimensional 
feature spaces where the data can be linearly separated, 
Dhafar et al. (2020). A kernel function K (xi, yi) , is defined 
as the dot product of a nonlinear function φ,

where φ is a mapping of X to a feature space F.
The SVM is a versatile model that can tackle vari-

ous machine learning problems by utilizing multiple 
kernel functions, each with its unique characteristics. 
Among these kernels, the radial basis function  (RBF) 
kernel is notable for its reliance on the gamma param-
eter, which determines the shape and complexity of the 
decision boundary. We use two kernel functions in SVM: 
the polynomial kernel and radial basis function kernel, 
Zhang et  al. (2012). These kernels offer user-definable 
parameters, such as gamma ( γ ), degree ( d ), and pen-
alty parameter ( C ), which can be adjusted to achieve the 
best performance for a particular problem. The gamma 
parameter plays a crucial role in determining the influ-
ence of each training example on the decision boundary, 
while the degree parameter controls the degree of the 
polynomial kernel. The penalty parameter C balances the 
tradeoff between margin maximization and classification 
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error minimization. To achieve optimal SVM perfor-
mance, it is crucial to select an appropriate kernel func-
tion and adjust its associated parameters. However, the 
selection process can be problem-dependent and may 
require careful experimentation and tuning, often using 
cross-validation techniques.

There are four types of kernel functions:

1. Linear kernel: K (xi, yi) = xi
Tyi,

2. Polynomial kernel: K (xi, yi) = (xi · yi + C)d,
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In this work, we consider polynomial and RBF kernel 
functions. As a result, the RBF kernel can capture more 
complex nonlinear relationships between the features than 
the polynomial kernel. Another difference is the sensitivity 
to the hyperparameters. The polynomial kernel is sensi-
tive to the degree of the polynomial, which determines the 
complexity of the mapping. In contrast, the RBF kernel is 
sensitive to the gamma parameter, which determines the 
width of the Gaussian function used in the mapping.

Convolutional neural network
In LeCun et al. (1990), the authors introduced the concept 
of convolutional computational methods into neural net-
works to compute image features. The layer that computes 
features using convolution is called the convolutional layer. 
LeCun et al. (1998) presented a convolutional neural net-
work (CNN) called LeNet-5, which introduced the con-
cept of a fully connected layer. This layer acts as a layer of a 
multi-layer neural network and allows the CNN to perform 
both feature extraction and classification, which is consid-
ered a key advantage of this network architecture.

The convolutional neural network architecture, as shown 
in Fig. 2, has four important layers:

1 Convolutional layer

 The convolution layer is the basic component in convo-
lutional neural networks. It is composed of multiple fea-
ture surfaces (feature maps), each of which is composed of 
many neurons. The neurons are connected by the convolu-
tion kernel to the local region of the upper feature surfaces. 
The convolution layer of CNN can extract different features 
of the input by the convolution operation. By increasing the 
depth of the convolution layers, more advanced features 
can be extracted. Representing the input image by ‘‘I’’, and 
the two-dimensional convolution kernel by ‘‘K ’’; the convo-
lution of the input image is
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2 Pooling layer

 The pooling layer is an important component of a con-
volutional neural network (CNN) that typically fol-
lows a convolutional layer. Its primary purpose is to 
downsample the feature map obtained from the con-
volutional layer, reducing its spatial dimensions while 
preserving the important features. Another important 
function of the pooling layer is to extract distinctive 
features that are invariant to translation, rotation, and 
scaling, thereby improving the CNN’s predictive capa-
bilities. Common pooling methods include Average 
Pooling, Min Pooling, and Max Pooling, which involve 
dividing the feature map into local regions and comput-
ing a summary statistic such as the mean, minimum, or 
maximum of each region.

3 Fully connected layer

 A fully connected layer serves as the connection between 
the feature map and the final output. The feature map is 
flattened, reshaping every neuron in the last layer to act 
as input to the next layer. The flattened input is then 
multiplied by randomly generated weights between 0 
and 1, with bias sometimes added. The resulting value 
of each neuron is then passed through a chosen activa-
tion function to obtain the result of each neuron. The 
hidden layer can be designed as needed, and the output 
layer is obtained from the last hidden layer represented in 
the activation function. Each neuron in the output layer 

(4)
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. is substituted into the activation function to predict the 
probability of the output (S), i.e.,

where pi is the input data and wi is the weight.
The CNNs are highly efficient for feature extraction in 

image classification applications because there is a com-
bination of capturing specific patterns and hierarchical 
feature learning parameter sharing nonlinear modeling. 
Moreover, the training is effective and is suitable for fea-
ture extraction of images.

