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Abstract 

The explosive eruption of the Hunga Tonga-Hunga Ha’apai volcano on 15 January 2022 generated atmospheric 
waves traveling around the Earth, which caused ionospheric disturbances on various spatio-temporal scales. A HF 
Doppler sounding system in Japan detected characteristic ionospheric disturbances showing periodic oscillations 
in the Doppler frequency with a period of ~ 4 min. In this study, such periodic oscillations were examined by compar-
ing Doppler frequency data with Total Electron Content data obtained by Global Navigation Satellite System. The 
observed periodic oscillations in the Doppler frequency were characterized by a sawtooth or S-letter shaped varia-
tion, implying the passage of the traveling ionospheric disturbances through the reflection points of the HF Doppler 
sounding system. It was also found that the periodic oscillations occurred prior to the arrival of the tropospheric Lamb 
wave excited by the Tonga eruption. From the total electron content data, the traveling ionospheric disturbances 
causing the periodic oscillations were excited by the tropospheric Lamb waves at the conjugate point in the southern 
hemisphere, namely, the electric field perturbations due to the Lamb waves in the southern hemisphere mapped 
onto the sensing area of the HF Doppler sounding system in the northern hemisphere along the magnetic field lines. 
The periodic oscillations were observed only in the path between Chofu transmitter and Sarobetsu receiver, whose 
the radio propagation path is almost aligned in the north–south direction. This suggests that the traveling iono-
spheric disturbance has a structure elongating in the meridional direction. The variation in the Doppler frequency 
was reproduced by using a simple model of the propagation of the traveling ionospheric disturbances and the result-
ant motion of the reflection point. As a result, the vertical motion of the reflection point associated with the periodic 
oscillations was estimated to be about 1 km. It is known that 4-min period variations are sometimes observed in asso-
ciation with earthquakes, which is due to resonances of acoustic mode waves propagating between the ground 
and the lower ionosphere. Therefore, a similar resonance structure in the southern hemisphere is a plausible source 
of the traveling ionospheric disturbances detected in the northern hemisphere.
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Introduction
It has been known that various large-scale natural dis-
asters generate powerful atmospheric waves that reach 
the ionospheric altitudes and thus cause ionospheric dis-
turbances (Astafyewa 2019). The eruption of the Hunga 
Tonga-Hunga Ha’apai volcano on January 15, 2022, was 
strong enough to generate atmospheric waves propa-
gating all the way around the Earth (Matoza et al. 2022; 
Write et al. 2022). Disturbances caused by this eruption 
were observed globally by various instruments, such as 
Global Navigation Satellite System (GNSS) Total Electron 
Content (TEC) (Astafyeva et  al. 2022; Chou et  al. 2022; 
Iyemori et  al. 2022; Lin et  al. 2022; Saito 2022; Shin-
bori et al. 2022; Themens et al. 2022; Zhang et al. 2022), 
magnetometers (Iyemori et al. 2022; Schnepf et al. 2022; 
Yamazaki et al. 2022), density/wind measurements from 
satellites (Gasque et  al. 2022; Harding et  al. 2022; Liu 
et al. 2022; Wright et al. 2022), and ground-based infra-
sound observations (Chum et  al. 2022; Nishikawa et  al. 
2022).

One of the characteristics of the ionospheric fluctua-
tions observed during this eruption event is the occur-
rence of disturbances at magnetic conjugation points. 
Around Japan, the tropospheric Lamb wave generated by 
the eruption arrived at around 11 UT (Universal Time), 
while ionospheric fluctuations were observed a few hours 
earlier (at around 8  UT) (e.g., Shinbori et  al. 2022). In 
Australia, which is the magnetic conjugate point of Japan, 
the tropospheric Lamb wave arrived at around 8 UT and 
atmospheric/ionospheric variations had been observed 
at the same time. It was previously reported that such 
magnetically conjugate ionospheric disturbances were 
confirmed near the epicenters of large earthquakes 

(Iyemori et  al. 2005). In the case of the Tonga erup-
tion, the remarkable conjugacy in the fluctuations was 
observed even in an area far from the volcano (e.g., Lin 
et al. 2022; Shinbori et al. 2022; Themens et al. 2022).

