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Abstract 

Fluid-inclusion and thermochronometric analyses have been applied to hydrothermal alteration zones and their 
host rocks outcropping in the Hongu area of the Kii Peninsula, southwestern Japan in an attempt to detect ther-
mal anomalies related to hydrothermal events and quantify the thermal effects on the host rocks. Hydrothermal 
events at ~ 150 °C and ~ 200 °C were identified by fluid-inclusion microthermometry of quartz veins in the altera-
tion zones. For the host rocks and alteration zones, in the youngest population zircon yielded U–Pb dates ranging 
between ~ 74.7–59.2 Ma, fission-track dates of ~ 27.2–16.6 Ma, and (U–Th)/He single-grain dates of ~ 23.6–8.7 Ma. 
Apatite yielded pooled fission-track ages of ~ 14.9–9.0 Ma. The zircon U–Pb dates constrain the maximum depositional 
ages of the sedimentary samples. However, the fission-track and (U–Th)/He dates show no clear trend as a function 
of distance from the alteration zones. Hence, no thermal anomaly was detected in the surrounding host rocks based 
on the thermochronometric data patterns. The fission-track and (U–Th)/He dates are rather thought to record regional 
thermal and exhumation histories rather than a direct thermal imprint of fluid flow, probably because the duration 
of such activity was too short or because fluid flow occurred before regional cooling events and were later ther-
mally overprinted. Apatite fission-track ages of ~ 10 Ma may reflect regional mountain uplift and exhumation related 
to the obduction of the SW Japan lithospheric sliver onto the Shikoku Basin, or the rapid subduction of the Philippine 
Sea slab associated with the clockwise rotation of the Southwest Japan Arc.
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Graphical Abstract

Introduction
Hydrothermal activity plays an important role in hydro-
logical circulation, heat advection and element migration 
in the crust. Such activity can be related to magmatism, 
heat budget, crustal strength (Meissner and Wever 1992; 
Sibson and Rowland 2003), and the generation of earth-
quakes (Zhao et al. 1996; Obara 2002). In addition, it is 
also important for industrial and social demands related 
to the generation of ore deposits (Misra 2000; Cox 2005), 
development of geothermal resources (Bowen 2011), and 
evaluation for safety and stability of underground facili-
ties (National Institute of Advanced Industrial Science 
and Technology 2016, 2017). Therefore, it is useful to 
develop techniques to detect evidence of hydrothermal 
activity and to evaluate the range of their effects.

Thermochronology can be used to constrain the ther-
mal histories of rocks and minerals based on thermal 
resetting of radiometric ages. Since the 1970s, it has been 
applied to many geological events, such as, mountain 
building, basin development, and fault movement (e.g., 
Reiners et al. 2005; Ault et al. 2019; Malusá and Fitzger-
ald 2019a). Elucidating past hydrothermal activity is also 
an important target of thermochronology. For exam-
ple, a growing number of studies have applied thermo-
chronometry to detect thermal anomalies derived from 
fluid activity along fault zones (e.g., Tagami et  al. 2001; 
Murakami et al. 2002; Tagami and Murakami 2007; Wöl-
fler et al. 2010; Ault et al. 2016; Milesi et al. 2019, 2020; 
Louis et al. 2019; Sueoka et al. 2019; Jess et al. 2021). Fur-
thermore, a number of studies have reported thermal 

anomalies and cooling dates related to ore-forming flu-
ids (e.g., Arne et al. 1990; Wilson et al. 2003; Yuan et al. 
2009; Márton et al. 2010; Wang et al. 2015). In all previ-
ous cases reported, the extent of the thermal anomalies 
typically ranged from  100 to  102 m or wider.

In this study, we attempt to detect local thermal 
anomalies around hydrothermal alteration zones by 
using a combination of geothermometry and multisys-
tem thermochronology. An alteration zone is formed by 
paleo-fluid activity along a minor fault or crack. Such a 
minor fault or crack is expected to act as a temporal or 
relatively short-term pathway for fluids, in contrast to a 
major fault zone which is a stable and long-term pathway 
along which fluid activity over multiple pulses is often 
recorded (e.g., Tanaka et  al. 2007), and a wide range of 
thermal anomalies are detected (e.g., Tagami et al. 2001; 
Murakami et  al. 2002). However, hot springs are not 
always distributed along major fault zones (e.g., Kimbara 
2005; Tamburello et  al. 2022). Therefore, minor faults 
and cracks can be important factors that control crustal 
permeability. Hence, thermal anomalies along alteration 
zones, namely, fossils of paleo-fluid activity along minor 
faults and cracks, can provide clues for assessing the sta-
bility of individual fluid pathways and understanding the 
macro-permeability of the crust.

We investigated outcrops of hydrothermal alteration 
zones in the Hongu area of the Kii Peninsula, southwest 
Japan, where non-volcanic thermal fluid activity has been 
reported (e.g., Matsumoto et al. 2003; Umeda et al. 2006; 
Yamaguchi et  al. 2009; Morikawa et  al. 2016). The Kii 
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Peninsula contains no Quaternary volcanoes, thus pro-
viding a preferable area for studying the thermal effects 
of hydrothermal events without possible thermal distur-
bances caused by recent volcanism. The homogenization 
temperatures of the fluid inclusions (e.g., Roedder 1984) 
in the quartz veins of the alteration zones were meas-
ured to estimate the temperatures of the thermal fluids 
that formed the alteration zones. We also applied ther-
mochronometric methods to the host rock enclosing 
the alteration zones in an attempt to constrain the tim-
ing, duration and spatial range of thermal-fluid activity. 
These methods include apatite and zircon fission-track 
(hereinafter called AFT and ZFT), zircon (U–Th)/He 
(hereinafter called ZHe), and zircon U–Pb analyses. Apa-
tite (U–Th)/He (hereinafter called AHe) method was not 
adopted because the apatite grains, being generally small 
and non-euhedral, were not suitable for analysis. Using 
thermochronometry data, we also discuss the thermal 
and exhumation histories of accretionary complexes in 
the study area.

Geological setting
The Kii Peninsula is located in the Outer Zone of the 
Southwest Japan Arc, on the forearc side of the Median 
Tectonic Line (Fig. 1a). The Kii Peninsula features a num-
ber of high-temperature hot springs in the Shirahama, 
Katsu’ura, Ryujin, Tosenji, Totsukawa, and Hongu areas, 
although they are a few hundred kilometers away from 
the volcanic front of the Southwest Japan Arc (Fig.  1b). 
Various geochemical and geophysical studies support the 
finding that the high-temperature fluids in the Kii Penin-
sula originate from the Philippine Sea slab beneath this 
region. For example, 3He/4He ratios as high as ~ 4–5  RA 
(Matsumoto et al. 2003; Umeda et al. 2006, 2007; Mori-
kawa et al. 2016; 1  RA = atmospheric 3He/4He ratio) and 
high Li/Cl ratios by weight (> 0.001) (Kazahaya et  al. 
2014) indicate that the groundwater contains deep-seated 
fluids. Seismicity, including seismic swarms (Kato et  al. 
2014) and deep low-frequency tremors (Obara 2002), 
supports fluid migration in the crust beneath the Kii Pen-
insula, and low resistivity (< 10 Ωm) between the Conrad 
discontinuity and the slab surface (Yamaguchi et al. 2009) 
suggests upward migration of fluid from the subducting 
slab.