Singular value decomposition
Singular value decomposition (SVD) is a matrix fac-
torization technique that has found wide use in many 
fields, from engineering and physics to data analysis 
and machine learning. In the field of image and signal 
processing, the SVD is often used to reduce the dimen-
sionality of data by identifying the underlying structure 
and extracting its most important features. This can be 
particularly useful for compressing large amounts of 
data without significant loss of information. In image 
compression, the SVD is used to decompose an image 
into its most important singular values and vectors. The 
singular values represent the importance of each vec-
tor in the decomposition and can be used to discard 
less significant information while retaining the essen-
tial features of the image. This can lead to a significant 
reduction in the number of pixels required to repre-
sent the image, without significant loss of image qual-
ity. This approach involves a rectangular matrix with 
dimensions m by n, which is decomposed into three-
valued products of other matrices. The classification 

(5)S =

n
∑

i=1

piwi,

Fig. 2 Architecture of a convolutional neural network
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model uses the singular values from the SVD process as 
inputs for both training and testing of the model. The 
decomposition takes the form

where A is the m× n data matrix that must be divided 
into sections, U is an orthonormal matrix of the size 
m×m , � is a diagonal matrix of the size m× n and VT is 
the transpose of the orthonormal matrix of the size n× n.

By using the SVD, we can break down the large 
image matrix into a smaller set of matrices and remove 
the smaller singular values to reduce memory usage. 

(6)A = U�VT,

This approach can greatly benefit the efficiency of 
computations and the storage requirements of these 
applications.

VHF radar data and images
In order to investigate plasma bubbles near the magnetic 
equator region, the National Institute of Information and 
Communications Technology (NICT) and King Mong-
kut’s Institute of Technology Ladkrabang (KMITL) col-
laborated to install  the Prachomklao VHF radar  station 
at the KMITL Chumphon campus (Geographic: 10.72° N, 
99.73° E and Geomagnetic: 1.33° N) in Thailand on Jan-
uary 17, 2020. This radar station  was set up to monitor 

Fig. 3 VHF radar system for monitoring plasma bubbles at Chumphon Station, Thailand

Table 1 Specification of the VHF radar of Chumphon station, Thailand

Location 10.72° N, 99.37° E
(Geomagnetic latitude: 1.33° N)

Operating frequency 39.65 MHz

Antenna 18 three-element Yagi antennas

Gain 22 dBi

Azimuth of beam direction (s) − 60, − 48, − 36, − 24, − 12, 0, 12, 24, 36, 48, 60

Inter-pulse period (IPP) 6 ms

Transmitted pulse 32 Ms × 8-bit complementary code

Beam steering Every 2 IPP

Range resolution 4.8 km

Number of coherent integrations 2

Number of FFT coefficients 256

Number of incoherent integrations 1

Range 140–860 km

Number of ranges 150

Observation time 33.792 s
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plasma bubbles that  freshly form in the ionosphere. As 
depicted in Fig. 3, the VHF radar station includes three-
element 18 yagi antennas that are arranged from east 
to west with a distance of approximately 5  m between 
each antenna. The radar system transmits VHF frequen-
cies (39.65 MHz) through the atmosphere. The essential 
parameters of the VHF radar system are described in 
Table 1.

Two types of radar images are available: quick look 
(QL) images and range–altitude–time intensity (RATI).

When the radar signal intensity (or power) is plot-
ted against time and altitude, a quick look plot image is 
generated, which can be used to study plasma bubbles. 
The distance between the radar antenna and the reflect-
ing structure is commonly referred to as the range, but 
technically, it indicates the altitude. The time axis repre-
sents the time elapsed since the radar signal was trans-
mitted before it was received by the receiving device. The 
quick look plot image provides a visual representation of 
the data collected by the radar in real-time. The collected 

Fig. 4 Samples of quick look (QL) plot images collected by VHF radar with the x-axis represent Doppler frequency (Hz) and the y-axis represent 
range (kilometers) (a) without plasma bubble (b) with unsure structure [cannot be identified as EPB or due to system errors] (c) with plasma 
bubbles
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data are plotted in a quick look (QL) plot. Figure  4a–c 
shows examples of three types of radar images: non-
plasma bubble, unsure and plasma bubble.