The Tonga eruption was an extremely powerful 
event, resulting in substantial ionospheric disturbances 
observed all over the earth. Most of the previous studies 
that examined the ionospheric disturbances associated 
with the Tonga eruption have focused on the variations 
with temporal scales extending to ten minutes or beyond. 
This is because finer-scale fluctuations were hidden by 
the large-scale disturbances and were difficult to detect. 
On the other hand, HF Doppler (HFD) observation ena-
bles the detection of short-period ionospheric variations 
around the reflection points of radio waves. In the pre-
sent Tonga eruption event, we observed 4-min period 
Doppler frequency variations at an observatory far from 
the volcano, which have not been reported in previous 
studies. The periodic oscillations were observed at a cer-
tain pair of transmitting and receiving points, suggesting 
the existence of characteristic structures of ionospheric 
disturbances. Therefore, we have analyzed the HFD data 
together with the TEC data to examine the characteris-
tics of the periodic oscillations in detail.

Data
The HFD sounding system employed in this study 
has been operative since 2001 by a joint effort of four 
research institutes in Japan. An upgrade of the obser-
vation system has been ongoing and the analog-based 
receivers are being replaced with newly developed 
digital receivers, equipped with Software-Defined 
Radio receivers (Nakata et  al. 2021). The new HFD 
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sounding system utilizes radio waves at four frequen-
cies: 5.006/8.006  MHz, both transmitted from Chofu 
(JG2XA), Tokyo and 3.925/6.055 MHz of Radio NIKKEI 
(JOZ), transmitted, respectively, from Nemuro, Hokkaido 
and Nagara, Chiba. The locations of the transmitters and 
receivers are shown in Fig. 1.

In general, the Doppler frequency data are used to 
estimate the vertical motion of the plasma in the iono-
sphere at the reflection point, which is normally located 
between the transmitting and receiving stations. Due 
to the small ionization rate in the ionosphere (less than 
 10–3), we can assume that neutral particles dominate the 
motion of ionospheric plasma. Therefore, it is possible to 
infer the motions of neutral particles from the Doppler 
frequency data unless there is a significant influence from 
the magnetosphere.

We also made use of the TEC data obtained every 
1  s in Japan and Australia. In Japan, GNSS data were 
obtained from the GNSS Earth Observation Network 
System (GEONET) operated by the Geospatial Infor-
mation Authority of Japan (GSI). This dense GPS array 
consists of more than 1300 GPS stations, with each sta-
tion recording carrier phase and pseudo-range measured 
at two frequencies. The GNSS data in Australia were 
obtained from Geoscience Australia. From these data, 
we derived the slant TEC, which have been converted to 
the vertical TEC by considering the zenith angle of the 
line-of-sight (LOS) between the satellite and the receiver. 
In this study, we assumed the altitude of the ionospheric 
pierce point (IPP) to be 300 km, with a mask angle of 30 
degrees.

Observation results
HF Doppler observation
Figure  2(a) shows the dynamic spectrum of the radio 
wave at the frequency of 5.006  MHz received at the 
Sarobetsu (SAR) observatory for 3  h from 08:00 to 
11:00  UT on January 15, 2022. The color bar shows 
the intensity of the radio wave. The whitish line (in 
fact white-blue line) in the plot traces the variation in 
the Doppler frequency. During two intervals, 08:40–
09:10 UT and 09:30–10:20 UT, clear periodic oscillations 
of the Doppler frequency are observed. Figure 2(b) shows 
the enlarged figure of Fig.  2(a) during 09:30–10:00  UT, 
where sawtooth or S-shaped variations in the Doppler 
frequency were again recognized. Since the arrival time 
of the tropospheric Lamb wave excited by the eruption 
was ~ 11  UT in Japan (e.g., Chum et  al. 2022), the peri-
odic oscillations occurred prior to the direct arrival of 
the Lamb waves from the volcano. Figure  2(c) shows 
the 6.055 MHz data at Sarobetsu in the same format as 
Fig. 2(a). In this plot, the similar periodic variations in the 
Doppler frequency are detected during 08:40–09:00 UT. 
However, this observation was made near the local sun-
set when the electron density was decreasing. Therefore, 
after 09:15 UT, there was not enough electron density to 
reflect the radio wave at 6.055 MHz; thus, periodic oscil-
lation was not seen in the second half of the interval. For 
the same reason, the radio wave at 8.006  MHz was not 
received at Sarobetsu during this period.