The Kii Peninsula is composed predominantly of the 
Cretaceous to Miocene accretionary complexes of the 
Shimanto Belt and Miocene silicic rocks. The rocks of the 
Shimanto Belt have been roughly divided into the Cre-
taceous Hidakagawa, the Eocene Otonashigawa, and the 
Oligocene to early Miocene Muro Groups from the back-
arc to forearc sides (Tokuoka et al. 1981) (Fig. 1b). In the 
Hongu area, the Haroku Formation of the Otonashigawa 
Group consists mainly of alternating sandstones and 
mudstones (Tokuoka et  al. 1981). The Haroku Forma-
tion yielded Eocene radiolarian fossils (Suzuki 1993), and 
detrital zircons from the tuffaceous sandstone yielded U–
Pb ages showing the youngest population of 50.8 ± 1.0 Ma 
(Tokiwa et al. 2016). Illite crystallinity values of 0.54 and 
0.64 Δ°2θ were obtained from the northern area of the 
Otonashigawa Group in the western Kii Peninsula, which 
were converted into paleo-temperatures of ~ 227  °C 
and ~ 192 °C with an error of at least 50 °C using the cali-
bration of Underwood et  al. (1993) (Awan and Kimura 
1996). For the Hidakagawa Group to the north of the 
Otonashigawa Group (Fig.  1b), the paleo-temperatures 
of ~ 310  °C and ~ 250  °C were similarly obtained in the 
northern and southern parts, as well as the pressures 
of ~ 3.6 kbar and ~ 2.2 kbar (equivalent to the burial 
depths of ~ 14 km and ~ 8 km) based on the illite  b0 lattice 
spacing values (Awan and Kimura 1996). Considering the 
southward lowering trend of the paleo-temperatures, the 
burial depth of the Otonashigawa Group is thought to 
have been shallower than ~ 8 km.

ZFT and AFT thermochronology have been reported 
in previous studies that investigated the thermal and 
exhumation history of the accretionary complexes of the 
Shimanto Belt on the Kii Peninsula (e.g., Tagami et  al. 
1995; Hasebe and Tagami 2001; Hasebe and Watanabe 
2004; Umeda et  al. 2007; Hanamuro et  al. 2008; Ohira 
et al. 2016), as well as in other regions of the Southwest 
Japan Arc (Hasebe et al. 1993b, 1997) (Fig. 2). On eastern 
Shikoku Island, the maximum temperature during accre-
tion varied regionally. Cretaceous rocks of the Northern 
Shimanto Belt were heated to the partial annealing zone 
(PAZ; see Sect. “Strategies” for more details) of ZFT sys-
tem, yielding grain ages younger than the depositional 
ages. However, the grains in the rocks of the South-
ern Shimanto Belt are older than the Eocene–Miocene 
time of deposition, and as such, have not been heated 

(See figure on next page.)
Fig. 1 Map of study area. a Tectonic and hydrological settings of the Southwest Japan Arc. Data for Quaternary volcanoes and hot springs are 
sourced from the Committee for Catalog of Quaternary Volcanoes in Japan (1999) and Kimbara (2005), respectively. Gray contours denote the depth 
of the upper surface of PHS slab at 10-km intervals (Nakajima and Hasegawa 2007; Hirose et al. 2008a, b; Nakajima et al. 2009); b Geologic map 
of the Kii Peninsula, outlined by the red square in (a) above, modified after Wakita et al. (2009), showing active fault traces (Nakata and Imaizumi 
2002) and hot springs (Kimbara 2005). [MTL, Median Tectonic Line; NE, Northeast; PAC, Pacific plate; PHS, Philippine Sea plate; SW, Southwest]
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to temperatures in the ZFT PAZ (Hasebe et  al. 1993b; 
Tagami et  al. 1995). In contrast, AFT ages of ~ 10 Ma 
were obtained in both the Northern and Southern Shi-
manto Belts. These AFT ages are significantly younger 
than the deposition ages, reflecting a rapid cooling and 
exhumation episode straddling the AFT PAZ at ~ 10 Ma 
(Hasebe et al. 1993b). Fission-track data in western Shi-
koku Island and Kyushu Island indicate similar thermal 
histories, except for local reheating episodes, such as the 
granitic intrusion at ~ 15 Ma (Tagami and Shimada 1996; 
Hasebe et  al. 1997; Hasebe and Tagami 2001). Fission-
track data for the Kii Peninsula are also largely consistent 

with other regions, but differ in the following points: (1) 
AFT ages young southward from ~ 35 Ma to ~ 13 Ma in 
the Northern Shimanto Belt and ~ 6 Ma in the Southern 
Shimanto Belt (Hasebe and Tagami 2001); (2) young AFT 
ages (~ 5–2.5 Ma) near hot springs have been reported 
(Umeda et al. 2007; Hanamuro et al. 2008); (3) a patchy 
age distribution of Miocene ZFT ages is likely related to 
heat influx (Hasebe and Watanabe 2004); and (4) accre-
tion-related heating to the upper limit of the ZFT PAZ 
has been determined for some regions of the Northern 
Shimanto Belt (Ohira et al. 2016).
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Miocene silicic rocks in the Kii Peninsula have been 
divided into the Kumano Acidic Rocks and Omine Acidic 
Rocks. The Kumano Acidic Rocks were generally formed 
by igneous activity of the Kumano Caldera (Miura 1999; 
Kawakami et al. 2007), with some exceptions. For exam-
ple, the Konogi Rhyolite, forming the lower part of the 
Kumano Acidic Rocks, was produced by subaerial erup-
tions from fissures preceding the main eruption from the 
Kumano Caldera (Aramaki 1965). The lithologic units of 
the Kumano rocks consist of granite, granite porphyry, 
and pyroclastic breccia found within the accretionary 
complex of the Shimanto Belt (Miura 1999). The Omine 
rocks are distributed in several separate units and are 
composed mainly of granodiorite, granite, and granite 
porphyry (Kawasaki 1980). The arcuate and semicircular 
dike swarms of the Omine rocks in the central part of the 
Kii Mountains are thought to have been formed in asso-
ciation with the formation/collapse of the Omine and 
Odai Cauldrons, respectively (Sato and Yamato Omine 
Research Group 2006), although many of the plutonic 
stocks of the Omine rocks are apparently not associated 
with these cauldrons. Radiometric ages for the Kumano 
Acidic Rocks and Omine Acidic Rocks are generally in 
the range of ~ 16–14 Ma, as estimated by various meth-
ods, including AFT and ZFT (Hasebe et al. 1993a, 2000; 
Iwano et al. 2007, 2009) (Fig. 2), biotite K–Ar (Sumii et al. 
1998; Sumii and Shinjoe 2003), and zircon U–Pb (Ori-
hashi et  al. 2007), suggesting that their formation and 
rapid post-emplacement cooling occurred during the 
middle Miocene.

Methodology
Strategies
To detect and evaluate thermal anomalies around hydro-
thermal alteration zones, we adopted an approach that 
combined geothermometric data from hydrothermal 
alteration zones with thermochronometric information 
from their host rocks (Fig. 3). Cooling ages of a thermo-
chronometer reflect the thermal histories around their 
typical closure temperatures: ~ 50 °C–80 °C for AHe (Far-
ley 2000; Flowers et  al. 2009), ~ 90  °C–120  °C for AFT 
(Ketcham et  al. 1999, 2007), ~ 160  °C–200  °C for ZHe 
(Reiners et  al. 2004; Guenthner et  al. 2013), ~ 300  °C for 
ZFT (Yamada et al. 2007; Ketcham 2019), and >  ~ 900 °C 
for zircon U–Pb systems (Cherniak and Watson 2000) 
for cooling on geological timescales (e.g., 1–100 °C/Myr) 
and under typical mineralogical conditions (e.g., euhe-
dral, ~ 60–150-μm-wide, low radiation-damage, and gen-
eral chemical compositional grains). Cooling ages are 
partially reset in a temperature zone around the closure 
temperature, called the partial annealing zone (PAZ) or 
partial retention zone (PRZ). The cooling ages are totally 
reset above the PAZ (or PRZ) and not reset below it. 