The unsure images in Fig.  4b are those that contain 
objects which cannot be identified as EPB or due to 
system errors. To prepare images for the SVM model 
training, the first step is to crop the image to remove 
all areas where the data repeat over time. The resulting 
image is an RGB image with dimensions of 360 × 360 × 3 
pixels. In this study, a total of 1000 images are used, 
with 700 images utilized as training datasets  and 300 
images as testing datasets. The data classes used in the 
model testing are non-plasma bubbles, unsure, and 
plasma bubbles. As for the image data used for each 
class, they are divided into 350 images for the class 
without plasma bubbles, 350 images for the unsure 
class, and 300 images for the class with plasma bubbles.

Proposed methods
In the proposed methods, we consider the SVM model 
for EPB classification using VHF radar image data. In 
order to reduce the input size and improve the classifica-
tion performances, two feature extraction techniques: the 
SVD and CNN are proposed to use before the SVM. This 
section describes in detail the design of each method of 
the model used in this research.

Support vector machine model
In the research, the SVM model with the RBF and poly-
nomial kernels are designed  as illustrated in Fig.  5. For 
each kernel, two main parameters: C and gamma need 
to be defined to achieve high performance. The param-
eter C in SVM is a hyperparameter that governs the 
tradeoff between maximizing the margin (that is, the dis-
tance between the decision border and the data points 
that are the closest to it) and reducing the classification 
error. The gamma parameter determines the influence 

of each training example on the decision boundary and 
the margin. Gamma is used to regulate the width of the 
Gaussian kernel in support vector machines (SVMs) 
that employ a radial basis function (RBF) as their kernel. 
This kernel is used to compute the similarity between 
training instances. To compare the performance of the 
kernels, we set each kernel using C = {0.01, 1, 10, 100} 
and gamma = {0.01, 1, 10, 100} . The gamma value and 
parameter C for each kernel are optimized using the grid 
search. After the values of C and gamma are achieved, we 
modify the SVM system by adding a feature extracting 
technique: the CNN and SVD.

Proposed combined singular value decomposition  
and support vector machine (SVD‑SVM)
The SVD can be used with SVM to improve the perfor-
mance of classification tasks by reducing the dimension-
ality of the input data while retaining the most important 
features.  The architecture of the proposed SVD-SVM 
model is presented in Fig.  6. In the experiment, we 
employ four components with singular values with vari-
ous numbers determining by a discrete approach. In both 
training and testing processes for the proposed model, we 
use the SVD technique to extract features from images 
before sending to the SVM system for classification of the 
presence or absence of EPB in the images. The SVD fea-
ture extraction converts the image into a matrix by divid-
ing the image into a color matrix into a grayscale image 
by averaging the RGB channel. The grayscale image is a 
matrix where each element represents a pixel intensity 
value. The size of the matrix will be the height and width 
of the input image. In feature extracting process, the SVD 
process input image matrix to generate its principal com-
ponents (singular values) and vectors of its outputs (sin-
gular vectors). The principal components selectively store 
only the essential parts of the singular values for use in 
further processes. In general, higher values are collected 
as input data for the next classification stage without 

Fig. 5 The architecture of the SVM model
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significant loss, they represent more important features 
from the image. After feature extraction from the SVD is 
completed, the acquired features are used in the SVM to 
classify or recognize that object in both training and test-
ing processes. In the model, we consider the size of sin-
gular values, N = {5, 100, 200, 360} for SVD and we set 
each kernels using C = {0.01, 1, 10, 100} for SVM. 

Proposed combined convolutional neural network 
and support vector machine (CNN‑SVM)
The combination of SVMs and CNNs is a powerful 
technique that leverages the strengths of both models. 
The CNN is used to extract the distinctive features of 
the data, where the number of convolution layers, the 
size of the filter, and the activation function are deter-
mined. In this research, we experiment with three filter 
sizes—3× 3 , 5× 5 , and 7× 7 , and use the ReLU activa-
tion function. Additionally, max pooling is used in the 
pooling layer to further reduce the dimensionality of the 
features extracted by the CNN. The output of the CNN 
is then passed to the SVM model, where the model is 
trained to classify the images. Two kernels are used in 