Several data from receiving stations other than 
Sarobetsu are summarized in Fig. 3. Although the Dop-
pler frequencies were highly disturbed in all the panels, 

Fig. 1 The maps of Japan. The left panel (a) and right panel (b) show the western and eastern parts of Japan, respectively. The red triangles 
and circles show the locations of the transmitters and receivers, respectively. The crosses show the midpoints of the transmitters and receivers
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Fig. 2 The dynamic spectrums of the received radio waves observed at Sarobetsu on January 15th, 2022. The top panel (a) shows the dynamic 
spectrum at the frequency of 5006 kHz over a duration of 3 h (08:00–11:00 UT). The middle panel (b) is the enlarged depiction of top panel, 
specifically from 09:30 to 10:00 UT. The bottom panel (c) shows the dynamic spectrum the 6055-kHz radio wave
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Fig. 3 The dynamic spectrums of the received radio waves for 3 h (08:00–11:00 UT) observed on January 15th, 2022. The top panel (a) shows 
the dynamic spectrum at the frequency of 3925 kHz observed at Oarai station. The other panels (b), (c) and (d) show the dynamic spectrums 
of the 5006-kHz radio wave observed at Kokura, Onna, Awaji, respectively
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no clear indication of periodic oscillation was recog-
nized. Figure 3(a) shows that the receiver at Oarai (ORI) 
captured several diffuse Doppler traces of the 3.925-
MHz radio wave transmitted from Nemuro, Hok-
kaido. Although the propagation path between Nemuro 
and Oarai was close to the path between Chofu and 
Sarobetsu as depicted in Fig. 1(b), no periodic fluctuation 
was observed in the data from Oarai. The 5.006-MHz 
data from Kokura (KOK), Onna (ONA) and Awaji (AWJ), 
which are, respectively, plotted in the bottom three pan-
els of Fig. 3, demonstrate that no periodic fluctuation was 
observed along the propagation path covering the west-
ern part of Japan. These results indicate that distinct peri-
odic oscillations were observed only in the path between 
Chofu and Sarobetsu, where the propagation path was 
oriented in the north–south direction.

The data from Sarobetsu in Fig.  2 indicate that the 
periodic oscillations were seen at both the 5.006  MHz 
and 6.055  MHz frequencies. Since the altitudes of the 
reflection points of these two radio waves are different, 
the periodic oscillation was distributed in a certain range 
of altitude. This implies a possibility of detecting similar 
periodic variations in the TEC data; thus, TEC data over 
Japan and Australia have been analyzed and will be pre-
sented in the following subsection.

TEC observation
A number of previous studies reported that TEC dis-
turbances were observed in association with the Tonga 
eruption. Most of such previous studies, however, have 
investigated longer-period fluctuations, whose period 
was longer than 10  min (e.g., Lin et  al. 2022; Shinbori 
et al. 2022). Behavior of relatively shorter variations, like 
the one seen in the HFD data, has not yet been examined. 
In this study, we have employed 1-Hz sampling TEC data 
to identify signatures of such short-period fluctuations in 
both hemispheres.

First, we present the TEC data over Australia, which is 
the magnetically conjugate point of the sensing area of 
the HFD observation in Japan. Figure 4 shows the tem-
poral variations of TEC data for a 2-h interval from 08:00 
to 10:00 UT, obtained from the BULA station (22.9135oS, 
139.9031oE). To extract the 4-min period (about 
4.1  mHz) variation, time-series data have been derived 
by applying a high-pass filter with a cutoff frequency 
of 2.5 mHz. Note that the TEC data shown in Figs. 4(b) 
(Beidou-04) and 4(c) (Beidou-59) are acquired by navi-
gation signals transmitted from BeiDou satellites in geo-
stationary orbit. The ionospheric pierce points (IPPs) of 
the ray paths between BULA and three satellites (GPS-
31: G-31, BeiDou-04: C-04, and BeiDou-59: C−59) at an 
altitude of 300 km are plotted in Fig. 5. In this figure, the 
blue circle shows the geomagnetically conjugate point of 

the sensing area of the Sarobetsu data (i.e., the midpoint 
of the propagation path between Chofu and Sarobetsu), 
which is close to the IPPs of the TEC observations.