When partially or not reset, the cooling ages are affected 
by thermal histories prior to the last heating episode. For 
example, igneous rocks can reflect initial cooling immedi-
ately after their intrusion, whereas sedimentary rocks and 
detrital samples may record thermal/exhumation histo-
ries in the provenance areas (Malusá and Fitzgerald 2020). 
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and analytical strategies. (1) Fluid temperatures are estimated 
from the alteration zones using geothermometers. (2) The timings 
of fluid activity can be equivalent to the cooling ages of the host 
rocks nearest to the alteration zones if the ages are totally reset 
by heating. (3) The spatial pattern of the thermal effects of fluid 
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from host rocks at various distances from the alteration zones. 
Regional cooling and exhumation histories are reconstructed 
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from the alteration zones. (4) The duration of fluid activity can be 
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Kinetic models for thermochronometers (i.e., the relation-
ship between cooling ages and time–temperature condi-
tions) are described by linear or curvilinear functions in 
Arrhenius space where the ordinate axis represents loga-
rithmic time and the abscissa axis represents reciprocal 
temperature (e.g., Reiners 2009). In other words, the ther-
mal resetting of samples depends predominantly on the 
heating duration and temperature. Although the PAZ or 
PRZ over  106–107 years are generally used for geological 
events, the duration of crustal fluid activity is expected 
to be considerably shorter (Beinlich et  al. 2020; Muku-
hira et  al. 2022). In this study, we determine paleotem-
peratures using an independent geothermometer, and the 
heating duration is derived from thermochronological 
data (Fig. 3).

The temperature of the fossil fluid activity is initially 
determined by applying geothermometry to vein sam-
ples obtained from the alteration zones, and the timing 
of the activity is estimated based on the cooling ages of 
the host rocks near the alteration zone. This strategy 
assumes that fluids were sufficiently hot to totally reset 
some cooling ages, and that the thermal anomalies were 
related to heat conduction rather than to fluid migration 
in the host rocks. The spatial extent of thermal effects 
can be constrained using multiple thermochronometric 
methods with different temperature sensitivities, applied 
at progressive distances from the hydrothermal altera-
tion zones. The duration of thermal-fluid activity can be 
computed by comparing different datasets acquired from 
the alteration zones and host rock samples. Because fluid 
temperatures are determined by geothermometry, the 
duration of activity can also be constrained using kinetic 
models of thermochronometers if the cooling age of the 
host rock is reset by hydrothermal activity. For example, 
if the cooling age of a thermochronometer is totally reset 
(or not reset at all), the minimum (or maximum) dura-
tion can be determined from the upper (or lower) limit 
of the PAZ or PRZ. By combining multiple thermo-
chronometers with various kinetic properties, the dura-
tion can be constrained even more precisely when some 
thermochronometric systems are totally reset and others 
are not. In cases of partial resetting, instead of total (or 
not) resetting, the minimum (or maximum) duration is 
loosely constrained between the upper and lower limits 
of the PAZ or PRZ.

Model prediction
Thermal modeling was performed to predict the ranges 
within which the cooling ages were reset by fluid activity 
in a general and simple situation. A simple 1-D heat con-
duction was assumed here; advection of the fluid was not 
incorporated; therefore, the computed results provided 

minimal ranges of thermal anomalies. The calculation 
was based on the following equation:

where T is the temperature (°C), x is the horizontal dis-
tance (m), a is the thermal diffusivity (= 2.10 ×  10−6  m2/s), 
and t is time (s). Fluid activity occurred at x = 0, and the 
temperature changes in the host rocks at x > 0 were simu-
lated. The temperature of the fluid (Tf) was given by four 
patterns (150, 200, 250, and 300 °C) and was set tempo-
rarily constant. The initial temperature (T0) of the host 
rocks was set as 20  °C. The duration of fluid activity (tf) 
was up to 1000 years.

The temperature changes at each location were con-
verted into thermochronometric ages. The calculations 
were performed based on the forward model of HeFTy 
ver.1.9.3 (Ketcham 2005) with the following kinetic mod-
els: AHe system, Flowers et al. (2009); AFT system, Ket-
cham et al. (2007); ZHe system, Guenthner et al. (2013); 
ZFT system, the fanning Arrhenius model of Yamada 
et al. (2007). For simplification, the host rocks were situ-
ated at 20 °C since 50 Ma, and fluid activity started at 10 
Ma. If not disturbed by fluid activity, the cooling dates 
of any thermochronometric system are predicted to be 
50 Ma at any location. When comparing the modeling 
results with natural data, these values should be replaced 
by more robust values in each study area, considering the 
expected depth and timing of the fluid activity and cool-
ing ages of the thermally undisturbed host rocks.

The modeling results are shown in Fig. 4. Based on the 
results, the following age patterns are expected: no sys-
tem yields significantly younger ages for Tf = 150 °C and 
tf < 1000 year, except for the AHe system for tf = 1000 
year; the AHe, AFT, and ZHe systems can yield younger 
ages for Tf > 200  °C depending on x and tf, and the ZFT 
system does not yield significantly younger ages for 
Tf < 300  °C and tf < 1000 year. It is likely that tf needs to 
be longer than  106 years for Tf < 300 °C to make the ZFT 
ages younger because the lower limit of the ZFT PAZ 
is ~ 250–300 °C for  106 years of isothermal heating (Yam-
ada et  al. 2007). It is noteworthy that the AHe system 
sometimes produces dates older than those of the AFT 
system for high-temperature short-term heating (i.e., 
250  °C for 0.1–10 years and 300  °C for 0.1–1 years), as 
predicted by Reiners (2009). It is also notable that an age 
discrepancy is not obvious between x = 0.01 m and 0.3 m, 
indicating that precise sampling on a few cm scale is not 
required to detect thermal anomalies by fluid activities in 
such a setting. This observation contrasts with the cases 
of frictional heating along a fault zone (e.g., d’Alessio 
et  al. 2003; Murakami and Tagami 2004) and wildfire 
heating (Mitchell and Reiners 2003; Reiners et al. 2007), 

∂
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for which sampling at the millimeter or centimeter scale 
is necessary. This contrast must be derived from the dif-
ference in the heating duration (Tagami 2019).

Sample collection
To follow the strategies outlined in Sects.  “Strategies” 
and “Model prediction”, hydrothermal alteration zones 
and their host rocks were sampled from three locations 
(HJG1, HJG 2, and HJG4) in the Hongu area in the cen-
tral part of the Kii Peninsula (Fig. 5). In these outcrops, 
hydrothermal alteration zones of ~ 0.5-m width, accom-
panied by nested hydrothermal veins, are exposed in 
the sandstone and mudstone of the Haroku Formation. 
These zones include abundant quartz, epidote, chlorite, 
and sulfide minerals, such as pyrite, pyrrhotite, and chal-
copyrite. Widespread brown, friable deposits composed 
mainly of goethite fill the gaps on the alteration surfaces. 
The vein quartz commonly exhibits holocrystalline, 

hypidiomorphic and blocky textures, which are easily 
distinguished from fragmented quartz in the host rocks 
(Fig. 6). The host-rock Haroku Formation typically shows 
alternating beds of ~ 10–50-cm-thick sandstones with 
some interbedded ~ 1-cm-thick mudstones. Although 
these beds are often folded and have variable strikes, they 
mostly exhibit gentle dips. In contrast, the near-vertical 
alteration zones cut the bedding of the Haroku Forma-
tion, penetrating both the sandstone and mudstone.

At each outcrop, one sample was collected from the 
alteration zone for fluid-inclusion analysis and thermo-
chronometry, and several samples were collected from 
the host sandstones for thermochronometry (fission-
track (FT), (U–Th)/He, and U–Pb analyses) (Table  1, 
Fig.  5). ~ 20–30-cm-wide sandstone samples were col-
lected using a hammer and chisel at distances of ~ 0 
m, ~ 0.3  m, ~ 1  m, ~ 10  m, and ~ 20  m from the margin 
of the alteration zones. The distances were measured 
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Fig. 5 Sample localities and outcrop photographs. Map based on geological map of Wakita et al. (2009) and GSI Maps from Geospatial Information 
Authority of Japan. The strikes incorporate a declination correction of ~ 7°W. Field photos show alteration zones and specific sampling locations 
(HJG1, HJG2, HJG3, and HJG4). Dashed circles or ellipses in the HJG4 photograph show the specific sample sites for HJG4-F, - 0 m, - 1 m, - 3 m, 
and - 10 m. [Fm., Formation; Qtz, quartz; W, width]
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horizontally along the outcrop walls and then converted 
into three-dimensional distances based on strike and dip 
measurements of the margins. In addition, ~ 5  cm thick 
sandstones were obtained using a hand grinder at a dis-
tance of 0–5 cm and 5–10 cm from the margin, in order 
to detect minor thermal anomalies near the alteration 
zones. The thicknesses were precisely measured perpen-
dicular to the margin.

