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Abstract 

Variations of relativistic electron fluxes (E ≥ 1 MeV) and wave activity in the Earth magnetosphere are studied to deter-
mine the contribution of different acceleration mechanisms of the outer radiation belt electrons: ULF mechanism, 
VLF mechanism, and adiabatic acceleration. The electron fluxes were measured by Arase satellite and geostation-
ary GOES satellites. The ULF power index is used to characterize the magnetospheric wave activity in the Pc5 range. 
To characterize the VLF wave activity in the magnetosphere, we use data from PWE instrument of Arase satellite. 
We consider some of the most powerful magnetic storms during the Arase era: May 27–29, 2017; September 7–10, 
2017; and August 25–28, 2018. Also, non-storm intervals with a high solar wind speed before and after these storms 
for comparison are analyzed. Magnitudes of relativistic electron fluxes during these magnetic storms are found to be 
greater than that during non-storm intervals with high solar wind streams. During magnetic storms, the flux intensity 
maximum shifts to lower L-shells compared to intervals without magnetic storms. For the considered events, the sub-
storm activity, as characterized by AE index, is found to be a necessary condition for the increase of relativistic electron 
fluxes, whereas a high solar wind speed alone is not sufficient for the relativistic electron growth. The enhancement 
of relativistic electron fluxes by 1.5–2 orders of magnitude is observed 1–3 days after the growth of the ULF index 
and VLF emission power. The growth of VLF and ULF wave powers coincides with the growth of substorm activity 
and occurs approximately at the same time. Both mechanisms operate at the first phase of electron acceleration. At 
the second phase of electron acceleration, the mechanism associated with the injection of electrons into the region 
of the magnetic field weakened by the ring current and their subsequent betatron acceleration during the magnetic 
field restoration can work effectively.
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Graphical Abstract

Introduction
The fluxes of relativistic electrons in the outer radiation 
belt (ORB) vary by several orders of magnitude, espe-
cially during periods of enhanced geomagnetic activ-
ity. Relativistic “killer” electrons can destroy the satellite 
electronic equipment and provide harmful radiation dose 
for astronauts (Pilipenko et  al. 2006; Baker and Daglis 
2007). Identification of mechanisms responsible for the 
magnetospheric electron energization to relativistic ener-
gies (≥ 1  MeV) is still a challenge for the space physics. 
While the electrodynamics of the near-Earth space is 

driven by the solar wind and interplanetary magnetic 
field (IMF), the energization of magnetospheric electrons 
is caused by some inner-magnetospheric processes. In 
collisionless space plasma the solar wind flow does not 
interact directly with trapped magnetospheric electrons. 
Therefore, electromagnetic fields play a role of intermedi-
ary transferring the energy from low-energy particles to 
a small group of high-energy electrons. The problem of 
magnetosphere electron acceleration is challenging not 
only from a practical point of view, but because of fun-
damental reasons, as well. Indeed, during this process 
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somehow energy is transferred from particles with a rela-
tively low energy to particles with more than 5 orders of 
magnitude larger energies, which seemingly contradicts 
the principles of thermodynamics.

The relativistic electron enhancement is known to be 
closely associated with intense geomagnetic storms, in 
which intensity is characterized by Dst index (Baker and 
Daglis 2007). However, even moderate geomagnetic dis-
turbances were found to lead to comparable and even 
greater growth of the relativistic electrons (Borovsky 
and Denton 2006; Schiller et  al. 2014). Statistical stud-
ies demonstrated that not every geomagnetic storm 
produced relativistic electron flux enhancement at the 
geostationary orbit. For example, Reeves et  al. (2003) 
analyzing LANL and Polar data showed that ~ 50% of 
storms exhibited a high-energy electron flux increase, 
while ~ 25% showed an actual flux decrease, and ~ 25% 
showed no flux change. Moya et al. (2017) based on Van 
Allen Probes data showed that enhancement events were 
common for ∼2 MeV electrons at L∼5, but their number 
decreased with increasing energy at any given L shell.

A good correlation between the growth of the relativ-
istic electron fluxes (> 2 MeV), mainly at the geosynchro-
nous orbit, and solar wind velocity were found (Paulikas 
and Blake 1979; Baker et  al. 1979; Lyatsky and Khaz-
anov 2008; Potapov et  al. 2012). Besides the solar wind 
speed, a southward IMF turning may have a strong influ-
ence on relativistic electron enhancement (Blake et  al. 
1997; Miyoshi et al. 2013). The southward IMF evidently 
stimulates the substorm activity and energetic electron 
injection into the magnetosphere. The occurrence of sub-
storm during the storm recovery phase was proposed as a 
necessary condition for the ORB flux increase (Antonova 
et al. 2018).

