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Abstract 

Earth rotation parameters (ERPs) are essential for transforming between the celestial and terrestrial reference frames, 
and for high-precision space navigation and positioning. Among the ERPs, polar motion (PM) is a critical parameter 
for analyzing and understanding the dynamic interaction between the solid Earth, atmosphere, ocean, and other geo-
physical fluids. Traditional methods for predicting the change in ERPs rely heavily on linear models, such as the least 
squares (LS) and the autoregressive (AR) model (LS + AR). However, variations in ERP partly reflect non-linear effects 
in the Earth system, such that the predictive accuracy of linear models is not always optimal. In this paper, long 
short-term memory (LSTM), a non-linear neural network, is employed to improve the prediction of ERPs. Polar motion 
prediction experiments in this study are conducted using the LSTM model and a hybrid method LS + LSTM model 
based on the IERS EOP14C04 time series. Compared with Bulletin A, the PMX and PMY prediction accuracy can reach 
a maximum of 33.7% and 31.9%, respectively, with the LS + LSTM model. The experimental results show that the pro-
posed hybrid model displays a better performance in mid- and long-term (120–365 days) prediction of polar motion.
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Graphical Abstract

Introduction
Due to the rapid development of space technology, the 
accuracy of Earth Orientation Parameter (EOP) esti-
mates dramatically improved in the 1990s (Schuh et  al. 
2002) and has remained at a high level ever since. The 
EOPs consist of precession–nutation, polar motion (PM), 
the difference between Universal Time (UT1) and Coor-
dinated Universal Time (UTC), that is, UT1-UTC, and 
Length of Day (LOD) (Petit and Luzum 2010). Earth 
Rotation Parameters (ERPs) comprise the PM (including 
PMX and PMY), UT1-UTC, and LOD. The instantaneous 
movement of the Earth’s rotation axis with respect to the 
terrestrial reference frame is described by the PM. As for 
PM, a major complication is that it is caused by partially 
unpredictable mass redistributions on the surface and in 
the interior of the Earth (Gross 2007; Dobslaw et al. 2010; 
Sun et al. 2019; Börger et al. 2023). Modern space naviga-
tion and deep space exploration are increasingly required 
for accurate real-time prediction of ERPs. Given the 
complicated data processing of modern geodesic tech-
niques, such as Global Positioning System (GPS) tech-
nology, the acquisition of ERP results must be delayed 
by 15–20 h. Obtaining ERPs requires several days for the 
Very Long Baseline Interferometry (VLBI) and Satellite 
Laser Ranging (SLR) technologies. These factors make it 

challenging to acquire real-time ERPs, emphasizing the 
need for accurate predictions (Zhang et al. 2012). Several 
national and international services publish predicted val-
ues of EOPs, such as the International Earth Rotation and 
Reference Systems Service (IERS) Rapid Service/Predic-
tion Center (RS/PC), operated by the US Naval Obser-
vatory (USNO) (Guo et  al. 2013), and published in the 
IERS Bulletin A files, for a year into the future in the daily 
interval, or the EOP service of the Institute of Applied 
Astronomy of Russian Academy of Sciences (IAA RAS) 
(Suvorkin et  al. 2015). The products provided by these 
agencies comprise estimates for PM, UT1-UTC, LOD, 
and other parameters, usually for a year into the future at 
daily sampling.

The polar motion includes a regular deterministic and 
an irregular stochastic component. The deterministic 
part consists of the long-term trend, Chandler wobbles 
(CW) (Chandler 1981; Zharkov and Molodensky 1996), 
Annual wobbles (AW), and Semi-Annual wobbles (SAW) 
(Wang et  al. 2016; Gross 2000). Chandler Wobble is a 
resonant rotational mode of the Earth that decays freely 
due to the viscoelastic nature of the Earth. Studies have 
shown that CW will freely decay within 68 years to the 
minimum rotational energy state without excitation. 
It is generally believed that the oscillation period and 
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amplitude of CW vary over time, with the period fluctu-
ating between 1.13 and 1.20 years (Schuh et al. 2001). The 
annual oscillation of the pole curve includes both pro-
grade and retrograde components. The intensity of the 
prograde part is 10 times that of the retrograde part, and 
there is a significant change in the period of the forward 
annual oscillation of the PM, which oscillates between 
356 and 376 days (Joachim 2004). Considering the char-
acteristics of secular drift, CW, and AW, scholars have 
conducted extensive studies and proposed various meth-
ods for predicting the ERPs. In General, these methods 
fall into linear and non-linear models. Kalman Filtering 
(Babcock and Wilkins 1989), Least Squares (LS) extrap-
olation, fuzzy interface systems (Akyilmaz and Kutterer 
2004), autoregression models (AR) (Sun and Xu 2012), 
autocovariance models (Kosek 2002), and different com-
binations of these methods (Kosek and Popiński 2005; 
Kosek et al. 2004; Kosek et al. 2008) are all linear models. 
Methods such as threshold autoregression models, arti-
ficial neural networks (Liao et al. 2012; Egger 1992), and 
fuzzy reasoning are non-linear models.