Because the intrusive rocks outcrop at location HJG3 
(near locations HJG1, HJG2, and HJG4), a sample was 
obtained for zircon U–Pb analysis, which could poten-
tially be helpful in assessing whether the cooling ages at 
locations HJG1, HJG2, and HJG4 reflect thermal effects 
related to the intrusion rather than from hydrothermal 
activity. The intrusive rock, which belongs to the Omine 
unit, consists of coarse (φ = ~ 5–8 mm) quartz porphyry 
containing brownish altered feldspars and mafic miner-
als. The northern contact between this intrusive body 
and the Haroku Formation is sharp and strikes at N57°W, 
82°N. According to the geological map, the distance 
from the sample locations in the Haroku Formation to 

the margin of the intrusive body was ~ 200  m for HJG1 
and ~ 100 m for HJG2 and HJG4.

Analyses applied
Geothermometric measurements using fluid-inclusion 
data were performed on three samples collected from 
quartz veins of the alteration zones to estimate the tem-
peratures of the geothermal activity that formed the 
alteration zones. The homogenization temperatures and 
final ice-melting temperatures were measured at the 
Geothermal Engineering Co., Ltd. (Additional file 1: Text 
S1). Geo- and thermochronological analyses using the 
ZHe, AFT, ZFT, and U–Pb zircon methods were per-
formed on 17 host-rock samples and two alteration zone 
samples (Table  1). Mineral separations, FT dating, FT 
length measurements, and U–Pb dating were conducted 
mainly at the Kyoto Fission-Track Co., Ltd. (Additional 
file 1: Text S2, Additional file 8: Table S1). U–Pb dating 
of the intrusive rock sample was performed at the Tono 
Geoscience Center, Japan Atomic Energy Agency (Addi-
tional file 1: Text S2, Additional file 9: Table S2). Helium 
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Fig. 6 Photomicrographs of vein rocks from the alteration zone of HJG1. a, b Quartz in blocky-textured vein rock under cross-polarized 
and reflected light; c, d veins cutting through sandstone under plane-polarized and cross-polarized light; quartz is holocrystalline 
and hypidiomorphic in veins but fragmented in sandstone. [Ep, epidote; Po, pyrrhotite; Py, pyrite; Qtz, quartz]
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measurements using an Alphachron system for (U–Th)/
He dating were performed at the Tono Geoscience 
Center (Additional file 1: Text S3). The U–Th content of 
the degassed zircons was measured at the University of 
Melbourne (Additional file 1: Text S3).

Analytical results and geo‑/thermo‑chronologic 
interpretations
Fluid‑inclusion analyses
It was difficult to find fluid inclusions suitable for meas-
urement, mainly because of the low transparency of the 
majority of the fluid inclusions. Hence, the fluid inclu-
sion analysis yielded only a relatively small number of 
measurements (Table  2). The homogenization tempera-
tures were estimated to be 140–145 °C (n = 3) for HJG1-F 
and 110–216  °C (n = 10) for HJG2-F. By measuring only 
primary inclusions, reproducible results were obtained 
for each of these two samples, ranging between 144 
and 145 °C for HJG1-F and 195–211 °C for HJG2-F. We 

interpreted these temperatures as reflecting fluid tem-
peratures at the time of formation of the alteration zones. 
No data were obtained for HJG4-F owing to the lack of 
two-phase fluid inclusions. The wide range of homog-
enization temperatures obtained from the secondary 
inclusions in HJG2-F may indicate diverse fluid activity 
at different temperatures and probably at various periods 
after initial formation of the alteration zone. The final ice-
melting temperatures were difficult to measure owing to 
the small size of the fluid inclusions. Only six measure-
ments (including those from secondary inclusions) were 
obtained from HJG2-F, yielding final ice-melting temper-
atures of − 5.0 °C to − 0.4 °C and salt concentrations of 0.7 
wt% to 7.9 wt%.

Zircon U–Pb analyses
Among the zircon U–Pb dating results for the sedi-
mentary and alteration zone samples (Additional file  2: 
Figs. S1 and Additional file 3: Fig. S2; Additional file 10: 

Table 1 List of samples

The latitude and longitude of the sample localities were obtained using a handheld GPS and are shown in WGS84. L indicates the horizontal distance from the 
alteration zones along the outcrop surfaces and Corr. L denotes the horizontal distance from the alteration zones calibrated against the strikes/dips of the alteration 
zones and the strikes of the outcrop walls (Fig. 5). Note that the uncertainties for L. and Corr. L of HJG#-#m are typically ± 10–15 cm, reflecting the width of the rock 
samples, whereas those of HJG#-#-#cm are < 1 cm. [Loc., locality; Qtz, quartz; Y, yes (analysis performed on sample)]

Sample code Lithology L [m] Corr. L [m] Analysis performed

Fluid inclusion U–Pb FT (U‑Th)/He

Loc. HJG1 (N33°49′52.64″, E135°43′26.47″)

 HJG1-F Alteration zone – – Y Y Y –

 HJG1-0–5 cm Sandstone – 0.00–0.05 – Y Y –

 HJG1-5–10 cm Sandstone – 0.05–0.10 – Y Y –

 HJG1-0 m Sandstone 0.0 0.0 – Y Y Y

 HJG1-1 m Sandstone 1.1 0.4 – Y Y Y

 HJG1-3 m Sandstone 3.1 1.0 – Y Y Y

 HJG1-10 m Sandstone 9.9 3.3 – Y Y Y

 HJG1-20 m Sandstone 17.1 5.6 – Y Y Y

Loc. HJG2 (N33°49′56.04″, E135°43′23.75″)

 HJG2-F Alteration zone – – Y Y Y -

 HJG2-0–5 cm Sandstone – 0.00–0.05 – Y Y -

 HJG2-5–10 cm Sandstone – 0.05–0.10 – Y Y -

 HJG2-0 m Sandstone 0.0 0.0 – Y Y Y

 HJG2-1 m Sandstone 0.7 0.7 – Y Y Y

 HJG2-3 m Sandstone 2.3 2.3 – Y Y Y

 HJG2-10 m Sandstone 10.2 10.1 – Y Y Y

Loc. HJG3 (N33°50′02.84″, E135°43′18.79″)

 HJG3-Upb Qtz porphyry – – – Y Y –

Loc. HJG4 (N33°50′10.26″, E135°43′15.27″)

 HJG4-F Alteration zone – – Y – – –

 HJG4-0 m Sandstone 0.0 0.0 – Y Y –

 HJG4-1 m Sandstone 1.2 1.2 – Y Y –

 HJG4-3 m Sandstone 4.2 4.2 – Y Y –

 HJG4-10 m Sandstone 11.7 11.6 – Y Y –
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Table 2 Summary of fluid inclusion data

Inclusion classification based on Roedder’s (1984) criteria. [conc., concentration; I, primary inclusion type; II, secondary inclusion type; Qtz, quartz; Tfim, final ice-
melting temperature; Th, homogenization temperature, in bold if for primary inclusion]

Inclusion No Mineral Inclusion type Th [°C] Tfim [°C] Salt conc. [wt% 
NaCl]