Figure  4 shows that 4-min periodic disturbances 
occurred from 08:00 to 10:00 UT. In particular, the ampli-
tudes of the periodic fluctuations increased twice in the 
Beidou-59 time-series, one from 08:30 to 08:50 UT and 
the other from 09:00 to 09:50 UT. Although the longitude 
of the IPP of C-59 is located slightly to the east of the 
conjugate point of the HFD sensing area, it is reasonable 
to consider that the variations of TEC in the southern 
hemisphere well correspond to the periodic oscillation of 
Doppler frequency in the northern hemisphere.

Next, we present the TEC data over Japan. Figure  6 
shows plots of the temporal variations of TEC for the 
same 2-h interval from the tracks of the IPPs shown in 
Fig.  7. Because of significant noise at high frequencies, 
these TEC time-series data have been derived by applying 
a bandpass filter with a bandwidth of 3 mHz to 5 mHz. 
Navigation signals from geostationary satellites were not 
available for TEC data over Japan because the GEONET 
do not obtain the BeiDou data. Therefore, all the TEC 
data in Fig. 6 were obtained from signals of GPS satellites 
whose IPPs were passing through the sensing area of the 
HFD observation. The IPP of PRN 27 was located near 
the observation point between 08:30 and 09:10 UT. Dur-
ing this period, a 4-min period variation was enhanced 
in the corresponding TEC data shown in Fig.  6(c). 
The IPP of PRN 8 passed near the observation points 
between 09:30 and 10:00  UT, during which 4-min TEC 
disturbances were also observed (Fig.  6(a)). Although 
the amplitude of these TEC variation is rather small and 
the periodicity of the TEC variation is not always clear, 
the TEC data over Japan also showed some indications 
of similar 4-min variations when the periodic oscillation 
was detected by HFD. The current comparison with the 
TEC data indicates that the ionospheric disturbances that 
caused the periodic oscillation in the HFD observation 
were also seen in the TEC data in both of the hemisphere. 
These conjugacy of TEC disturbances in this event has 
been reported by many previous studies that examined 
the longer-period fluctuations. The cause of this con-
jugacy is the propagation of the electric field driven by 
E-region dynamo along the magnetic field lines. There-
fore, the shorter-period disturbances also show the same 
conjugacy as the longer-period fluctuations.

Discussion
One of the most interesting features of the present 
event is the sawtooth or S-shaped variation in the Dop-
pler frequency. Such a variation is sometimes caused by 
the reflection of radio waves at the sinusoidal reflect-
ing surface in the ionosphere that is fluctuated by TID. 
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Fig. 4 The TEC data observed at BULA station in Australia. These data were derived by applying a high-pass filter with a 2.5-mHz cutoff frequency. 
The top panel (a) shows the temporal variation of TEC data observed with GPS PRN 31. The middle (b) panel and bottom panel (c) show 
the temporal variations of TEC observed with Beidou PRN 4 and 59, respectively
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Davies and Baker (1966) consider sinusoidal disturbances 
of the reflecting surface moving horizontally near the 
reflection point (i.e., TID passing through the observa-
tion point) and reproduced the S-shaped variations in 
the Doppler frequency. The schematic illustration of the 
relationship between TID and ray paths of radio waves 
is shown in Fig. 8(a). Here, a TID moving from right to 
left is considered whose wavy surfaces, propagating in 
time, are depicted by the dotted and solid lines. When 
the S-shaped variation is seen in the Doppler spectro-
gram, there are three reflection points of radio waves at 
the same time. This situation takes place when the iono-
sphere is uplifted due to fluctuations immediately above 
the transmitter/receiver. If the TID is moving from right 
to left in the figure, the Doppler frequency obtained at 
the reflection point on the left-hand side (the green line 
in the figure) is negative because this reflection point 
moves away from the transmitting and receiving points. 
Similarly, the Doppler frequency obtained by the reflec-
tion point immediately above (magenta) and on the 
right-hand side (purple) of the transmitting and receiv-
ing points are zero and positive, respectively. In the 
present event, the distance between the transmitting 
and receiving points is about 1000 km apart. Therefore, 
it is possible to assume that the wavefront of the TID 
extended in the north–south direction and was parallel 
to the propagation path of the radio wave, as shown in 
Fig.  8(b). TEC observations show that ionospheric dis-
turbances over Japan propagated almost in the east–west 