More hybrid and machine learning methods have 
been introduced in recent years for predicting ERP vari-
ations. The rapid expansion in computing power and 
data volume has made applying deep learning in geodesy 
increasingly promising. In particular, the long short-term 
memory (LSTM) network (Hochreiter and Schmidhu-
ber 1997), one of the most popular forms of recurrent 
neural networks (RNNs), is advantageous for geodetic 
time series prediction. The LSTM network can capture 
the non-linear structure between different time epochs 
in the time series due to the unique structure of its cells 
(Gers et al. 2000; Graves and Schmidhuber 2005). Some 
researchers have used the LSTM model in predicting 
the LOD (Gou et al. 2021), which might also be suitable 
for PM prediction problems. This study investigates the 
potential of utilizing LSTM combined with traditional 
methods for predicting PM. The method proposed is 
novel in that the non-linear part of PM is not predicted 
by the linear method AR model but through the deep 
learning method LSTM model.

This paper is structured as follows: In the second sec-
tion, we describe the LSTM and LS + AR algorithms. Sec-
tion three introduces the dataset and processing strategy, 
including the data used in each experiment, the ampli-
tude variation and characteristics of AW, SAW, and CW 
in PM through the Fast Fourier Transform (FFT) spec-
trum analysis, and the detailed PM prediction process by 
LSTM, LS + AR, and LS + LSTM model. Next, we present 
different models to estimate PM variability, including 
LS + AR, LSTM, and LS + LSTM, all of which draw on 
IERS EOP 14C04 data from 2011 to the end of 2020. At 
the same time, Bulletin A from the IERS RS/PC is used to 

compare the prediction accuracy with the results derived 
in this paper. A summary of the findings is given in the 
last section.

Materials and methods
LSTM prediction model
Introduction of the general concept of LSTM
LSTM is now widely used and has proven to perform well 
on various problems such as handwriting recognition, 
speech recognition, and time series prediction (Schmid-
huber 2015; Alex et  al. 2018). However, a neural archi-
tecture would not be widely utilized in practice without 
a solid theoretical foundation. Greff et al. (2017) recently 
reviewed several LSTM variants and their performances 
relative to the so-called vanilla model (Greff et al. 2017). 
The variant LSTM is an improved model based on the 
original LSTM (Hochreiter and Schmidhuber 1997; Gers 
and Schmidhuber 2000). The main change of the variant 
LSTM model compared to the original LSTM model is 
the addition of cell state information to the inputs of the 
three control gates. Unlike feedforward neural networks, 
the RNNs have a cycle function, which can take the acti-
vation in the previous steps as the network’s input and 
play a decisive role in the current input. However, train-
ing recurrent or very deep neural networks is challenging 
because they frequently suffer from exploding and van-
ishing gradient problems (Hochreiter 1991; Hochreiter 
et al. 2001). To solve the problems mentioned above, the 
LSTM architecture was developed to address this defi-
ciency and the learning long-term dependencies. Figure 1 
depicts the LSTM network structure, which is detailed in 
Appendix A.

LSTM training results analysis
In the LSTM network training, the hidden layers are set 
to 2 and the number of LSTM cells per hidden layer is 50. 
Time steps are set to 365 and training iterations are set to 

Fig. 1 The architecture of LSTM with a forget gate
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1000. The learning efficient dropout is 0.1. The Savitzky–
Golay (SG) smoothing filter is used in the experiments 
of this paper. The initial learning rate is set to 0.1 and 
the learn rate drop factor is 0.2 (Greff et  al. 2017; Ren 
et al. 2020). The gradient threshold is set to 1 (Din et al. 

2019). Other parameter settings are listed in Appendix A, 
Table 4. Figure 2 shows the LSTM network training based 
on the PM time series. Figure 2a and b indicates that the 
correlation between the original and output sequences 
of PMX and PMY is 0.99982 and 0.99987, respectively. 

Fig. 2 Prediction values of the PMX and PMY. a, b Are the LSTM network training, PMX and PMY raw data in the blue line and outputs in the red 
line, c, d are the errors, e, f are the error histogram of PM from 2011 to 2020
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Figure 2c and d shows that the Root Mean Square Error 
(RMSE) of PMX and PMY is 1.7916 mas and 1.6128 mas, 
respectively. Figure 2e and f shows that the Mean and the 
Standard Deviation (STD) of PMX and PMY are − 0.1682 
mas and 0.3365 mas, and 1.7840 mas and 1.5776 mas, 
respectively.

LS + AR prediction model
LS model
We use the following model to fit the trend and periodic 
terms of EOP, whose parameters can be estimated using 
the least squares method. The residuals are then analyzed 
by the AR and other models. The least squares model can 
be described as

where A is the constant, B is the trend term parameter 
in the model, C1 and C2 are the SAW parameters, D1 
and D2 are the AW parameters, and E1 and E2 are the 
CW parameters. The fitting model calculates PSA, PA, 
and PC in years, representing the SAW, AW, and CW, 
respectively.