this research—the radial basis function (RBF) kernel and 
the polynomial kernel. The parameters C and gamma are 
then set for each kernel, with the degree of the polyno-
mial kernel also being determined. This ensures that the 
SVM model is optimized to achieve the best possible per-
formance. Using CNNs for  features  extraction helps to 
reduce the amount of training data required, while also 
improving the overall performance of the SVM model. 
This is because the CNN can identify the most impor-
tant features of the images, which are then used by the 
SVM to classify the images more accurately. To further 
optimize the performance of the model, a grid search is 
performed to identify the best values of C and gamma for 
each kernel, which can lead to significant improvements 
in the accuracy of the model. In this study, we use a filter 
size of 3× 3 . To preserve the essential image features, we 
employ max pooling to reduce the size of the image from 
the convolution layer. We set the window stride for the 
filter to 1× 1 across all convolution layers. Secondly, we 
train the data from the last convolution layer using SVM. 
The CNN and SVM network architectures are presented 
in Fig. 7.

Fig. 6 The architecture of the proposed SVD-SVM model

Input
360x360x3 Pooling Layer Pooling Layer

Flatten OutputSupport V
ector M

achine

Convolution 
Layer 1

Non-Plasma = 0

Unsure  = 1

Plasma Bubble = 2

……

Convolution + 
Activation Function

Convolution + 
Activation Function

Convolution 
Layer n

Fig. 7 The architecture of the proposed CNN-SVM model
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In this paper, the prediction accuracy of the proposed 
models is computed using the following equation:

Receiver operating characteristic (ROC) illustrates 
the proportional relationship between correct and 
incorrect predictions. This is an additional measure of 
the efficacy of the predictive model. The equation for 
the graph where the vertical axis is the true positive 
rate (TPR) or recall value and the horizontal axis is the 
false positive rate (FPR) value is as follows:

Here, there terms are defined as follows:

1. True negative (TN) represents the situation in which 
a prediction is negative, and the actual outcome is 
also negative.

2. False negative (FN) represents the situation in which 
the prediction is negative, and the actual outcome is 
positive.

3. False positive (FP) represents the situation in which 
the predicted is positive, and the actual outcome is 
negative.

4. True positive (TP) represents the situation in which 
the prediction is positive and the actual outcome is 
positive.

The values of TN, TP, FN, and FP are calculated based on 
the actual outcome and the prediction as illustrated in the 
confusion matrix in Fig. 8.

Results and discussion
Based on data from the Prachomklao VHF radar  station 
at  the  KMITL Chumphon campus, Thailand, we select 
the observation images from October 1, 2020, to Octo-
ber 15, 2020. Out of 1000 images, 700 images are used 
as the training dataset, representing 70% of the total, and 
300 images are used for testing the model, representing 
the remaining 30 percent. Three data classes are labeled: 
Class 1 (non-plasma bubbles), Class 2 (unsure), and Class 3 
(plasma bubbles). Traditionally, the SVM is used for binary 

(7)Accuracy =
TP+ TN

TP+ TN + FP+ FN
.

(8)TPR =
TP

TP+ FN
,

(9)FPR =
FP

FP+ TN
.

classification, however,  to extend the use to 3 classes, we 
utilize the one-versus-all (OvA) or one-versus-rest (OvR) 
technique, which enables SVMs to manage multi-class clas-
sification tasks. This approach divides the multi-class prob-
lem into multiple binary classification problems, where 
each class is identified against a group of other classes. By 
training separate classifiers for each class, this technique 
is more efficient and enhances accuracy across multi-class 
scenarios. Below are the findings from each experimental 
method. Three types of classification models are studied 
including the SVM only, the SVD-SVM and the CNN-SVM 
models.

SVM classification model
In this model, the raw VHF images are fed directly to the 
SVM model to be considered as a baseline method. We use 
two kernels, RBF kernel and polynomial kernel, for plasma 
bubble classification. Table 2 shows the classification accu-
racies of the SVM using RBF kernel with various sets of C 
and gamma values. The maximum accuracy of 86.67 per-
cent is achieved when the parameter C is set to 10 and 100 
and the gamma equals 0.01. It can be seen that the accu-
racy performances of the models  using C = 10 and C = 100 
are the same, but the processing time of the model with C 
= 10 was faster than that using C = 100.