In collisionless near-Earth plasma charged particles 
can gain or lose energy only due to the interaction with 
electromagnetic waves. Thus, possible mechanisms of 
electron acceleration in the Earth’s magnetosphere are 
caused by resonant wave–particle interaction with ultra-
low-frequency (ULF) and very low-frequency (VLF) 
waves. The resonant interaction of ULF waves in the Pc5 
frequency band with energetic electrons results in the 
earthward radial diffusion and the electron acceleration 
due to the betatron mechanism. The resonant interaction 
can take place with azimuthally large-scale (1 < m < 10) 
Alfven waves (toroidal mode) via drift resonance, when 
the wave period matches the multiple of the electron 
drift period, ω = mωd (ω is the wave frequency, m is the 
azimuthal wave number, and ωd is the electron drift fre-
quency) (Elkington et  al. 1999; Liu et  al. 1999; O’Brien 
et al. 2001; Shprits et al. 2008a). Toroidal Pc5 pulsations 
are mostly generated by the Kelvin–Helmholtz shear 
flow instability on the magnetopause or excitation of the 

cavity/waveguide mode by the solar wind buffeting of 
the magnetopause, with subsequent field-line resonant 
(FLR) amplification inside the magnetosphere (Kivelson 
and Pu 1984; Nopper et  al. 1982; Pilipenko et  al 2010). 
Besides, azimuthally small-scale waves (poloidal mode, 
m >> 10) can also lead to the electron acceleration via the 
drift-bounce resonance ω – mωd = kωb (ωb is the particle 
bounce frequency; k is an integer, usually ± 1) (Ukhorskiy 
et  al. 2009). The mechanism of the acceleration of seed 
energetic electrons supplied by substorms may be visual-
ized as the magnetospheric geosynchrotron, where ULF 
disturbances resonantly pump energy into orbiting elec-
trons in the magnetospheric trap.

Interplanetary shock arrival preceding the magnetic 
storm causes rapid compression of the magnetosphere 
and produces a variety of phenomena (Belakhovsky et al. 
2017). Among them is the rapid electron enhancement 
produced by the inward radial diffusion leading to the 
violation of the third adiabatic invariant (Kanekal et  al. 
2016; Hudson et al. 2017; Hao et al. 2019).

The acceleration of electrons injected into the magne-
tosphere may be closely associated with the substorm 
development. Indeed, the amount of energy contained 
in the ORB electrons is smaller than the amount of 
energy released in a typical substorm by orders of mag-
nitude, thus only a small fraction of the substorm energy 
is required to power the seed electrons. Rapid increases 
in ~ hour time interval of electron fluxes during substorm 
activation are caused by radial injection owing to impul-
sive electric fields induced during magnetic field dipolari-
zation (Lazutin 2013). However, the injection process is 
not sufficient to completely populate the ORB (Baker and 
Daglis 2007). Nonetheless, an impulsive injection of seed 
energetic (up to ~ 100 keV) electrons into the ORB heart 
during substorms is possibly the necessary condition for 
the ORB enhancement.

The VLF chorus emissions are another plausible agent 
of the energetic electron acceleration (Summers et  al. 
1998; Shprits et  al. 2008b; Thorne et  al 2013). Chorus 
waves are intense whistler mode electromagnetic emis-
sions characterized by a sequence of discrete elements in 
the range of 0.1–0.8 fe (fe is equatorial electron cyclotron 
frequency), often with a gap around 0.5 fe (Tsurutani and 
Smith 1977). Chorus emissions have some very particular 
property that makes them effective: they occur outside 
the plasmapause in a fairly narrow frequency band and 
propagate away from the magnetic equator where they 
are generated. Their source is the instability of electrons 
with energy ~ tens of keV injected during substorms, so 
the chorus emission intensity closely correlates with the 
substorm activity (Meredith et al. 2002; Jaynes et al. 2015; 
Takahashi et al. 2021). The excited chorus emission sup-
posedly accelerates locally electrons with ~ hundreds of 
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keV to MeV energies. Indeed, strong correlation between 
VLF chorus and relativistic electron fluxes was observed 
by Van Allen probes (Thorne et al. 2013). The influence of 
VLF chorus was found to be strongly L-dependent, being 
most efficient at L-shells inside the geostationary orbit. 
Thus, VLF chorus emission operates as an intermediary 
transferring energy from low-energy electrons to higher-
energy electrons. Possibly, the ULF and VLF acceleration 
mechanisms may produce synergetic impact on the ORB 
dynamics providing a significantly larger effect than their 
separate actions.

Strong depression of magnetospheric magnetic field 
during the storm onset provides an adiabatic decrease 
of the electron fluxes, but they should recover to the 
pre-storm level upon restoration of the magnetic field. 
However, Tverskoy (1997), and later Antonova (2006), 
indicated a possibility of the ORB belt energization dur-
ing this process. Seed electrons cast into a region with 
a weak magnetic field depressed by the ring current, 
upon the magnetospheric magnetic field recovery must 
undergo subsequent betatron acceleration. This mecha-
nism was claimed to interpret the relationship between 
the position of the radiation belt maximum after storm 
Lmax and maximum of Dst variation during storm (Tver-
skaya 1996; Tverskaya et  al. 2005) as follows (Antonova 
and Stepanova 2015; Antonova et  al. 2018; Moya et  al. 
2017; Boyd et al. 2018; Stepanova et al. 2021)

According to this conception, the stronger magnetic 
storm is, the deeper ORB maximum is located after it.

Most probably several mechanisms are involved in the 
ORB electron energization at different phases of mag-
netic storm, but the actual contribution of each of them 
is not known yet. In this paper, we try to estimate the 
contribution of the three above mechanisms (ULF, VLF, 
and adiabatic) into the acceleration of ORB electrons up 
to the relativistic energies for several events using Arase 
and GOES satellite data.