We additionally conducted an FFT analysis of the EOP 
14C04 series. From Fig. 3a and b, it can be seen that CW 
and AW dominate the PM spectrum, manifested by 
cusps of power between 413 to 439 days (CW) and 356 to 
376 days (AW). These values are relatively consistent with 
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estimates given elsewhere (Mccarthy and Luzum 1991; 
Schuh et  al. 2001; Joachim 2004). In our model (Eq.  1), 
the AW period is 365.25 days, CW is 434 days and SAW 
is 182.62 days. ω is the random error, t is the UTC of the 
series, and the unit is converted into years when LS fit-
ting. Similarly, the meaning of each corresponding param-
eter table in the PMX series is identical to that of the PMY 
series.

AR model
AR(p) model is the description of the relationship between 
a random series zt (t = 1, 2, …, N) before time t and the cur-
rent time. Its expression can be written as follows:

where ø1,ø2,. . . , øp represent the autoregressive coef-
ficients obtained by solving the Yule–Walker equations 
using the Levinson–Durbin recursion (Brockwell and 
Davis 1997), ωt is the white noise with zero means, and p 
stands for the model order. The above equation denoted 
by AR(p) is the AR model of the order p , and how to 
determine the order p is crucial. Usually, there are three 
methods for the determination of p , Akaike’s final pre-
diction error (FPE) criterion, the information criterion, 
and the delivery function criterion. In this paper, the FPE 
criterion is adopted to determine the order p and corre-
sponds to the smallest FPE (Akaike 1971):

(2)zt =

p
∑

i=1

øizt−i + ωt ,

(3)FPEP = Pp(N + p+ 1)/(N − p− 1),

(a) Amplitude spectrum (b) Amplitude spectrum of the PMY
Fig. 3 Amplitude spectrum of the two components of polar motion (PMX in red, PMY in blue) as deduced from FFT of the respective time series. 
Units are [mas]
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The mean absolute error (MAE) is utilized to evaluate 
the prediction accuracy. It can be expressed as follows:

where Pi represents the predicted value of i-th predic-
tion, Xi stands for the corresponding observation value, 
n is the total prediction number, and MAEj is the MAE 
at span j.

Data description and processing strategy
Data description
In particular, we use the PM time series from IERS EOP 
14C04 with daily sampling interval is available at https:// 
hpiers. obspm. fr/ eoppc/ eop/ eopc04/. In this study, we 
use the PM series from January 8, 2011 to December 31, 
2021. The results will be compared to Bulletin A (558 
files) available at https:// www. iers. org/ IERS/ EN/ DataP 
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roduc ts/ Earth Orien tatio nData/ eop. html, for the same 
period of time as IERS EOP 14C04. The LSTM network 
training is based on the PM time series from January 1, 
2011 to December 31, 2020.

PM prediction processing strategy
Figure 4 depicts a schematic representation of the meth-
odology adopted for predicting PM with various mod-
els. The observed PM can be divided into deterministic 
and stochastic components. The known component is 
referred to as a priori model, consisting of the long-term 
trend, CW, AW, and SAW. In this study, the LS + AR 
model (first method) is applied to forecast PMX and 
PMY and compared to results based on the LS + LSTM 
(second method) and LSTM models (third method). Fig-
ure  4 describes the respective processing schemes. For 
the first two methods, training patterns are derived from 
the residuals after subtracting the a priori model. These 
patterns are used for training the LSTM. The predicted 
residuals are then added to the a priori model to obtain 
the final predicted values of the PMX and PMY. The third 
method for predicting PM uses the LSTM model directly, 
relying on the IERS EOP14C04 time series.

Fig. 4 Flowchart of the LS + AR, LS + LSTM, and LSTM approaches for PM prediction

https://hpiers.obspm.fr/eoppc/eop/eopc04/
https://hpiers.obspm.fr/eoppc/eop/eopc04/
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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Results and discussion
PM prediction using the LS + AR model
We initially preprocess the PM series using the LS model 
and deduce residuals (that is, the stochastic components) 
by subtracting the LS analysis results from the origi-
nal pole coordinates. Figure  5a shows the PM residual 
results (purple line) derived from the IERS EOP 14C04 
from 2011 to 2020. The residuals of the PMX and PMY 
are within ±0.08 arcsecond (as). Due to the nature of the 
LS fitting model, the fluctuations at the start and end 
of the time series are somewhat larger compared to the 
middle part. Figure  5b depicts the first-order difference 
of the residual sequence (brown line) for PMX and PMY. 
Most of the residual values and the first difference values 
are within ±0.1 arcseconds (as) and ±2.0 milliarcseconds 
(mas), respectively.