Note

HJG1-F

1–1 Qtz I 145 – –

1–2 Qtz II 140 – –

1–3 Qtz II – – – Th and Tfim were not obtained

1–4 Qtz II – – – Th and Tfim were not obtained

1–5 Qtz II – – – Th and Tfim were not obtained

1–6 Qtz II – – – Th and Tfim were not obtained

1–7 Qtz II – – – Th and Tfim were not obtained

1–8 Qtz II – – – Th and Tfim were not obtained

1–9 Qtz II – – – Th and Tfim were not obtained

1–10 Qtz I 144 – –

HJG2-F

2–1 Qtz II 186 -1.0 1.7

2–2 Qtz II – – – Th = 62 °C but not reproducible

2–3 Qtz II – – – Th = 104 °C but not reproducible

2–4 Qtz II – – – Th = 132 °C but not reproducible

2–5 Qtz II 117 – –

2–6 Qtz II 214 – –

2–7 Qtz II 173 – –

2–8 Qtz II 173 -0.4 0.7

2–9 Qtz II – – – Th = 118 °C but not reproducible

2–10 Qtz II – – – Th = 110 °C but not reproducible

2–11 Qtz I 195 ‑5.0 7.9
2–12 Qtz I 211 - -

2–13 Qtz II 187 -5.0 7.9

2–14 Qtz II 110 – –

2–15 Qtz II – – – Th = 110 °C but not reproducible

2–16 Qtz II – − 4.5 7.2

2–17 Qtz II 216 − 2.9 4.8

HJG4-F

4–1 Qtz II – – – Monophase liquid inclusion

4–2 Qtz II – – – Gaseous inclusion

4–3 Qtz II – – – Gaseous inclusion

4–4 Qtz II – – – Gaseous inclusion

4–5 Qtz II – – – Gaseous inclusion

4–6 Qtz II – – – Gaseous inclusion

4–7 Qtz II – – – Gaseous inclusion

4–8 Qtz II – – – Monophase liquid inclusion

4–9 Qtz II – – – Monophase liquid inclusion

4–10 Qtz II – – – Monophase liquid inclusion

4–11 Qtz II – – – Gaseous inclusion

4–12 Qtz II – – – Gaseous inclusion

4–13 Qtz II – – – Monophase liquid inclusion

4–14 Qtz II – – – Monophase liquid inclusion

4–15 Qtz II – – – Monophase liquid inclusion

4–16 Qtz I – – – Monophase liquid inclusion
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Table  S3), the grain ages generally indicate a few popu-
lations (Additional file 2: Fig. S1). In this study, we esti-
mated the maximum depositional age (MDA) of the 
samples from their grain ages. For each sample, we calcu-
lated the weighted mean 238U–206Pb age from concordant 
age grains belonging to the youngest grain cluster at 2σ 
(YC2σ; Dickinson and Gehrels 2009). For two samples, 
HJG2-F and HJG4-10  m, MDA was obtained from the 
youngest single-grain age (YSG; Dickinson and Gehrels 
2009) because the youngest grain cluster at ± 2σ com-
prised less than three grains (Table  3). The computed 
MDAs (± 1σ) range from 74.7 ± 4.1 Ma to 59.2 ± 4.0  Ma 
(Table 3; Additional file 3: Fig. S2). For the sedimentary 
and alteration zone samples, the ablation spots were 
determined in agreement with the areas in which spon-
taneous tracks were counted for simultaneously obtain-
ing FT dates. Therefore, these U–Pb dates may contain 
older dates obtained from the inherited cores (see Fig. 6 
of Malusá and Fitzgerald 2020). However, it is not critical 
for estimation of the MDAs if enough numbers of grains 
are measured.

Among the U–Pb dating results for the Omine Acidic 
Rocks (Additional file  4: Fig. S3; Additional file  10: 

Table  S3), sample HJG3-Upb produced eight discord-
ant ages from 25 measurements (Additional file  4: Figs. 
S3a and b), which is probably related to the common Pb 
contamination from tiny inclusions. Therefore, we used 
the weighted mean obtained from the 17 concordant 
238U–206Pb ages, 14.87 ± 0.57 Ma (± 2σ) (Additional file 4: 
Fig. S3c). As a secondary standard, OD-3 zircons were 
simultaneously measured with the unknown samples, 
yielding a concordia age of 32.6 ± 0.94 Ma (± 1σ) (Addi-
tional file 4: Fig. S3d) which is concordant with the refer-
ence age (33.0 ± 0.1 Ma (± 2σ); Iwano et al. 2013), thereby 
providing independent support for the accuracy of our 
results. For the intrusive rock samples, U–Pb dating was 
carried out on rims of the zircon grains with reference to 
the cathodoluminescence images. Therefore, the dates 
are expected to approximate the crystallization ages (see 
Fig. 6 of Malusá and Fitzgerald 2020).

Fission‑track analyses
We obtained pooled FT ages (± 1σ) ranging from 
48.7 ± 1.9 to 24.0 ± 1.1 Ma for zircons from the sedimen-
tary and alteration-zone samples (Table  4). Based on 
radial plots (Galbraith 1990) and finite mixture model 
(Galbraith and Green 1990), the zircon grains were 
grouped into up to three age populations for each sam-
ple. Cluster 1 is the youngest population of < ~ 31  Ma, 
cluster 2 is the population of ~ 54–38  Ma equivalent to 
the approximate depositional age in the Eocene (Suzuki 
1993; Tokiwa et al. 2016), and cluster 3 is the population 
of >  ~ 76  Ma, which is older than the depositional age 
(Table  5, Additional file  5: Fig. S4). The FT length data 
for zircon showed a bimodal distribution for all sedimen-
tary and alteration zone samples, consisting of shorter 
tracks of < ~ 8  μm and longer tracks of ~ 11  μm (Addi-
tional file 6: Fig. S5). The ages of the youngest population 
did not show a clear trend with respect to distance from 
the alteration zones, and were dispersed over the range 
of uncertainties between the samples (Fig. 7). This over-
dispersion might be derived from a combination of the 
partial resetting of FT ages, as evidenced by the bimodal 
FT length (Additional file 6: Fig. S5), and the variation in 
the crystallization ages of the youngest zircons, as shown 
by the scattered youngest zircon U–Pb ages (Fig. 7).

Apatite for the sedimentary and alteration-zone sam-
ples produced pooled FT ages (± 1σ) ranging from 
14.9 ± 2.1 to 9.0 ± 1.0  Ma (Table  4). The pooled ages 
were homogeneous, and did not show an obvious ten-
dency with respect to their locations relative to the 
alteration zones (Fig.  7). Given the low FT densities 
(Table  4), only a few FT lengths (n = 1–13) were meas-
ured on apatite for each sample, although some samples 
included tracks shorter than the assumed initial length 
(~ 14–15 μm) (Additional file 7: Fig. S6). 252Cf-irradiation 

Table 3 Summary of zircon U–Pb data for sedimentary rocks 
and alteration zones

YC2σ: youngest grain cluster at 2σ; YSG: youngest single grain (Dickinson and 
Gehrels 2009; Coutts et al. 2019). Bold font indicates the maximum depositional 
age adopted. YC2σ is expected to be calculated from three or more grains; 
therefore, the estimates for HJG2-F and HJG4-10 m were not adopted as the 
maximum depositional age (Additional file 3: Fig. S2)

Sample code All grains YC2σ YSG

n Age ± 1σ [Ma] Age ± 1σ [Ma]

HJG1-F 30 12 73.9 ± 2.7 68.6 ± 1.9

HJG1-0–5 cm 30 7 70.0 ± 2.9 65.5 ± 2.0

HJG1-5–10 cm 30 4 65.9 ± 4.3 59.6 ± 2.7

HJG1-0 m 28 6 72.0 ± 5.1 66.7 ± 2.1

HJG1-1 m 30 8 71.1 ± 3.7 64.3 ± 2.5

HJG1-3 m 30 10 74.7 ± 4.1 69.1 ± 2.6

HJG1-10 m 30 15 71.9 ± 3.7 65.9 ± 3.6

HJG1-20 m 30 4 66.4 ± 6.5 57.3 ± 3.2

HJG2-F 30 2 63.0 ± 4.2 60.3 ± 1.8
HJG2-0–5 cm 30 13 74.2 ± 2.0 70.4 ± 2.2

HJG2-5–10 cm 30 10 74.6 ± 3.6 69.0 ± 2.6

HJG2-0 m 30 5 63.5 ± 4.4 55.2 ± 3.8

HJG2-1 m 30 14 73.2 ± 5.0 67.0 ± 4.5

HJG2-3 m 30 7 71.2 ± 4.8 64.1 ± 2.7

HJG2-10 m 30 4 63.7 ± 5.1 57.8 ± 2.4

HJG4-0 m 30 4 69.1 ± 5.3 62.0 ± 2.8

HJG4-1 m 30 4 69.5 ± 5.4 61.7 ± 2.5

HJG4-3 m 30 5 71.2 ± 3.0 66.6 ± 2.6

HJG4-10 m 30 1 59.2 ± N/A 59.2 ± 4.0
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was performed on apatite in an effort to increase the con-
fined tracks (Donelick and Miller 1991), but large etch 
pits obscured the identification and measurement of the 
confined tracks. The chlorine content of the apatite was 
also measured as a kinetic parameter (e.g., Carlson et al. 
1999). The mean values range from 0.11 to 0.71 wt% for 
the sedimentary and alteration-zone samples (Table 4).