Data used and methods
The electron fluxes data in wide energy range (from 
tens of keV to some MeV) were provided by Arase 
(ERG) satellite and geostationary GOES mission. The 
Energization and Radiation in Geospace (ERG) project 
is designed to explore the Earth’s radiation belt, where 
relativistic-energy electrons with energies of the order 
of MeV are generated from considerably lower-energy 
populations, such as solar wind electrons with energy 

(1)
|Dst|max = 2.75 · 104L−4

max or |SYM - H|max

= 3.0 · 104L−4
max

of hundreds of eV and electrons from ionospheric 
sources with sub-eV energy (Miyoshi et al. 2018). The 
Arase/ERG satellite was developed by the Japan Aer-
ospace Exploration Agency (JAXA) in collaboration 
with universities and institutes in Japan and Taiwan. 
The essential key observation of this program entails 
to conduct in situ measurements of particles and elec-
tromagnetic fields in the ORB (Miyoshi et  al. 2018). 
Arase initiated its scientific observation on March 24, 
2017. Given its perigee altitude of ~ 400  km and its 
apogee altitude of ~ 32,000  km, Arase can cover the 
entire ORB in its orbit. The orbit inclination is ~ 31° 
and orbital period is ~ 570  min. We have analyzed 
data from XEP-e (extremely high-energy electron sen-
sor, 0.4–20  MeV) instrument (Higashio et  al 2018), 
and MEP-e (Medium-energy particle sensor – elec-
tron, 7–87 keV) instrument (Kasahara et al. 2018a, b). 
Additionally, we have used the data on fluxes of elec-
trons with different energies (40, 75, 475  keV, > 0.8, 
and > 2  MeV) from geosynchronous satellites GOES-
13, -15.

The solar wind and interplanetary magnetic field (IMF) 
parameters are taken from the OMNI database. The geo-
magnetic indices at hand, SYM-H and AE, character-
ize magnetic storm intensity and substorm activity. We 
have also calculated the corrected SYM-H* index values 
(Kozyra et  al. 2002) to reduce a contribution from the 
magnetopause currents.

To quantify the global wave activity in the Pc5 band 
(2–7 mHz) we use the planetary ULF wave power index 
(Pilipenko et al. 2017). This index is calculated from the 
world-wide magnetometer array data, and it is a proxy of 
large-scale magnetospheric disturbances in the Pc5 band. 
The ionosphere is a natural filter that screens the ground 
magnetometers from small-scale magnetospheric dis-
turbances (e.g., poloidal Pc5 waves with large azimuthal 
wave numbers m > 20).

As a proxy of the VLF activity in the magnetosphere 
we have used data from PWE (plasma wave experi-
ment) instrument on Arase satellite. The PWE sensor 
records electric fields in the frequency range from DC 
to 10  MHz and magnetic fields in the frequency range 
from a few Hz to 100  kHz (Kasahara et  al. 2018a, b). 
The electric field component is measured by two pairs 
of wire dipole antennas with a tip-to-tip length of 30 m, 
and the magnetic field component is measured using 
three-axis search coils. The OFA subcomponent (Mat-
suda  et al. 2018) of the PWE produces the power spec-
trum as well as the spectrum matrix for both electric and 
magnetic fields from 10 Hz to 20 kHz. The time resolu-
tions of the power spectrum and spectrum matrix are 
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nominally 1 and 8 s, respectively, while the possible time 
resolutions are 0.5–4 s and 4–32 s, respectively. We have 
summarized VLF wave intensity in frequency range 0.7–
4.54 kHz which is typical for the chorus wave activity.

The advantage of Arase orbit is the possibility to cross 
the region of the ORB maximum with time resolu-
tion ~ 2.4  h which provides a comparatively good pos-
sibility for the analysis of its temporal dynamics. Using 
data from Arase and GOES satellites, solar wind moni-
tors, and ground-based observations we analyze the elec-
tron acceleration processes during selected space weather 
activation periods and try to reveal contributions of vari-
ous mechanisms in the ORB response.

The comparative analysis of the storm 
and non‑storm periods
We analyze 3 geomagnetic storms that are among strong-
est during the Arase satellite epoch: May 27–29, 2017 
(Dst = −  125 nT), September 7–10, 2017 (Dst = − 122 
nT), and August 25–28, 2018 (Dst = −  175 nT). These 
storms are caused by the coronal mass ejection (CME) 
and are preceded by the storm sudden commencement 
(SSC). We have also considered the non-storm periods 
(|Dst|< 50 nT) with a high solar wind speed before and 
after these storms. Figure  1 shows the location of the 
Arase satellite in the equatorial XY plane (GSM coordi-
nate system) during those three events.

We compare storm interval with non-storm interval 
(with high solar wind speed) to find whether the level 
of relativistic electrons depends on geomagnetic storm 
intensity or not. The Tveskoi mechanism of electron 
acceleration is related to the intensity of the geomagnetic 
storm. We also try to find out whether the speed of the 
solar wind alone (even without magnetic storm) affects 
the fluxes of relativistic electrons. Since the solar wind 

speed is the main factor for the generation toroidal Pc5 
pulsations in the magnetosphere.