The evaluation of the Autoregressive Integrated Mov-
ing Average (ARIMA) model type is essential. When 

p = 0 , the ARIMA(p, q) (autoregressive integrated mov-
ing average) model can be expressed as MA(q) , i.e., q 
order moving average model. When q = 0 , the model 
can be described as AR(p) , i.e., a p-order autoregressive 
model (Box et al. 1976). For the PM time series, Table 1 
illustrates the criteria for which model can be evalu-
ated according to the autocorrelation and partial corre-
lation functions of the time series. Figure  6 depicts the 

(b) First-order difference series of PM residuals series

(a) Residual series of PMX and PMY

Fig. 5 Residual series (purple line) of the LS fitting model and the first-order difference series (brown line) of the residuals from 2011 to 2020

Table 1 Judgment criterion of the ARIMA model

Autocorrelation function Partial 
autocorrelation 
function

Strategy

Tails off to zero Truncation AR(p)

Truncation Tails off to zero MA(q)

Tails off to zero Tails off to zero ARIMA(p, q)
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subsequent calculation of the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) for 
the first-order differential of residuals time series with a 
delay of 1 to 40 days. The results indicate that the auto-
correlation function of the first-order difference sequence 
of the residual error is tailing, and the partial correlation 
function is truncated, allowing the AR(p) model to be 
used for prediction, i.e., q = 0 (Schaffer et  al. 2021). In 
this research, the FPE is used to determine order p, and 
this method is described in Eqs. (3) and (4). The optimal 
order p for the AR model, as determined by the final pre-
diction error criterion, is set to 50.

In this experiment, we extrapolate the deterministic 
part of 2021 (365  days) using the LS model, based on 
the least squares fitting series of the IERS EOP14C04 
from January 1, 2011 to December 31, 2020 (10 years). 
Figure 7 shows the LS model time series (red line) and 
LS extrapolation time series (blue line) of PM. The 
experimental purpose is to use the LS + AR model 
for PM prediction. The final prediction results of the 
LS + AR model are the sum of the LS extrapolation 
using the determined part and the prediction results of 
the AR model based on the residual sequence.

Fig. 6 The ACF and PACF of first-order differential of PM residuals time series for lags from 1 to 40 days. All results in units of [mas]

Fig. 7 The LS fitting results of the PMX and PMY (red line) between 2011 and 2020, and the LS extrapolation of PMX and PMY (blue line) 
in the future 365 days of 2021. All outcomes are given in units of [as]
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PM prediction using the LSTM model
Figure 8 displays the PM prediction based on the IERS 
EOP14C04 time series (blue line) utilizing the LSTM 
model. The green line represents the prediction out-
comes for 2021 (365 days). It can be seen that the pre-
diction results of PMX and PMY based on the LSTM 
model for 365 days in 2021 are consistent with the over-
all trend of PMX and PMY time series from the IERS 
EOP 14C04. Most PMX prediction values fall between 
0.15 as and 0.21 as and the PMY prediction values are 
between 0.28 as and 0.42 as.

PM prediction using the LS + LSTM model
To investigate the contribution of the LS + LSTM model 
in PM prediction, LSTM is applied to forecast the resid-
ual part in 2021, using the residuals’ basic time series. 
Figure 9 presents the 2021 residual values (blue line) pre-
diction from the LSTM model. The final PM prediction 
using the LS + LSTM model is the total results of the LS 
extrapolation from the LS model and the residuals deter-
mined by the LSTM model.

Figure 10a and b depicts the final prediction of the PM 
with different methods, including the LS + AR, LSTM, 

Fig. 8 The PM prediction results (green line) from the LSTM model in 2021, based on the PMX and PMY observation (blue line) from IERS EOP14C04 
between 2011 and 2020. All results in units of [as]

Fig. 9 Residuals of PM (red line) from 2011 to 2020, and the residual prediction results (blue line) of the PMX and PMY based on the LSTM model 
in 2021. All results are given in units [as]
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and LS + LSTM models. In addition, the forecast results 
of Bulletin A in 2021 are included (purple line). The 
IERS EOP14C04 time series is considered a benchmark 
for comparing the estimated outcomes of various tech-
niques. In terms of PM prediction, the results predicted 
by the LS + LSTM model (green line) in Fig.  10c and d 
are the closest to the IERS EOP14C04 time series (red) 
over the mid- and long-term prediction. Although the 
improvement is marginal, the findings predicted by the 
LS + LSTM model are very close to or better than Bul-
letin A in the mid- and long-term prediction of PMX, 
and it also can be seen that the PMX prediction accu-
racy from the LSTM model is higher than that from the 

LS + AR model in the mid- and long term. For PMX, the 
RMSE of the results is 0.035 as, 0.031 as, 0.018 as, and 
0.030 as for LS + AR, LSTM, LS + LSTM, and Bulletin 
A, respectively. For PMY, the RMS of the results is 0.038 
as, 0.035 as, 0.015 as, and 0.035 as for LS + AR, LSTM, 
LS + LSTM, and Bulletin A, respectively.