The degree of the polynomial kernel plays a crucial role 
in determining the degree of the polynomial function uti-
lized for mapping the input features to a higher-dimen-
sional feature space. In this study, we set the degree to 
d = {0.01, 1, 10, 100} and utilize the same set of C param-
eters for the polynomial kernel as presented in Table  3. 
From the experimental results, when setting the C 

Fig. 8 An example of a confusion matrix table

Table 2 The accuracy of SVM system with RBF kernel with 
various gamma values

Parameter Accuracy (percent)

C = 0.01 C = 1 C = 10 C = 100

Gamma = 0.01 85.89 86.52 86.67 86.67

Gamma = 1 85.64 85.73 85.81 85.91

Gamma = 10 85.12 85.33 85.56 85.79

Gamma = 100 84.92 85.11 85.47 85.47

Table 3 The accuracy of SVM system with polynomial kernel at 
various degrees

Parameter Accuracy (percent)

C = 0.01 C = 1 C = 10 C = 100

Degree = 0.01 81.96 81.74 80.53 80.88

Degree = 1 82.33 82.15 82.07 81.96

Degree = 10 82.14 82.02 81.91 81.82

Degree = 100 82.02 81.94 81.73 81.64
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parameter with the degree value, it shows that when the 
C parameter is 0.01 and the degree is 1, the model has the 
highest accuracy of 82.33 percent because lower degree 
values create easier decision boundaries and less prone to 
overfitting.

SVD‑SVM classification model
Singular value decomposition (SVD) with support vector 
machines (SVMs) can be especially advantageous when 
dealing with high-dimensional data that possess a large 
number of features. In such scenarios, traditional SVMs 
may encounter issues of overfitting and poor generaliza-
tion performance. However, by utilizing SVD to reduce 
the dimensionality of the data and extract the most sig-
nificant features. In Fig. 9, we can see that as more sin-
gular values are included in the image matrix, the clarity 
of the image improves. The original image has approxi-
mately 360 non-zero singular values, but we are able to 
see a close resemblance to the original image using only 
200 singular values.

The experimental results for separating different image 
components are presented in Table  4. In this study, we 
also use two kernels: the RBF kernel and the Polynomial 
kernel. The RBF kernel is assigned the values of C and 

gamma parameters as 10 and 0.1, respectively, while the 
Polynomial kernel uses the degree and C parameter val-
ues of 1 and 0.01, respectively. The results are presented 
in Table 4 where N represents the number of singular val-
ues used for classification.

Based on the results in Table  4, the processing time 
required for the models varies depending on the image 
decomposition techniques used, while the improvement 
in accuracy is not significant after the size of components 
(N)  is increased more. The model using RBF kernel with 
N = 360 achieves highest accuracy, as  we can see in the 
Table 4. The SVD-SVM model is capable of adjusting the 
number of components used for processing by utilizing 
the singular values obtained from SVD.

Fig. 9 The image quality with different number of components

Table 4 The accuracy of the SVD-SVM system with each kernel

The values in bold signify the highest accuracy values achieved by using the 
respective kernels

Kernels Accuracy (percent)

N = 5 N = 100 N = 200 N = 360

RBF kernel 86.94 87.58 87.79 88.33
Polynomial kernel 83.32 84.51 84.73 85.00
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CNN‑SVM classification model
By combining the unique CNN method to extract image 
features and training with SVM, we achieve higher accu-
racy and improve categorization of plasma bubbles. Our 
findings indicate that models based on the CNN-SVM 
combination outperform those based solely on the SVM 
technique.

In this work, we investigate the impact of filter sizes 
( 3× 3 , 5× 5 , and 7× 7 ) and the number of feature 
extraction layers on the performances of the combined 
SVM-CNN model. We employe a 2× 2 dimension for the 
pooling layer, and the SVM is trained on the final layer of 
image features. The RBF and polynomial kernels are uti-
lized in the SVM model. A convolution layer consists of 
one to four layers, with a filter stride size of 1× 1 . Finally, 
a 2× 2 max pooling layer is used to fine-tune the proper-
ties of the extracted image features.

Tables 5 and 6 present the experimental results of the 
CNN-SVM model using the RBF and polynomial kernels, 
with different filter sizes and number of convolution lay-
ers. Based on the results, when the filter size was set to 
3× 3 and the number of convolution layers was set to 7, 
and the model using the RBF kernel achieves the highest 
accuracy of 93.67%. Similarly, for the polynomial kernel 
model with the same filter size and number of the convo-
lution layers, the results show that the model achieves the 
highest accuracy of 92.33%.