May–June 2017
We have selected two time intervals: the non-storm 
period with a high solar wind speed (May 15–26) and 
the geomagnetic storm (27 May–2 June). The storm and 
non-storm intervals are highlighted in red and green on 
variations of SYM-H index, respectively (Fig.  2). Dur-
ing the non-storm time interval, the solar wind speed 
V experiences two enhancements: during the first 
one V reaches ~ 600  km/s, during the second one V 
reaches ~ 760 km/s (Fig. 2, panel 9). All the time SYM-H 
index keeps at the level about − 30 nT (Fig. 2, panel 5). 
The arrivals of the fast solar wind streams are preceded 
by jumps of the solar wind density up to N ~ 60   cm−3. 
During non-storm interval the IMF Bz-component var-
ies from negative to positive values, − 10/ + 5 nT (Fig. 3, 
panel 6).

During the storm, SYM-H index drops to -142 nT 
(Fig.  2, panel 5), and the solar wind speed, ~ 400  km/s, 
becomes lower than that during the non-storm interval, 
and only after the storm V reaches ~ 500  km/s (Fig.  2, 
panel 9). The storm onset is preceded by the strong jump 
of the solar wind density up to 60  cm−3 (Fig. 2, panel 10). 
The IMF Bz-component keeps southward, about –20 nT, 
during about 20 h (Fig. 3, panel 6) which enables the solar 
wind energy to penetrate inside the Earth’s magneto-
sphere. It was CME (coronal mass ejection) geomagnetic 
storm since this storm were accompanied the storm sud-
den commencement.

Figure 2 (panels 1–3) shows variations of the electron 
fluxes with different energies: 40  keV (“seed” electrons), 
475  keV (sub-relativistic electrons), and > 2  MeV (rela-
tivistic electrons). Daily variations in fluxes of relativ-
istic electrons are not seen in fluxes of 40 and 475  keV 

Fig. 1 The orbits of the Arase satellite in XY plane of the GSM coordinate system: 10 May–10 June 2017 (left-hand panel), 1–30 September 2017 
(central panel), and 10 August–10 September 2018 (right-hand panel)
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electrons. The fluxes of the relativistic electrons start 
to grow tens of hours after the growth of 40  keV and 
475 keV electron fluxes. The flux of the relativistic elec-
trons abruptly decreases between 27 and 28 May after 

the jump of the solar wind density (before the onset of 
magnetic storm). Possibly, it caused by geosynchronous 
magnetopause crossing or by adiabatic Dst-effect (Li 
et al. 1997).

Fig. 2 The electron fluxes on GOES-13, solar wind parameters, indexes of geomagnetic activity on 10 May 2017–10 June 2017. The variations 
of GOES-13 electron fluxes with energy E > 2 MeV (first panel), with energy E = 475 keV (second panel), with energy E = 40 keV (third panel); SYM-H 
index, AE-index; OMNI solar wind velocity V, OMNI solar wind density N; ULF power index, VLF power intensity (0.7–4.54 kHz) according to Arase 
satellite on 10 May–10 June 2017. The green line on variations of SYM-H index is non-storm interval, red line is storm interval
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At the geostationary GOES-13 orbit the peak level of 
relativistic electron fluxes during non-storm interval 
(>  104 1/(eV  cm2 s str)) on 20–25 May is greater than that 
during the strong geomagnetic storm (<  104 1/(eV  cm2 s 
str)). Thus, at the geosynchronous Earth orbit (GEO) the 
geomagnetic storm intensity is not a decisive factor of the 
relativistic electron level, whereas the solar wind speed 
determines primarily the relativistic electron energiza-
tion. This congestion is consistent with the ULF genera-
tion mechanisms, because the magnetospheric ULF wave 
power is well known to grow directly in response to the 
solar wind speed.

The high level of relativistic electrons coincides in time 
with the high level of energetic 40  keV protons (Fig.  2, 
panel 4) till May 27. The proton injection may stimulate 
the excitation by kinetic instabilities of storm-time Pc5 
pulsations, though GOES-13 has not detected them.

The rapid growth of the 40  keV (“seed”) electrons 
occurs simultaneously with the increase of AE index 
(Fig.  2, panel 6). The relevant substorm activation coin-
cides in general with the growth of ULF and VLF activi-
ties in the magnetosphere, as evident from the ULF index 
(Fig. 2, panel 7) and VLF power (Fig. 2, panel 8) behavior. 
The growth of the magnetospheric ULF activity is pos-
sibly stimulated by the jump of the solar wind density, 

Fig. 3 The electron fluxes on Arase, indexes of geomagnetic activity, solar wind parameters on 10 May 2017–10 June 2017. Variations of electron 
fluxes on Arase with energy E = 60 keV (first panel), with energy E = 700 keV (second panel), with energy E = 1 MeV (third panel); SYM-H* index, 
AE-index; Bz-component of the IMF, solar wind velocity V, solar wind density N according to the OMNI database on 10 May–10 June 2017. The green 
line on variations of SYM-H* index is non-storm interval, red line is storm interval
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though the solar wind speed during this moment is not 
very high (< 400 km/s).