Evaluating the PM prediction results
Based on the previous analysis (Fig. 10), the LS + LSTM 
model prediction accuracy is higher than other models. 
To assess the accuracy of this method in a more extended 
way, we compare the PM prediction in different peri-
ods using the LS + LSTM model, LS + AR model, and 

Fig. 10 The PMX and PMY predictions from different models, i.e., LS + AR, LSTM, LS + LSTM, and Bulletin A model, are shown in a and b panel, 
respectively, and the IERS EOP 14C04 as a reference. Panels c and d show the 2021 forecasts as separate figures. All results in units of [as]
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Fig. 11 Prediction values of PMX and PMY with different models, including the LS + AR, LSTM, and LS + LSTM, respectively. All results in units of [as]. 
IERS EOP 14C04 from 2011 to 2020 is shown as reference for comparisons
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LSTM model as shown in Fig. 11. The prediction span is 
365 days with a ten-year basic sequence, and the statis-
tical period is from 2011 to 2020. The model proposed 
in this experiment is based on the IERS EOP 14C04 for 
PM prediction. In Fig. 11 the orange, brown, green, and 
purple lines represent the LS + AR, LSTM, LS + LSTM, 
and Bulletin A prediction of PM, respectively. We also 
compare the PM prediction results from the LS + LSTM 
model to the IERS EOP 14C04. In the mid- and long-
term prediction of the PM, the prediction results based 
on the LS + LSTM model are closer to the observed IERS 
EOP 14C04 time series than those based on Bulletin A.

AE of PM prediction with different models
Experiments have demonstrated that the LS + LSTM 
model is superior for predicting PM, especially in the 
mid- and long term. To further explore the advantages 
of the LS + LSTM model in the accuracy of PM predic-
tion, four different cases were designed to predict PM for 
11 years (from 2011 to 2021). In this experiment, the pre-
diction span was 365 days with a weekly sliding window. 
The experiment is divided into four parts, considering 
the following methods:

Case 1: PMX and PMY prediction based on the LS + AR 
model;

Case 2: PMX and PMY prediction based on the LSTM 
model;

Case 3: PMX and PMY prediction based on the 
LS + LSTM model;

Case 4: PMX and PMY prediction from Bulletin A 
achieved from the IERS RS/PC.

The four cases listed above correspond to the LS + AR, 
the LSTM, the LS + LSTM, and the Bulletin A provided 
by the IERS, respectively. Authors generally rely on the 
10-year IERS EOP14C04 time series in the PM predic-
tion as the basic series (Xu et  al. 2012; Xu and Zhou 
2015; Kenyon et al. 2012). In the following experiments, 
using various methods, we also choose a ten-year base 
sequence to predict the PM for the next 365 days.

Figure  12 shows the PM prediction’s absolute errors 
(AE) using four cases. All experimental results take the 
IERS EOP14C04 time series as a reference. It can be seen 
that the accuracy of the four cases (LS + LSTM, LSTM, 
LS + LSTM, and Bulletin A) in 2011–2015 is inferior to 
that in 2016–2021. One potential reason could be the 
2011 earthquake on the Pacific coast of Tōhoku (the 3.11 
Japan earthquake). Based on the data from the Jet Pro-
pulsion Laboratory (JPL) of the National Aeronautics and 
Space Administration (NASA), the 3.11 Japan earthquake 
shifted the Earth’s rotation axis by 25  cm and acceler-
ated the Earth’s rotation rate by 1.8 microseconds (Gross 
2007). Earthquakes not only cause significant changes in 
the Earth’s rotation on the day they occur, but they also 

impact the location changes of surface stations over the 
next 3–5  years, thus affecting ERP monitoring (Souriau 
1986; Bizouard, 2005; Bogusz et  al. 2015). IERS intro-
duced post-seismic deformation (PSD) in 2017 when 
establishing the most recent international terrestrial 
coordinate framework (ITRF2014) to reduce the influ-
ence of earthquakes on ground stations and obtain more 
accurate ERPs data. It is worth noting that ITRF2014 is 
the most recent ITRF solution at the time of the study. 
The IERS EOP14C04 also corrected the PSD model of 
the large earthquake in Japan in March 2011 to precisely 
solve the PM change phenomenon at this stage; hence, 
the PM results at this phase deviated from the previous 
comprehensive trend. However, this deviation was not 
considered when the models described in this study were 
used to predict PM, likely resulting in prediction errors. 
Thus, our preliminary conclusion is that the larger devia-
tions of the prediction results from the observed values 
(EOP 14C04) between 2011 and 2015 are attributable to 
the effects of large earthquakes. To improve the accu-
racy of PM prediction following a major earthquake, fur-
ther PSD model processing of the prediction algorithm 
is required. The results predicted by the LS + LSTM are 
closer to the IERS EOP14C04 series than those by the 
LS + AR, LSTM, and Bulletin A in mid- and long-term 
prediction.

MAE of PM prediction with different models
Figure 13 shows the Mean absolute errors (MAE) of PMX 
and PMY prediction in four cases. Compared to the other 
models, the MAE of the proposed LS + LSTM model 
yields smaller errors in mid- and long-term prediction. 
Since the LS + LSTM model better considers the overall 
characteristics of the base series, it obtains a more accu-
rate long-term trend and long period term than the LS 
model during extrapolation, thus improving the mid- and 
long-term PM prediction accuracy.