direction (Saito 2022); thus, it is quite natural to con-
sider that the wavefronts extending from north to south 
propagated from east to west. By performing a simple 
model calculation, we estimated the Doppler frequency 
variation when such a disturbance occurs. In this model 
calculation, the period and propagation velocity of the 
disturbance were set to 240 s and 250 m/s, respectively. 
Based on these parameters, the wavelength was also set 
to 60  km. The altitude of the reflected radio waves was 
estimated to be 244 km using the ray tracing calculation. 
The reproduced Doppler frequency variation is shown in 
Fig. 9 for a case where the uplift and downlift of the iono-
sphere are assumed to be ± 1  km is shown in Fig.  9. As 
can be seen from this figure, the Doppler frequency vari-
ation was ± 0.4  Hz. The observed results in Fig.  2 show 
that the magnitude of the Doppler frequency variation is 
about ± 0.5 Hz, although it depends on the period, which 
is consistent with the frequency variation estimated by 
the simple model.

Figure  2(a) shows not only the periodic variations, 
but also large increases in Doppler frequency at 08:30 
and 09:15 UT. Figure 10 shows the TEC data derived by 
applying a high-pass filter with a 1-mHz cutoff frequency. 
This data was obtained along the track of the IPP of PRN 
8. In this data, there are large enhancements in TEC at 
08:40 and 09:20  UT. In the present event, the volcano 
erupted not once but multiple times. Using TEC data 
obtained in the vicinity of the volcano, Astafyeva et  al. 
(2022) confirmed that at least five explosions occurred. 

Fig. 5 A map showing the geometry of GNSS TEC measurements for satellites GPS 31 (G−31), Beidou 4 (C−04), and Beidou 59 (C−59). The red circle 
shows the position of BULA station. The blue circle shows the conjugate point of the midpoint between Chofu–Sarobetsu
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Fig. 6 The TEC data observed at a GEONET station in Japan. These data were derived by applying a bandpass filter with a bandwidth of 3 mHz 
to 5 mHz. The top (a), middle (b) and bottom (c) panels show the temporal variations of TEC observed with GPS PRN 8, 16, and 27, respectively
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From the enhancements of the TEC, these enhancements 
of TEC were due to the second and third eruptions of 
the volcano. As shown in Fig. 2(a), the increases in Dop-
pler frequency reached their maximum at 08:30 and 
09:15 UT, and these timings are slightly earlier than 08:40 
and 09:20 UT, when the TEC reaches its maximum. Since 
an increase in Doppler frequency indicates downward 
motion of the reflection point, both the enhancements of 
the Doppler frequency are consistent with those of TEC.

It is known that the 4-min oscillations are observed 
around epicenters of large earthquakes (Choosakul et al. 
2009; Saito et al. 2011). This is because the acoustic reso-
nance structure is formed between the ground and the 
lower ionosphere (Tahira 1995; Saito et  al. 2011; Mat-
sumura et  al.2011). In the Tonga eruption event, this 
resonance was also formed near the volcano and the 
magnetic disturbances were observed around the volcano 
and its conjugate area (Iyemori et al. 2022; Yamazaki et al. 