Quartz porphyry sample (HJG3-Upb) yielded 
pooled FT ages (± 1σ) of 16.4 ± 0.8  Ma on zircon and 
17.5 ± 5.1 Ma on apatite (Table 4). These ages are in broad 
agreement with the zircon U–Pb age of 14.87 ± 0.57 Ma 
(± 2σ) within the error range. The ZFT length exhibited 
a monomodal distribution with a mean length compara-
ble to the initial length (~ 11 μm) (Additional file 6: Fig. 
S5). This sample is interpreted as having cooled below the 
closure temperature of the ZFT system (~ 300 °C) imme-
diately after intrusion.

(U–Th)/He analyses
We performed ZHe dating of grains from HJG1 and 
HJG2 samples and simultaneously analyzed Fish Can-
yon Tuff reference zircons as an additional check on 
analytical accuracy (Table  6). The weighted mean age 
of 27.7 ± 3.1  Ma for Fish Canyon tuff is consistent with 
the reference value, 28.3 ± 0.4 Ma (Gleadow et al. 2015), 
implying accuracy of dating results for our unknowns. 
The relative error of the weighted mean age of Fish 

Canyon Tuff zircons (1σ = ~ 11.2%) was adopted as the 
total uncertainty of our (U-Th)/He analytical proce-
dures and was applied to the error of the single-grain 
ages of the unknowns (Table 6). Single-grain ages of the 
unknowns are in the range ~ 23.6–8.7 Ma, except for two 
outliers (HJG2-10  m-006 and HJG1-20  m-010). HJG2-
10  m-006 may be monazite, considering its extremely 
high U and Th content. HJG1-20 m-010 might have been 
incompletely digested because it had the lowest Th con-
tent. Taking into account the different ranges of closure 
temperatures, the weighted mean age of the other grains, 
16.8 ± 3.9 Ma, is consistent with the ZFT and AFT ages. 
Although this ZHe age is also consistent with the zircon 
U–Pb, ZFT, and AFT ages of HJG3-Upb, it is discussed in 
Sect. 6.1, along with their geological implications.

As with the other thermochronometers, the ZHe dates 
did not show a clear trend with distance from the altera-
tion zones. However, the single-grain ages were dispersed 
beyond the range of uncertainties for a few samples (e.g., 
HJG1-1  m, HJG1-10  m, and HJG2-0  m), which can be 
attributed to various factors. For example, we cannot 
deny the possible effects of He-rich inclusions or the het-
erogeneous distribution of parent isotopes (e.g., Danišík 
et  al. 2017). Alternatively, differences in the amount of 
radiation damage and subsequent differences in the clo-
sure temperature (Guenthner et  al. 2013) are also plau-
sible, considering that the samples contain zircons with 

Table 5 Summary of age clusters of ZFT data

The parameters were calculated using IsoplotR (Vermeesch 2018). [MSWD, mean square weighted deviation; P(χ2), the p-value of a chi-square probability for 
homogeneity; 95%CI, 95% confidence interval]

Sample code n Central age ± 1σ [Ma] MSWD P(χ2) Dispersion ± 95%CI 
[%]

Cluster 1 ± 1σ [Ma] Cluster 2 ± 1σ [Ma] Cluster 3 ± 1σ [Ma]

HJG1-F 30 24.54 ± 3.89 26 0 83.50 + 29.6 − 20 22.96 ± 0.93 127.30 ± 8.68

HJG1-0-5 cm 30 37.06 ± 4.61 28 0 65.8 + 22.0 − 15 22.86 ± 1.30 53.98 ± 2.57 113.03 ± 4.07

HJG1-5-10 cm 30 27.55 ± 2.66 17 0 50.2 + 17.3 − 12 16.59 ± 1.04 38.34 ± 1.19 122.4 ± 10.8

HJG1-0 m 28 26.53 ± 1.92 6.2 0 34.40 + 13.65 − 9.3 23.48 ± 0.91 44.99 ± 2.87

HJG1-1 m 30 33.71 ± 2.36 9.9 0 34.99 + 12.63 − 8.5 26.70 ± 1.37 39.48 ± 2.22 90.36 ± 6.19

HJG1-3 m 30 28.21 ± 1.76 5.5 0 29.98 + 11.68 − 8.1 25.40 ± 0.86 48.01 ± 2.48

HJG1-10 m 30 26.85 ± 2.30 11 0 43.8 + 15.3 − 10 26.35 ± 0.75 166.0 ± 21.3

HJG1-20 m 30 25.28 ± 2.07 8.4 0 40.6 + 14.9 − 10 20.83 ± 1.55 43.62 ± 3.86

HJG2-F 30 33.42 ± 2.90 15 0 44.2 + 15.8 − 11 27.18 ± 1.05 45.62 ± 1.79 96.47 ± 5.36

HJG2-0-5 cm 30 29.84 ± 3.91 31 0 69.6 + 23.2 − 15 26.82 ± 0.80 103.28 ± 4.31

HJG2-5-10 cm 30 38.16 ± 4.29 28 0 59.6 + 19.9 − 13 30.88 ± 0.99 91.15 ± 3.14

HJG2-0 m 30 24.13 ± 1.84 6.7 0 37.55 + 14.20 − 9.7 26.63 ± 0.80

HJG2-1 m 30 28.63 ± 2.19 6.9 0 37.65 + 14.19 − 9.7 24.61 ± 1.13 49.29 ± 3.08

HJG2-3 m 30 25.38 ± 1.26 2.6 3.4E-06 20.72 + 10.29 − 7.8 26.49 ± 0.80

HJG2-10 m 30 29.49 ± 2.75 12 0 47.7 + 16.8 − 11 21.27 ± 1.00 46.24 ± 1.96 116.6 ± 12.4

HJG4-0 m 30 24.18 ± 1.31 2.9 2.1E-07 22.98 + 10.93 − 8.1 25.03 ± 0.80

HJG4-1 m 30 28.27 ± 2.17 8.4 0 38.15 + 14.26 − 9.6 26.04 ± 0.82 76.34 ± 5.52

HJG4-3 m 30 26.42 ± 1.55 4.3 8.2E-14 27.33 + 11.50 − 8.1 23.61 ± 0.92 41.42 ± 2.68

HJG4-10 m 30 24.28 ± 1.85 9.3 0 38.37 + 13.77 − 9.3 23.15 ± 0.65 59.75 ± 3.94
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various crystallization ages (Additional file  2: Fig. S1). 
However, it is difficult to specify the main factor because 
of the small number of grains measured. Hence, the ZHe 
dates are regarded as reference data.