As Table 2 reveals, the estimation accuracy of the PM 
is determined using different models, i.e., the LS + AR, 
LSTM, and LS + LSTM models. The MAE of pre-
dicted PM at various periods (1, 5, 10, 15, 20, 30, 45, 90, 
120, 180, 270, 320, 365  days) is listed in Table  2. Com-
bined with the PM prediction accuracy statistics, the 
improvement of LS + LSTM over Bulletin A is clear after 
120 days. The improvement gradually increases with the 
lengthening of the prediction span, reaching a maximum 
of 33.7% and 31.9% in PMX and PMY, respectively. Gen-
erally, the LS + LSTM model has more advantages than 
the LSTM model, the traditional linear prediction model 
(LS + AR model), and Bulletin A in mid- and long-term 
PM prediction.

However, Bulletin A exhibits a smaller MAE in the four 
cases for short-term prediction. Table  2 demonstrates 
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that Bulletin A outperformed the other models regard-
ing short-term prediction, especially the ultra-short 
term (the first ten days in the future). This advantage 
is primarily due to Bulletin A considering the effects of 

atmospheric angular momentum (AAM) and oceanic 
angular momentum (OAM). In addition, the statistical 
results demonstrate that the LSTM model is superior to 

Fig. 12 Absolute errors (AE) of the PMX and PMY prediction from 2011 to 2021, and all outcomes with the unit [as]. All results are based on 10-year 
time series of IERS EOP 14C04, using the LS + AR, LSTM, and LS + LSTM models, respectively. The MAE of Bulletin A relies on the PM prediction, 
coming from the IERS RS/PC
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Fig. 13 Mean absolute errors (MAE) of the PMX and PMY prediction using the four cases, namely, the LS + AR model (blue line), LSTM model (brown 
line), LS + LSTM model (red line), and Bulletin A is indicated by the green line. All results in units of [mas]

Table 2 Mean absolute errors (MAE) of the polar motion (PMX, PMY) prediction [mas] in 2021, using the LS + AR, LSTM, LS + LSTM, and 
Bulletin A time series from IERS, respectively

The improvement represents the prediction accuracy of LS + LSTM relative to Bulletin A

No. PMX PMY

LS + AR LSTM LS + LSTM Bulletin A PCT LS + AR LSTM LS + LSTM Bulletin A PCT

1 0.257 0.676 0.284 0.269 − 5.6% 0.197 0.466 0.204 0.196 − 4.2%

5 1.603 1.898 1.690 1.563 − 8.1% 1.099 1.108 1.129 1.073 − 5.2%

10 3.046 3.289 3.152 2.892 − 9.0% 1.940 1.812 2.009 1.843 − 9.0%

15 4.593 4.531 4.374 3.988 − 9.7% 2.751 2.598 2.729 2.480 − 10.0%

20 5.751 5.793 5.546 5.033 − 10.2% 3.607 3.509 3.386 3.077 − 10.1%

30 7.995 8.362 7.414 6.809 − 12.1% 5.407 5.501 4.876 4.261 − 14.4%

45 11.483 12.561 10.995 9.227 − 19.2% 8.292 8.879 7.137 5.904 − 20.9%

60 14.915 17.281 13.778 11.260 − 22.4% 11.382 12.764 9.426 7.454 − 26.5%

90 21.950 25.895 15.419 14.619 − 5.5% 17.785 21.144 12.868 11.176 − 15.1%

120 27.506 32.397 15.685 16.819 6.7% 23.904 28.571 14.905 15.500 3.8%

180 32.933 35.620 15.904 19.148 16.9% 31.231 35.412 16.424 22.356 26.5%

270 33.364 27.344 15.926 22.318 28.6% 29.096 27.771 17.218 25.066 31.3%

320 36.116 29.332 16.393 24.096 32.0% 30.430 27.190 16.350 23.980 31.8%

365 37.491 33.456 17.086 25.770 33.7% 31.949 30.263 17.100 25.107 31.9%
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the traditional model (LS + AR) in the long-term (270–
365 days) prediction of PM.

Conclusions
Polar motion is a crucial parameter describing the instan-
taneous movement of the Earth’s rotation axis relative to 
the body-fixed reference frame. Among existing predic-
tion models, linear models are often used to predict PM, 
such as the LS + AR model. Here, we have analyzed the PM 
series data from January 8, 2011 to September 11, 2021 by 
different models, including LS + AR, LSTM, LS + LSTM, 
and Bulletin A. The residual series used in this research is 
obtained by removing the long-term trend term and the 
calculated AW, SAW, and CW values. In this paper, based 
on the characteristics of PM and its inherent periodic and 
trend terms, the LSTM prediction model is proposed. To 
verify the advantages of LSTM and its combination with 
LS in PM prediction, the basic sequence length of 10 years 
is selected, which is optimal for the LS + AR model to pre-
dict PM. The experimental findings demonstrated that 
the LS + LSTM model is superior for mid- and long-term 
forecasting of PM. Compared to Bulletin A, published 
by IERS, the LS + LSTM model demonstrates improved 
PMX and PMY prediction accuracy by up to 33.7% and 
31.9%, respectively, and the LSTM model outperforms the 
LS + AR model in the mid- and long term.