Fig. 7 A map showing the geometry of GNSS TEC measurements for GPS PRN8, PRN16, and PRN27. The red circle shows the position of GNSS 
receiver (0161). The black circles show the reflection points of the mid points between the transmitters and receivers
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2022). The results of the present study imply that a simi-
lar resonance structure was formed far from the volcano. 
As for the horizontal extent of this resonance structure, 
Yamazaki et  al. (2022) reported that the magnetic field 

oscillations with a period of 4 min were observed within 
835  km of the volcano. The amplitude of the magnetic 
oscillation was about 3 nT in the vicinity of the volcano. 
According to Zettergren and Snively (2019), the drift 
velocity of ions in the ionosphere to produce magnetic 
field variations of a few nT on the ground amounts to sev-
eral hundred m/s. In contrast, in our model calculations 
of the Doppler frequency variations as shown in Fig.  9, 
the maximum vertical velocity of the reflection point 
above Japan was about 8 m/s. This value is quite small to 
generate magnetic field disturbances on the ground even 
though the ionospheric variations in the present event 
were larger in the southern hemisphere (Shinbori et  al. 
2022; Yamazaki et al. 2022). The results of this paper are 
attributed to the fact that the HF Doppler observations 
capture much smaller ionospheric variations than other 
observations. It is noteworthy that the periodic oscil-
lations occur shortly after these impulsive variations in 
Doppler frequency. The GAIA (Ground-to-topside model 
of Atmosphere and Ionosphere for Aeronomy) model, 
which is the numerical self-consistent atmosphere–iono-
sphere model (Jin et  al. 2012), is presently employed to 
analyze the ionospheric variations associated with the 
Tonga eruption. The analysis considering atmospheric 
motions under non-hydrostatic equilibrium reveals the 
occurrence of the vertical oscillations of the ionosphere 
subsequent to the passage of the Lamb wave (Shinagawa, 
private communication). This oscillation could be attrib-
uted to the resonance between the Earth’s surface and the 
lower ionosphere. This outcome suggests that the peri-
odic oscillations in Doppler frequency examined in this 
study were a consequence of the acoustic resonance pre-
vailing in the southern hemisphere. While more detailed 
analysis is anticipated in subsequent studies, this study 
offers observational evidence of the acoustic resonance 
between the Earth’s surface and the lower ionosphere or 
similar structure far from the volcano.

Summary
Periodic oscillations of the Doppler frequency with a 
period of ~ 4 min were observed in association with the 
Tonga eruption occurred in January 2022, employing the 
HFD sounding system. Examination of TEC data in the 
northern and southern hemispheres revealed that TEC in 
both the hemispheres were similarly perturbed with the 
aforementioned periodic oscillations. These oscillations 
arise from the ionospheric disturbances caused by tropo-
spheric Lamb waves in the southern hemisphere. Conse-
quently, these disturbances lead to TID in the northern 
hemisphere, facilitated by the electric field propagating 
along the magnetic field lines. The periodic oscillations 
of the Doppler frequency were observed only in the path 
of the radio wave between Chofu and Sarobetsu, which 

Fig. 8 The schematic figure of the traveling ionospheric disturbance 
and the ray paths of the radio waves. The top panel (a) shows the TID 
and the raypath of the radio waves. The bottom panel (b) shows 
a bird’s-eye view of the iso-contour of the ionospheric electron 
density and the ray paths of the radio waves between Chofu 
and Sarobetsu

Fig. 9 The estimated Doppler shift frequency in the present event 
assuming that the vertical motion of the reflection point is ± 1 km
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aligns itself in a north–south direction. This result sug-
gests that the TID has an elongating structure in the 
meridional direction. The estimated variation in the 
reflection altitude of the radio wave was approximately 
1 km, which in turn generated a Doppler frequency vari-
ation almost equivalent to the observed measurements. 
Notably, not only periodic oscillations but also abrupt 
increases in Doppler frequency were detected through 
HFD sounding system. Moreover, these increases were 
observed slightly prior to the corresponding increases 
in TEC, thereby indicating that the enhancement of the 
ionospheric electron density caused the variations in 
Doppler frequency. The results of the present study pro-
vide the observational evidence of the occurrence of the 
acoustic resonance far from the volcano. The periodic 
oscillations examined in this study were observed since 
the HF Doppler sounding can detect relatively small fluc-
tuations at reflection points of the radio waves with high 
accuracy. In addition, the observation network that was 
constructed over the entire of Japan led to results that 
suggest the existence of a structure extending from north 
to south. The present result is the case in which 4-min 
variations were observed at a distance from the volcano. 
This study offers observational evidence of the resonance 
structure between the Earth’s surface and the lower iono-
sphere far from the volcano.
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