While Tables 6 and 7 present results based on a maximum 
of 7 convolution layers in CNN model, we explore mod-
els with more layers. However, we observe only a marginal 
improvement in accuracy at the expense of significantly 
increased latency. Specifically, when the number of layers 
is increased to 9, the accuracy of the model improved by 

Table 5 The accuracy of CNN-SVM system (RBF kernel) with 
various filter sizes

The value in bold signifies the highest accuracy value achieved by using the RBF 
kernel

Number of convolutional layers

Filter size 1 3 5 7

3× 3 91.37 92.02 92.64 93.67
5× 5 90.11 90.73 91.08 91.53

7× 7 89.33 89.92 90.24 90.67

Table 6 The accuracy of CNN-SVM system (polynomial kernel) 
with various filter sizes

The value in bold signifies the highest accuracy value achieved by using the 
Polynomial kernel

Number of convolutional layers

Filter size 1 3 5 7

3× 3 90.76 91.10 91.88 92.33
5× 5 89.68 89.93 90.24 90.76

7× 7 88.02 88.64 88.95 89.13

Table 7 Accuracy of each model (after testing) with different 
kernels

Kernels Models

SVM% SVD‑SVM% CNN‑SVM%

RBF kernel
(C = 10, gamma = 0.01)

86.67 88.33 93.67

Polynomial kernel
(C = 0.01, degree = 1)

82.33 85.00 92.33

Fig. 10 Performance comparison of the proposed models using different kernels
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approximately 0.02 to 0.05 percent. Therefore, we determine 
to use  7 convolution layers for our models.

Performance comparison of the proposed EPB 
classification models
Finally, we analyze the performances of all three models 
as shown in Table  7. According to the table, the CNN-
SVM model provides the highest accuracy of 93.67% 
when using the RBF kernel. The accuracies of all model 
with different kernels are compared in Fig.  10.  The 
parameters of each kernel are similar to those used in the 
previous section.

Figures 11, 12, 13 display the confusion matrix results 
obtained from each proposed model. The classes are 
referred to as follows: class 0 (non-plasma bubbles), class 
1 (unsure), and class 2 (plasma bubble). The CNN-SVM 
model yields a higher accuracy at 28.67% compared to 
the SVM model and the SVD-SVM model, respectively.

Figures 14, 15, 16 display the receiver operating char-
acteristic (ROC) curves for each model, each point on 
the graph is a pair of true positive rate (TPR) and false 

Fig. 11 Confusion matrix of the SVM model (RBF kernel)

Fig. 12 Confusion matrix of the SVD-SVM model (RBF kernel)

Fig. 13 Confusion matrix of the CNN-SVM

Fig. 14 ROC curve for the SVM model (RBF kernel)

Fig.15 ROC curve for the SVD-SVM model (RBF kernel)
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positive rate (FPR) values for a specific threshold point. 
Therefore, the area under the ROC curve (AUC-ROC) 
represents the differences in plasma bubble classification. 
The results indicate that the CNN-SVM model outper-
forms the SVM model in terms of AUC-ROC for all three 
classes. Specifically, the CNN-SVM model achieved a 1% 
increase in AUC-ROC for class 0, a 14% increase for class 
1, and a 12% increase for class 2, compared to the SVM 
model. AUC-ROC is a commonly used metric for evalu-
ating binary classification models, while SVM and CNN 
are two popular machine learning models for classifica-
tion tasks.

Conclusions
In this work, we propose two classification models 
using machine learning techniques to identify the pres-
ence or absence of EPBs in quick look (QL) plot images 
from the Chumphon VHF radar station. The models are 
developed with two separate approaches: a combined 
CNN and SVM classification technique, and a com-
bined SVD and SVM techniques. By using SVD and 
CNN, the models effectively extract import features, 
resulting to a reduction in input data size for SVM. 
This reduction in data size not only accelerates the 
training and testing time of the model, but also main-
taines a high level of accuracy in detecting the presence 
of plasma bubble in VHF radar’s QL plot images. Our 
CNN models, incorporating 7 convolutional layers, and 
SVD with 360 singular values, demonstrated substantial 
performance improvements. The SVM alone model is 
also considered as a baseline method. The experimen-
tal results show the outperformance of the CNN-SVM 
models over the other two approaches. Specifically, 
the combined CNN-SVM model, using the RBF kernel, 

achieves the highest accuracy of 93.08%, while the 
model using the polynomial kernel achieved an accu-
racy of 92.14%. On the other hand, the combined 
SVD-SVM models yield the accuracies of 88.37% while 
requiring less processing time. Therefore, the proposed 
models can be used for real-time detection and classi-
fication of EPBs, which is crucial for the space weather 
community. In future works, we will explore the use of 
other AI techniques for EPB characterization.
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