The study’s findings rely heavily on the 10-year snip-
pet of PM time series between 2011 and 2021. Future 
research will investigate the relationship between the 
length of the basic time series, the seismic factors, and 
the accuracy of LSTM and LS + LSTM models in predict-
ing PM. The prediction model such as LS + LSTM, based 
on proper base sequence length and seismic factor cor-
rection, will be established to improve the short-term 
PM prediction. In addition, the benefits of combining 
the LSTM with LS and other traditional methods for PM 
short-term prediction need to be further explored.

Appendix
Description of the LSTM training process
LSTM adopts three unique gate designs to avoid gradi-
ent explosion and long-term dependence (Yu et al. 2019). 
Since each cycle uses information from the previous cycle 
and each output state is affected by the previous state, 
the LSTM network can better remember long-term laws 
more effectively and is widely used in time series predic-
tion, such as financial time series prediction (Zhang et al. 
2019), GNSS time series prediction (Wang et  al. 2021), 
and weather forecasting (Karevan and Suykens 2020). A 
vanilla LSTM unit contains a cell, an input gate, an output 
gate, and a forget gate. This forget gate was not initially 
a part of the LSTM network but was proposed by Gers 

et al. (2000). Figure 1 depicts the LSTM network structure 
adopted in this paper. At time t, the first layer network 
comprises two information flows. The information flow 
from Ct−1 to Ct represents the transmission of cell state. 
The entire line linearly interacts with the following infor-
mation flow through three gate control structures.

The gate structure allows information to selectively 
pass through, i.e., determining whether the informa-
tion is removed or added to the cell state from  Ct−1 to 
Ct . That is to say, this part is the screening of information 
input in the gating structure. The σ activation function 
layer and the tanh activation function layer can convert 
the input between (0, 1) and (− 1, 1), generate the weight 
of the input data, and filter the input data. There are three 
gate structures in each layer of the LSTM network to 
control the cell state:

(1) Forget gate
The first step in the LSTM is to decide what infor-

mation will be removed from the cell state. This deci-
sion is made by the σ-layer called the "forget gate layer." 
It looks at ht−1 and xt and outputs a number between 0 
and 1  for each number in the cell state Ct−1.  1  is "com-
pletely keep ht−1 and xt information," while the 0 repre-
sents "completely get rid of ht−1 and xt information." The 
formula of the "forget gate" ft is as follows:

where σ is the activation function, Wf  is the weight, ht−1 
is the recurrent information at time t-1, xt denote the 
input information, and bf  is the bias of the forget gate.

(2) Input gate
One part of the "input gate" linearly combines xt with 

the hidden state ht−1 at the previous time to obtain it 
through σ-layer activation from Eq.  (7) (Wang et  al. 
2021). This part determines which information needs 
to be updated; this is part of the forgetting gate selected 
to be forgotten. In the other part, ht−1 and xt are passed 
through a tanh layer to generate a vector ˜Ct  , which is 
alternatively employed to update the new content. Then 
the two parts are combined to update the state Ct−1 to Ct . 
The expression of the "input gate" is as follows (Hochre-
iter and Schmidhuber 1997; Wang et al. 2021):

cell state equation at time t,

where Ct denotes the cell state of LSTM, tanh is the acti-
vation function, Wi,WC are the weights, * represents 

(6)ft = σ
(

Wf .[ht−1, xt ]+ bf
)

,

(7)it = σ(Wi.[ht−1, xt ]+ bi),

(8)˜Ct = tanh[WC(ht−1, xt)+ bC ],

(9)Ct = ft ∗ Ct−1 + it ∗˜Ct ,
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convolution, bi, bc are the bias of the input gate,˜Ct is the 
cell status update value, and other parameters are con-
sistent with those mentioned above.

(3) Output gate
The "output gate" updates the value of the hidden layer 

output at the current time, i.e., ht , through Eq. (11), is the 
hidden state at time t. LSTM can remember long-term his-
torical information because every cycle uses the informa-
tion Ct and ht−1 of the previous cycle, and each output state 
is affected by the previous state. Especially, the forget gate 
can decide what information will be removed from the cell 
state. The formula of the "output gate" is as follows:

 where ot is the output gate, Wo is the weight associ-
ated with xt , bo is for the bias weight vector, and ht is the 
hidden state. Equations  (6)–(10), Wζ,bξ , ζ ∈

{

f , i, c, o
}

,ξ ∈
{

f , i, c, o
}

 , respectively, represent the output weight 
and offset matrix, which are also parameters to be 
learned in training.

In network training, one should pay attention to possible 
overfitting. It can minimize the loss function by constantly 
adjusting the parameters. For example, when the total 
number of samples is N, the output value Y ∗

i  trained by the 
network and the expected output value Yi can be expressed 
by the mean squared error (MSE) loss function, also known 
as the L2 Loss function. Its basic form is as follows:

LSTM Model training is the process of determining the 
parameters in the model structure. First, the original PM 
time series defines as Fo =

{

f1, f2, . . . , fn
}

 in the input 
layer. The training set and test set can be divided into 
Ftr =

{

f1, f2, . . . , fm
}

 and Fte =
{

fm+1, fm+2, . . . , fm
}

 , satis-
fying the constraint conditions m < n, and m, n ∈ N . Then 
standardize the element ft in the training set using the clas-
sic z-score standardization formula as Eq.  (13) (Liu et  al. 
2019). The x′(t) represents the PM values at t, xmean′ and 
xstd′ are the mean and standard deviation of x′(t) , respec-
tively. The standardized training set can be expressed as

(10)ot = σ(Wo.[ht−1, xt ]+ bo),

(11)ht = ot ∗ tanh(Ct),

(12)Loss =
1

N

N
∑

i=1

(Y ∗
i − Yi)

2.