The Arase data give a possibility to examine how the 
electron fluxes (60 keV, 700 keV, and 1 MeV) vary at dif-
ferent L-shells (Fig.  3). The Arase orbit from May 10 to 
June 10 lies in the midnight and morning sectors (Fig. 1, 
left panel). The red line shows the location of the ORB 
maximum (Fig.  3). The 60  keV electrons start to grow 
at higher L-shells than the MeV electrons do. The total 
level of the 1-MeV relativistic electron fluxes during 
geomagnetic storm is much greater than during non-
storm period in contrary to the GEO observations. The 
maximum of the relativistic electron fluxes shifts during 
geomagnetic storm to lower L-shells (L ≈ 3.5–4) as com-
pared with the non-storm period (L ≈ 5). We calculated 
the SYM-H* index which does not include the contribu-
tion of the magnetopause current to the SYM-H index. 
The red color on variations of the SYM-H index is storm 
interval, green color is non-storm interval. However, the 
value of SYM-H* during non-storm interval is less than 
− 50 nT. So, possibly, this is CIR magnetic storm.

The above analysis has shown that on the initial phase 
the simultaneous increase of the ULF and VLF activities 
contribute to the electron acceleration. After that, the 
relativistic electron fluxes keep nearly on the same level 
during about ten days. After initial phase of electron 
acceleration, the recovering magnetospheric magnetic 
field can also contribute to electron energization due to 
the betatron mechanism. The efficiency of the betatron 
mechanism is characterized by variations of SYM-H* 
index. During the storm time interval, the depression of 
the magnetospheric magnetic field is much greater than 
that during the non-storm interval (Fig.  3, panel 4). In 
line with that, the level of relativistic electron flux during 
the magnetic storm is substantially greater than that dur-
ing the non-storm interval (Fig. 3). Additionally, we have 
estimated the relationship like (1) and found that |SYM-
H|max*Lmax

4 ~ 2.8·104. The obtained relationship is rather 
close to (1), the difference may indicate that other mech-
anisms are involved in the electron acceleration except 
Tverskoi mechanism.

For this geomagnetic storm during the initial phase 
of electron acceleration the solar wind speed is not high 
(~ 400 km/s), the relativistic electron fluxes reach a high 
level at lower L-shells. The solar wind density increase 
can also generate ULF waves in magnetosphere (Taka-
hashi et al. 2021) due to FLR or cavity/waveguide mode. 
Therefore, we suggest that a high solar wind velocity is 
not always a necessary factor for the relativistic electron 
growth. At the same time, the substorm activity intensity 
is the important factor for the ORB enhancement.

September 2017
During this strong magnetic storm (SYM-H ≈ -150 
nT), AE index reaches extreme values ~ 2700 nT (Fig.  4, 
panels 5 and 6), the solar wind speed has extreme val-
ues ~ 860 km/s (Fig. 4, panel 9), and the IMF Bz-compo-
nent is less than -30 nT (Fig.  5, panel 6). There are two 
main phases of the storm since the IMF Bz-component 
has an excursion to positive values. During the second 
main phase the SYM-H index reaches about − 120 nT.

Unlike the previous event, the non-storm interval with 
a high solar wind speed is observed after the storm on 
September, 14–21. The storm and non-storm intervals 
are highlighted in red and green on variations of SYM-H 
index, respectively (Fig.  4, panel 5). During the non-
storm period the solar wind speed (V < 700 km/s) is less 
than that during the storm period, but has such values 
during a long time, > 3 days (Fig. 4, panel 9). AE index is 
also elevated (> 1000 nT) during a long time, from Sep-
tember, 14 to September, 18. A high level of AE index 
during a long time suggests that such period can be the 
High Intensity Long Duration Continuous AE Activity 
(HILDCAA) event.

Figure 4 (panels 1–3) shows variations of the electron 
fluxes with energies 40 keV, 700 keV, > 2 MeV at GOES-
13 satellite. Daily variations are not pronounced in fluxes 
of 40 and 475  keV electrons. At the geostationary orbit 
the magnetic storm causes dropout of relativistic elec-
trons with a subsequent recovery to the pre-storm level. 
The relativistic electron fluxes start to increase some 
days after the growth of 40  keV and 475  keV electrons. 
The growth of energetic (40 keV and 475 keV) electrons, 
and relativistic (> 2 MeV) electrons occurs during tens of 
hours. The high level of relativistic electrons coincides 
in time with the high level of energetic 40  keV protons 
(Fig.  4, panel 4) till September 22. During both non-
storm and storm time intervals, the growth of ULF index 
coincides with the growth of AE index and VLF activity 
(Fig. 4, panels 6–8). Therefore, it is not easy to separate 
the contribution of ULF and VLF acceleration mecha-
nisms over time.

At the geosynchronous orbit, the level of the relativistic 
electron fluxes during the non-storm interval (>  104 1/(eV 
 cm2 s str)) is much greater than that during the strong 
magnetic storm (<  104 1/(eV  cm2 s str)). Variations of the 
electron fluxes (60 keV, 700 keV, and 1 MeV) at different 
L-shells as observed by Arase are shown in Fig.  5. The 
Arase orbit from 1 to 30 September lies in the evening 
sector (Fig. 1, center panel). The red line on the second 
and third panels marks the locations of the electron flux 
maxima. The maximum of relativistic electrons (1 MeV) 
shifts to lower L-shell (L ≈ 3.5) than during events in May 
2017 (Fig. 5, panel 3). During the non-storm interval, the 
maximum of relativistic electrons is located at L ≈ 4.5 
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(Fig. 5, panel 3). The total level of the relativistic electron 
flux during the storm is much higher than that during the 
non-storm interval.