Geological implications
Thermal effects by the quartz porphyry dike intrusion
Before discussing possible thermal anomalies related 
to hydrothermal activity, we need to evaluate the ther-
mal effects of the quartz porphyry dike intrusion. The 
horizontal distance from the sample locations to the 
dike margins is ~ 200 m for HJG1, and ~ 100 m for HJG2 
and HJG4, whereas the dike width is ~ 100  m (Fig.  5). 
Considering the subvertical (82°N) dip of the bound-
ary between the dike and host rocks, these distances 
approximate the true three-dimensional distances. Mat-
suzaki et  al. (2004) simulated the thermal effects of a 
50-m-thick pyroclastic flow on the host rocks, showing 
the annealing of FTs of the host rock within ~ 20  m for 

zircon and within ~ 100  m for apatite from the bound-
ary. Therefore, under the conditions of this study, apa-
tite FTs might have been annealed by the dike intrusion, 
depending on thermal conditions, such as, ambient tem-
perature, thermal conductivity of the rocks, and dura-
tion over which the magma remained hot. However, this 
is less possible for the following reasons: (1) AFT ages 
from the three locations are younger than the intrusion 
age of ~ 15 Ma obtained from HJG3; (2) AFT ages from 
the three locations are comparable regardless of the dif-
ference in distance from the dike margin; and (3) some 
AFTs are shorter than the initial length (~ 14–15  μm), 
which is inconsistent with a total annealing scenario due 
to reheating (Additional file 7: Fig. S6).

Thermal anomalies by the hydrothermal activities
From the spatial patterns of the thermochronomet-
ric data plotted against the distance from the alteration 
zones (Fig.  7), we observed no significant variation in 
any system or parameter, even in the AFT system, which 
had the lowest closure temperature among the systems 
explored. Compared with the model predictions (Fig. 4), 
the observations can be explained by the two scenarios 
below. First, the cooling dates reflect regional cooling and 
exhumation rather than local reheating by fluid activity, 
as shown in the case of Tf = 150  °C (or lower Tf). Alter-
natively, the cooling dates may reflect reheating by fluid 
activity, as shown in the case of Tf = 200 °C, showing spa-
tially uniform resetting within a few meters of the altera-
tion zones. In the latter case, the AFT and ZHe systems 
are expected to have been totally and partially reset, 
respectively, depending on the heating duration although 
the ZFT system is not expected to have been reset sig-
nificantly. Nonetheless, this case is less likely because 
AFTs shorter than the initial length were observed in 
some samples (Additional file  7: Fig. S6). Consequently, 
the cooling dates obtained are considered to have been 
derived from regional thermal and exhumation histo-
ries. Based on a comparison with the model predictions 
(Fig.  4), it is concluded that fluid activity did not affect 
the cooling dates, probably because the heating dura-
tion was too short (e.g., less than ~ 10 years at HJG2 with 
Tf = ~ 200  °C) and/or fluid activity occurred at a greater 
depth before the regional thermal/exhumation events 
and was later overprinted by regional events (see also 
Fig. 8.7 of Malusá and Fitzgerald (2019b) for more com-
prehensive concepts about impacts of exhumation vs 
reheating on cooling dates).

Regional thermal and exhumation history of accretionary 
complexes
The regional thermal and exhumation histories of accre-
tionary complexes in the study area are constrained using 
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the thermochronological data. Data from 19 samples (17 
sedimentary and 2 alteration zone samples) were inte-
grated (Fig. 8) because they were collected within a range 
of < ~ 1  km (Fig.  5) and therefore would be expected to 
share a common thermal history with no local thermal 
disturbances. The integration resulted in pooled FT ages 
(± 1σ) of 10.9 ± 0.8  Ma (n = 545) for apatite and mean 
FT length of 13.51 ± 1.60  μm (n = 67) for apatite and 
9.82 ± 1.91  μm (n = 625) for zircon. For zircon, a central 
age of 28.3 ± 0.6 Ma (n = 568) was calculated rather than 
the pooled FT ages because the single-grain dates were 
grouped into four clusters. Although the number of FT 
length data for each sample is small for apatite, the inte-
gration shows a negatively skewed unimodal distribution, 
which is consistent with that of slowly cooled bedrock 
(e.g., Gleadow et  al. 1986). Using the integrated FT age 
and length data, we applied thermal inversion modeling 
using HeFTy v.1.9.3 software (Ketcham 2005) (Additional 
file 1: Text S4). Thermal inversion was performed assum-
ing a history of burial and exhumation (Fig. 8d). The AFT 
and ZFT data were incorporated into the inversion based 

on the annealing kinetics of Ketcham et  al. (2007) and 
fanning linear model of Yamada et al. (2007). As HeFTy 
utilizes pooled FT ages for the inversion, the pooled FT 
ages for zircon were recalculated to be 21.4 ± 0.5  Ma 
(± 1σ) from 373 grains belonging to the peak 2, and this 
was adopted for the inversion. ZHe data were not used 
for the inversion because it was difficult to address the 
causes of the over-dispersed grain ages owing to the 
small number of measurements, as noted in Sect.  “(U–
Th)/He analyses”.

In this study, we found that the ZFT lengths have a 
bimodal distribution, generally implying a reheating epi-
sode or long residence time within the ZFT PAZ (with 
subsequent cooling below the ZFT PAZ), and ZFT grain 
ages that are generally younger than the Eocene depo-
sitional age (Fig.  8b and c). Considering that ZFT ages 
of ~ 80–70 Ma have been reported for the Southern Shi-
manto Belt in adjacent areas (Umeda et al. 2007; Hana-
muro et al. 2008), the younger ZFT ages in this study may 
have been partially reset by a reheating episode related to 
heat influx in the Miocene (Hasebe and Watanabe 2004). 

Table 6 Summary of zircon (U–Th)/He data

a FT is the α-ejection correlation (Farley et al. 1996; Hourigan et al. 2005). Proxy for alpha-radiation activity is computed as eU = [U] + 0.235[Th] (Shuster et al. 2006). 
[*sample lost during U–Th measurement; **not included in weighted mean calculations; Corr., corrected; eU, effective uranium concentration]

Sample code Grain ID Mass [μm] 238U [ppm] 232Th [ppm] Th/U 4He [ncc/mg] FT eU [ppm] (U‑Th)/He age ± 1σ [Ma]

Raw Corr

Unknown Weighted mean age ± 1σ: 16.8 ± 3.9

HJG1-0 m 008 2.8 – – – 1665.3 – – – –*

015 1.3 302.0 162.7 0.54 477.4 0.60 340.3 11.5 19.3 ± 2.2

HJG1-1 m 010 2.8 481.2 242.7 0.50 827.8 0.71 538.2 12.6 17.8 ± 2.0

003 2.4 584.4 294.2 0.50 489.0 0.71 653.5 6.2 8.7 ± 1.0

HJG1-3 m 008 2.2 256.8 129.0 0.50 374.1 0.69 287.1 10.7 15.5 ± 1.7

004 3.7 570.2 212.8 0.37 910.8 0.75 620.2 12.1 16.2 ± 1.8

HJG1-10 m 009 3.1 901.1 292.4 0.32 1539.6 0.74 969.8 13.0 17.7 ± 2.0

013 4.0 605.4 147.6 0.24 585.9 0.73 640.1 7.5 10.3 ± 1.2

HJG1-20 m 006 4.9 312.7 181.5 0.58 652.0 0.75 355.4 15.1 20.2 ± 2.3

010 6.2 163.7 68.9 0.42 901.2 0.77 179.8 41.1 53.4 ± 6.0**

HJG2-0 m 002 4.6 147.2 128.0 0.87 210.9 0.76 177.3 9.8 12.8 ± 1.4

004 5.7 171.6 110.2 0.64 438.1 0.77 197.5 18.2 23.6 ± 2.6

HJG2-1 m 006 1.9 573.4 372.7 0.65 956.0 0.68 660.9 11.9 17.4 ± 1.9

009 1.7 483.1 481.1 1.00 864.2 0.64 596.2 11.9 18.5 ± 2.1

HJG2-3 m 003 5.3 659.8 179.8 0.27 1295.3 0.76 702.0 15.2 20.0 ± 2.2

010 2.2 274.5 133.2 0.49 415.8 0.70 305.8 11.2 15.9 ± 1.8

HJG2-10 m 006 3.7 5122.1 12,243.4 2.39 635.9 0.73 7999.3 0.7 0.9 ± 0.1**

009 3.8 309.1 176.4 0.57 554.9 0.72 350.5 13.0 18.1 ± 2.0

Fish Canyon Tuff: 28.3 ± 0.4 Ma (ZHe age ± 1σ; Gleadow et al. 2015) Weighted mean age ± 1σ: 27.7 ± 3.1