(13)z(t) =
x′(t)− xmean′

xstd′
,

(14)Ftr ′ =
{

f1′, f , · · · fm′
}

,

In order to adapt to the characteristics of hidden layer 
input, a data segmentation method is applied to Ftr ′ . Set 
the split window length value to L , and the model input 
after the split is

The corresponding theoretical output is

Next, input the X to the hidden layers, which contain L 
isomorphic LSTM cells connected at the front and back 
times. The output of X after passing through the hidden 
layer is represented as

where Cp−1 and Hp−1 represent the state and output of 
the previous LSTM cell, respectively; LSTMforward rep-
resents the forward calculation method of LSTM cells. If 
the cell state vector size is set to Sstate , the sizes of both 
Cp−1 and Hp−1 vectors are both Sstate . It can be seen that 
the hidden layer output P , model input X , and theoretical 
output Y  are two-dimensional arrays with dimensions of 
(m-L, L). The mean square error is selected as the error 
calculation formula, and the loss function of the training 
process can be expressed as

Application of the trained LSTM model
Set the minimum loss function as the optimization goal, 
and given the random seed for network initialization, 
learning efficiency is η, and training steps, apply the Adam 
optimization algorithm to continuously update the net-
work weight to obtain the final hidden side network.

(15)

f
′
t =

(

ft −

n
∑

t=1

ft

n

)

/

√

∑

n

t=1

(

ft −
∑

n

t=1
ft /n

)2

n

1 ≤ t ≤ m, t ∈ N

(16)X = {X1,X2, . . . ,XL},

(17)
Xp =

{

fp′, fp+1′, . . . , fm−L+p−1′
}

1 ≤ p ≤ L; p, L ∈ N.

(18)Y = {Y1,Y2, . . . ,YL},

(19)Yp =

{

f ′p+1, f
′
p+2, . . . , f

′
m−L+p

}

.

(20)P = {P1,P2, . . . ,PL},

(21)Pp = LSTMforward

(

Xp,Cp−1,Hp−1

)

,

(22)Loss =

L(m−L)
∑

i=1

(pi − yi)
2/[L(m− L)].
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This section applies the trained LSTM network 
( LSTM∗

net ) for prediction, and the prediction process 
adopts an iterative method. First, the last row of data in 
theoretical output Y  is

Enter Yf  into LSTM∗
net , the output result can be expressed 

as

(23)Yf =
{

f ′m−L+1, f
′
m−L+2 , . . . f

′
m

}

.

(24)
Pf = LSTM∗

net

(

Yf
)

=
(

pm−L+2,pm−L+3, . . . pm+1

)

.

The predicted value at time m+ 1 is pm+1 . Then, com-
bine the last L− 1 data point of Yf  and Pm+1 into a new row 
of data

Enter Yf+1 into LSTM∗
net ; then the predicted value at 

time m+ 2 is Pm+2 , and so on. The resulting prediction 
order is

Next, by performing z-score de-normalization on Po
(represented as de_zscore), and the formula of Pte is the 
de-normalization as shown in Eq.  (27) (Liu et  al. 2019), 
the final prediction sequence corresponding to the test 
set Fte is obtained as.

Similarly, using each row of X as model input can 
obtain a fitting sequence Ptr corresponding to the train-
ing set Ftr . The training of LSTM-based PM time series 
models, prediction algorithms, and parameter optimiza-
tion of LSTM prediction models are shown in Table 
3, and other parameter settings are shown in Table 4.

(25)Yf =
{

f ′m−L+1, f
′
m−L+2 , . . . f

′
m

}

.

(26)Po = {Pm+1,Pm+2, . . . ,Pn}.

(27)Pte=Po ∗ x
′
std + xmean′,

(28)Pte = dezscore(Po) =
(

p∗m+1,p
∗
m+2, . . . , p

∗
m+n

)

,

(29)

P
∗
k
=

√

∑

n

t=1 (ft −
∑

n

t=1

ft

n
)
2

n

+

n
∑

t=1

ft

n
,m+ 1 ≤ k ≤ n, k ∈ N.

Table 3 Based on LSTM PM time series models training and 
prediction algorithm

Table 4 Experiments parameters

LSTM model parameters Values

Total number of hidden layers 2

Number of LSTM cells per hidden layer 50

Time steps 365

Training iterations 1000

Dropout 0.1

Learn Rate Drop Factor 0.2

Loss function MSE

Optimization algorithm Adam

Smoothing method SG smoothing filter

Gradient threshold 1
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