During this event the increase of ULF and VLF activi-
ties occurs practically simultaneously, so on the ini-
tial phase both mechanisms may provide contribution 
to electron acceleration. At later phase, the recovering 

Fig. 4 The electron fluxes on GOES-13, solar wind parameters, indexes of geomagnetic activity on 1–30 September 2017. The variations of GOES-13 
electron fluxes with energy E > 2 MeV (first panel), with energy E = 475 keV (second panel), with energy E = 40 keV (third panel); SYM-H index, 
AE-index; OMNI solar wind velocity V, OMNI solar wind density N; ULF power index, VLF power intensity (0.7–4.54 kHz) according to Arase satellite 
on 1–30 September 2017. The green line on variations of SYM-H index is non-storm interval, red line is storm interval
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magnetic field can provide an additional electron accel-
eration due to the betatron mechanism. However, the 
obtained relationship |SYM-H|max*Lmax

4 ~ 2.104 for this 
event deviates significantly from the relationship (1). 
This discrepancy may indicate that besides the betatron 
mechanism other mechanisms are still involved in the 
electron acceleration. The increase of relativistic elec-
trons at larger L during HILDCAA period can be pro-
vided by ULF waves, stimulated by increased solar wind 
velocity and substorm activity.

August–September 2018
During this storm on August 26–September 2, SYM-H 
index drops to −  210 nT. During pre-storm interval 

16–23 August SYM-H index is about − 40 nT, while the 
solar wind speed (V ~ 670 km/s) is somewhat higher than 
during the storm (V ~ 630  km/s) (Fig.  6, panel 5). How-
ever, the substorm activity is much stronger during the 
storm (AE ~ 2200 nT) than during the non-storm inter-
val (AE ~ 1200–1300 nT). During the storm the IMF Bz-
component is southward for ~ 18 h at the level about − 16 
nT (Fig.  7, panel 6). During the initial storm phase, the 
solar wind density jumps up to N ~ 34  cm−3.

Unlike the previous two events, at the geostation-
ary orbit after the storm the level of relativistic electron 
flux, >  105 1/(eV  cm2 s str), is higher than after the non-
storm interval, <  105 1/( eV  cm2 s str) (Fig.  6, panel 1). 
Gradual growth of the energetic (40  keV and 475  keV) 

Fig. 5 The electron fluxes on Arase, indexes of geomagnetic activity, solar wind parameters on 1–30 September 2017. Variations of electron fluxes 
on Arase with energy E = 60 keV (first panel), with energy E = 700 keV (second panel), with energy E = 1 MeV (third panel); SYM-H* index, AE-index; 
Bz-component of the IMF, solar wind velocity V, solar wind density N according to the OMNI database on 1–30 September 2017. The green line 
on variations of SYM-H* index is non-storm interval, red line is storm interval
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electrons and relativistic electrons (> 2  MeV) occurs for 
tens of hours (Fig. 6, panels 1–3). The growth of the ULF 
index and VLF activity coincides with the growth of the 

AE index during both non-storm and storm time inter-
vals (Fig. 6, panels 6–8).

The Arase orbit from August 10 to September 10 lies 
in the postmidnight-evening sector (Fig.  1, right panel). 

Fig. 6 The electron fluxes on GOES-13, solar wind parameters, indexes of geomagnetic activity on 10 August–10 September 2018. The variations 
of GOES-13 electron fluxes with energy E > 2 MeV (first panel), with energy E = 475 keV (second panel), with energy E = 40 keV (third panel); SYM-H 
index, AE-index; OMNI solar wind velocity V, OMNI solar wind density N; ULF power index, VLF power intensity (0.7–4.54 kHz) according to Arase 
satellite on 10 August–10 September 2018. The green line on variations of SYM-H index is non-storm interval, red line is storm interval
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The satellite records the 60  keV electron flux growth at 
wider and higher L-shells than the growth of MeV elec-
trons. The maximum of the relativistic electrons (1 MeV) 
is found to be located at L ≈ 3.5–4, whereas during 
non-storm interval the ORB maximum is located at L ≈ 
5 (Fig. 7, panel 3). The total level of the relativistic elec-
tron flux during the storm is higher than that during the 
non-storm interval both at the geostationary orbit and 
at lower L-shells (Fig. 7, panel 3). For this event the solar 
wind speed has comparable values during both storm and 
non-storm intervals, but AE index during storm interval 
is nearly 2 times higher than during non-storm interval. 
A higher electron energization rate during the storm 
period is probably due to a higher level of substorm 

activity. The increase of the ULF and VLF activities in the 
magnetosphere practically coincide, therefore ULF waves 
and VLF emissions may both provide a contribution to 
the electron acceleration on the initial phase.

The additional betatron acceleration mechanism may 
operate upon the magnetospheric magnetic field recov-
ery at the later phase. However, the estimated relation-
ship |SYM-H|max*Lmax

4 ~ 4.56*104 deviates considerably 
from the relationship (1). Thus, the scenario of seed elec-
tron injection into the region of depressed magnetic field 
probably operates simultaneously with ULF and VLF 
associated mechanisms. A reliable verification of this sce-
nario requires more careful analysis of the ring current 
distribution and dynamics.