FCT3 013 5.1 217.9 93.5 0.43 978.0 0.76 239.9 19.7 24.5

103 9.8 356.9 213.0 0.60 1106.5 0.80 406.9 22.3 27.8

108 4.5 342.0 182.1 0.53 1066.0 0.74 384.8 22.7 30.7
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Fig. 8 Fission-track length histograms of (a) apatite and (b) zircon, integrated for 17 sedimentary and two alteration zone samples studied 
(Additional file 6: Figs. S5 and Additional file 7: Fig. S6). The track length distribution of zircon is shown with different infill colors for tracks marking 
azimuth angles that are higher (dark blue column) and lower (light blue column) than 60° to the crystallographic c-axis, because track lengths 
in zircon are dependent on etching and annealing properties, which exhibit angular variation (Hasebe et al. 1994; Yamada et al. 1995). c Radial 
plots (Galbraith 1990) of ZFT ages integrated for 19 samples. Plots were drawn using IsoplotR software (Vermeesch 2018). d Inverse-thermal-history 
models based on integrated FT ages and FT length data. Modeling was carried out using HeFTy v.1.9.3 software (Ketcham 2005). The constraints 
were determined based on geological and geochronological evidence to reconstruct burial and exhumation of the Haroku Formation (Additional 
file 1: Text S4). No good paths were obtained from the generated paths. [Acc., acceptable; Av, mean length ± 1σ; GOF, goodness of fit; n, population 
size; N, number of fission-track lengths measured]
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Considering that the study area is in the northern part of 
the Southern Shimanto Belt and lies between two loca-
tions where AFT ages of ~ 13 Ma and ~ 6 Ma have been 
reported (Hasebe and Tagami 2001), the AFT ages of ~ 10 
Ma reported here are consistent with a southward young-
ing trend. The AFT lengths exhibited a unimodal, nega-
tively skewed distribution (Fig.  8a), which is typical of 
undisturbed bedrock (cf. Gleadow et al. 1986), indicating 
relatively slow cooling through the AFT PAZ. Although 
thermal inversion results prior to ~ 30 Ma are not well 
constrained by the thermochronometric data alone and 
depend strongly on other geological constraints, results 
indicate residence in the ZFT PAZ prior to ~ 15 Ma, sub-
sequent rapid cooling between ~ 15 and 10 Ma through to 
the AFT PAZ, and slightly slower cooling from ~ 10 Ma 
to the present surface temperature (Fig. 8d).

Reheating to the ZFT PAZ until ~ 15 Ma might be 
related to the heat flux generated by the subsurface 
batholith of the middle Miocene acidic rocks (Hasebe 
and Watanabe 2004; Hoshi et  al. 2022) rather than by 
burial of the accretionary complexes. Paleotemperatures 
of the Otonashigawa Group are estimated to be ~ 227 °C 
and ~ 192  °C (± > 50  °C) from illite crystallinity val-
ues (Awan and Kimura 1996), which are lower than the 
maximum temperature of the estimated thermal history 
(Fig.  8d). In fact, the ZFT dates of the Shimanto Belt 
without secondary heating events are generally older 
than ~ 50 Ma (Hasebe and Tagami 2001; Hasebe and 
Watanabe 2004; Ohira et al. 2016) (Fig. 2), which is older 
than the ZFT dates in this study. Several geophysical 
observations have suggested the presence of a subsurface 
pluton beneath the Kii Peninsula (e.g., Fuji-ta et al. 1997; 
Kodaira et  al. 2006; Arnulf et  al. 2022; Nakajima 2023). 
In addition, recent numerical studies have predicted that 
a subsurface pluton can affect the cooling ages at the 
surface, even if the pluton is not exposed at the surface 
(Murray et al. 2018). Based on these discussions, reheat-
ing to the ZFT PAZ until ~ 15 Ma is attributable to the 
heat flux of the subsurface batholith.

The cooling history from ~ 15 to 10 Ma is interpreted 
as reflecting regional cooling and exhumation of the 
accretionary complexes, likely associated with mountain 
development of the Outer Zone of the Southwest Japan 
Arc, that is, the Kii, Shikoku, and Kyushu mountains. 
Together with the AFT ages previously determined for 
the Kii Peninsula (Hasebe and Tagami 2001), Shikoku 
(Hasebe et  al. 1993b, 1997) and Kyushu (Hasebe and 
Tagami 2001), these mountains are thought to have been 
exhumed through the AFT PAZ at ~ 10 Ma although 
only the Kii Mountains tilted northward. These moun-
tains were uplifted mainly in the middle Miocene, and 
their exhumation slowed; by contrast, most other moun-
tains on the islands of Japan were mainly uplifted under 

east–west compression since the late Pliocene (e.g., 
Yonekura et  al. 2001). Mountains in the Outer Zone 
might have been exhumed by very different mecha-
nisms, such as by the obduction of the SW Japan lith-
ospheric sliver onto the Shikoku Basin (e.g., Yamaji and 
Yoshida 1998) or by rapid subduction (> 10 cm/year) of 
the Philippine Sea plate during the clockwise rotation 
of the Southwest Japan Arc at the end of the opening of 
the Sea of Japan (Kimura et  al. 2005). However, obduc-
tion occurred at ~ 15 Ma (Yamaji and Yoshida 1998) and 
the clockwise rotation occurred at ~ 18–16 Ma (Hoshi 
et  al. 2015; Hoshi 2018), showing a slight time-lag with 
the estimated rapid cooling at ~ 15–10 Ma (Fig. 8c). This 
time-lag might reflect a hiatus from the initiation of the 
uplift to the exhumation of the fossil AFT PAZ. Such a 
time-lag is more plausible in young mountains where 
the rock uplift rates and the exhumation rates are not 
in steady-state (e.g., Ahnert 1970; Ohmori 1978; Sueoka 
et al. 2016). Since the beginning of the uplift, a few mil-
lion years are required to result in ~ 2–3 km of exhuma-
tion when uplifted at the rate of 0.1–1 mm/year (Fig. 5 of 
Sueoka et al. 2016).

Conclusions
We applied fluid-inclusion analyses and thermochronom-
etry in an attempt to detect thermal anomalies around 
hydrothermal alteration zones in the Hongu area of the 
Southwest Japan Arc. The temperatures of the fluids at 
the time of formation of the alteration zones were esti-
mated to be ~ 150  °C and ~ 200  °C based on the homog-
enization temperatures of the fluid inclusions. However, 
ZFT dates of ~ 27.2–16.6 Ma (the youngest cluster), ZHe 
dates of ~ 23.6–8.7 Ma (single-grain age) and AFT dates 
of ~ 14.9–9.0 Ma (pooled age) in host rocks show no con-
sistent spatial variation with distance from the alteration 
zones. Considering the spatial variation and comparison 
with the model predictions, these cooling dates are inter-
preted as reflecting regional thermal and exhumation 
episodes rather than the thermal effects of hydrother-
mal fluid activity. Namely, fluid activity did not totally or 
partially reset adjacent host thermochronometers, prob-
ably because the duration of their activity was far too 
short or because the activity predated regional thermal/
exhumation episodes. AFT ages of ~ 10  Ma may reflect 
mountain uplift and exhumation in the Outer Zone of 
the Southwest Japan Arc, which was possibly triggered 
by the obduction of the SW Japan lithospheric sliver onto 
the Shikoku Basin at ~ 15 Ma or by rapid slab subduction 
during clockwise rotation of the Southwest Japan Arc 
at ~ 18–16 Ma.
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AFT  Apatite fission track
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YSG  Youngest single grain age
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PAZ  Partial annealing zone
PRZ  Partial retention zone
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