Fig. 7 The electron fluxes on Arase, indexes of geomagnetic activity, solar wind parameters on 10 August–10 September 2018. Variations 
of electron fluxes on Arase with energy E = 60 keV (first panel), with energy E = 700 keV (second panel), with energy E = 1 MeV (third panel); SYM-H* 
index, AE-index; Bz-component of the IMF, solar wind velocity V, solar wind density N according to the OMNI database on 10 August–10 September 
2018. The green line on variations of SYM-H* index is non-storm interval, red line is storm interval
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Discussion
In this paper, we have examined 3 strong magnetic 
storms with different intensities and the non-storm inter-
vals with a high solar wind speed before and after storms 
to reveal a possible contribution of different mecha-
nisms into the electron acceleration in the Earth magne-
tosphere. These storms are caused by CMEs since their 
intensity is high, Dst < −  100 nT, and they are preceded 
by SSC (Borovsky and Denton 2006). We focus on case 
study which can shed light on some aspects that cannot 
be revealed in statistical study. Besides popular ULF and 
VLF mechanisms of electron energization, we have con-
sidered also the betatron mechanism associated with the 
magnetic field recovery.

We have examined the contribution of ULF and VLF 
activities into the relativistic electron acceleration using 
as the activity measures the ULF wave power index 
derived from ground-based magnetometer data and the 
VLF power from Arase satellite. Other teams used dif-
ferent measures for describing ULF/VLF activities and 
space weather conditions. O’Brien et al. (2003) to charac-
terize the chorus wave activity used MeV electron micro-
bursts detected by the low-altitude SAMPEX satellite. 
They concluded that in the inner magnetosphere (L ~ 4.5) 
the relativistic electron energization is likely caused by 
VLF/ELF wave acceleration, while ULF activity probably 
produces the dominant acceleration at the geosynchro-
nous orbit and beyond. Katsavrias et al. (2015) following 
Li et al. (2013) for describing VLF emission activity used 
electron flux data over the energy of 30–100  keV from 
the low-altitude POES satellites. To characterize the ULF 
activity, they used magnetic field measurements at RBSP 
satellites. They found that the contributions of ULF and 
VLF activities into the relativistic electron acceleration 
were different for different events. Simms et  al. (2016) 
used ground ~ 1 kHz VLF measurements at Halley station 
(Antarctica) at the dawn sector to characterize the VLF 
activity in the magnetosphere. However, this approach 
is not very reliable, because some VLF chorus emissions 
are confined near the equator and do not propagate to 
the ground. Simms et  al. (2018) used DEMETER satel-
lite measurements for describing the VLF activity and 
the ground ULF index. They constructed the regression 
model which showed that ULF waves and VLF chorus 
emissions exerted approximately the same impact on 
relativistic electron flux at two lower energy channels 
(0.7–3.5  MeV), whereas at higher energies the chorus 
influence remained strong while the ULF Pc5 influence 
drops off. Simms et  al. (2021) using regression analysis 
showed that over L = 4–6 both chorus and ULF Pc5 cor-
related with immediate electron decreases and delayed 
enhancement, whereas ULF waves consistently showed a 
stronger influence on electron enhancement than chorus 

waves did. Capman et al. (2019) using multiple and logis-
tic regression analysis determined among different fac-
tors, such as ULF waves, VLF emissions, EMIC waves, 
seed electron, Dst index, substorm occurrence, and solar 
wind input, the most essential factors for the relativis-
tic electron dynamics at the geostationary orbit. They 
claimed that the most influential were ULF Pc5 waves 
and the seed electrons.

Statistical studies (Lyatsky and Khazanov 2008; Simms 
et  al. 2016; Kim et  al. 2015; Pinto et  al. 2018) proved a 
poor correlation between Dst index and growth of MeV 
electrons at geostationary orbit. Our analysis of the Arase 
data proved that the maximum of MeV electron distribu-
tion over L-shells shifts deeper into the magnetosphere 
during geomagnetic storms. So during recovery phase 
of the magnetic storms adiabatic mechanism can have 
contribution to the electron acceleration (Antonova and 
Stepanova 2015).

Our observations have shown the presence of the 
intense 40  keV proton fluxes on GOES satellite during 
the relativistic electron growth. This correspondence may 
be considered as indirect indication on a possible con-
tribution of storm-time Pc5 pulsations generated by the 
ring current proton instability to the electron accelera-
tion (Ukhorskiy et al. 2009).

The examination of the May 27–30, 2017 storm has 
shown that a high solar wind velocity is not an obliga-
tory condition for the relativistic electrons growth. In line 
with that, Reeves et  al. (2011) based on 20  years LANL 
satellite data showed that correlation between the solar 
wind velocity and flux of MeV electrons was complex and 
not linear.

A powerful tool for the study of the electron evolution 
upon changes of the magnetospheric magnetic field is the 
phase space density (PSD) calculated in the space of adi-
abatic invariants. In accordance with (Reeves et al. 2013), 
radial diffusion driven by ULF waves produces a smooth-
ing of the PSD radial profile, while the VLF mechanism 
produces a local PSD peak where the resonant inter-
action occurs. The PSD radial profiles from Van Allen 
probes showed that local acceleration was the dominant 
acceleration mechanism for MeV electrons in the ORB, 
whereas 87% of the enhancement events exhibited local-
ized peaks (Boyd et  al. 2018). The calculation of PSD 
requires an accurate magnetic field model (Reeves et al. 
2013), while substorm injections can produce temporal 
changes of the magnetic field geometry which cannot be 
adequately described by existing models. Therefore, the 
absence of definite information about the global changes 
of the magnetic field creates an uncertainty in the analy-
sis results.

During the storm main phase, the ORB is partly 
depleted, and energization of relativistic electrons by 
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several orders of magnitude takes place during a recov-
ery phase on the background of a high solar wind stream 
and extended substorm activity. These conditions favor 
the excitation of both ULF waves and VLF emissions. The 
electron fluxes reach largest magnitudes about 1–2 days 
after the appearance of high solar wind streams. Miyoshi 
and Kataoka (2005) found that on average CIR-associ-
ated storms were more effective in the MeV electron flux 
enhancement at the geosynchronous orbit than CME 
storms. Energetic electrons (50–100  keV) injected dur-
ing substorms serve as seed particles for a subsequent 
acceleration of a group of these electrons up to relativistic 
energies. The injection of energetic electrons also stimu-
lates the excitation of VLF emissions. Thus, a substorm 
activity is one of the necessary conditions for the appear-
ance of killer-electrons in the magnetosphere.

A radial diffusion of seed electrons inside the geosyn-
chronous orbit is stimulated by elevated level of ULF 
waves and fluctuations. Upon the diffusion into the 
regions with a more intense magnetic field electrons 
are betatron-accelerated. Thus, ULF activity operates 
as a "supplier" of pre-accelerated energetic electrons 
into the ORB. In the inner magnetosphere these elec-
trons are locally accelerated due to resonant interaction 
with VLF chorus emissions. It was found (Foster et  al. 
2017) that chorus waves can accelerate seed electrons by 
50–200 keV in resonant nonlinear interactions on a time 
scale of 10–100 ms.

Indeed, a statistical multi-factor analysis showed that 
synergetic influence of ULF and VLF powers on electron 
fluxes is higher than a sum of separate influence of those 
two factors (Simms et  al. 2016). Whistler-mode chorus 
waves are often modulated by ULF waves. It was found 
periodic excitations of lower- and upper-band chorus 
waves near ULF wave crests and troughs, respectively (Li 
et al. 2023).

However, the electron energization can take place with-
out ULF or VLF wave activity involved. According to 
Tverskoy (1997) scenario, during the storm main phase 
an injection of energetic electrons into a region with a 
depressed magnetic field occurs, then upon a recovery 
of magnetospheric magnetic field their energy increases 
due to betatron acceleration. For a steep energy spec-
trum even a relatively weak enhancement of magnetic 
field leads to a considerable increase of fluxes. If depres-
sion is produced by the ring current, inside the current 
ring the magnetic field depression can be roughly esti-
mated as ΔB = (2/3)|Dst|. A similar depression of B may 
be produced by an enhanced plasma pressure pm along 
a flux tube conjugate to the auroral oval. According 
to this mechanism, the position  Lm of a belt of acceler-
ated electrons corresponds to a region with maximal 
magnetic field depression ΔBm ~ (5/3)ΔB. The statistical 

relationship between the flux maximum Lm and the Dst-
index magnitude |Dst|~ Lm

−4 is considered as a support 
of this conjecture (Tverskaya 1996). This relationship can 
be comprehended as a result of adiabatic acceleration, 
when a group of particles is transferred into a magnetic 
flux tube with a smaller specific volume W ~ L4 (Tverskoy 
B.A. 1997). Thus, the problem of electron acceleration 
should be considered in coordination with the partial 
ring current and auroral oval dynamics (Antonova et al. 
2009). In support of this view, it was found that during 
the storm maximum the westward electrojet moved to its 
lowest L-position at which a peak of the belt of relativis-
tic electrons finally occurred (Tverskaya 1996; Tverskaya 
et  al. 2005). Moreover, the peak of the symmetric ring 
current (pressure) was found to coincide with the peak 
of storm-injected belt of relativistic electrons (Tverskaya 
2000). However, the above mechanism, relying on a sub-
stantial suppression of the magnetospheric magnetic field 
by the ring current, cannot interpret the occurrence of 
high electron fluxes during non-storm (|SYM-H|< 20 nT) 
events described above. Probably, during these events the 
energization of electrons took place due to activation of 
substorm activity and stimulation of ULF wave power by 
high solar wind streams.

The consideration of the above events has shown that 
there are at least several magnetospheric factors that are 
important for the magnitude of the electron response at 
geosynchronous orbit and inside it to space weather dis-
turbances: extended substorm activity, solar wind speed, 
density, enhanced ULF power, and VLF chorus power. 
The ULF power increase commonly coincides with the 
growth of the VLF power. Therefore, it is not easy to sep-
arate these mechanisms by time of action. The solar wind 
disturbances stimulate ULF waves inside the magneto-
sphere and substorm activity. The energetic electrons 
injected during substorms excite VLF emissions, whereas 
the tens of keV electrons serve as seed particles for fur-
ther acceleration. The magnetic storm is shown not to be 
a key factor for a prominent killer-electron response, but 
during storm the relativistic electron fluxes are higher 
than those during non-storm interval with a high solar 
wind speed. Besides ULF and VLF mechanisms, adiaba-
tic betatron acceleration in the recovering magnetic field 
can produce an additional electron energization.

Conclusions
We have compared the relativistic electron fluxes during 
magnetic storms and non-storm time intervals. Some of 
the most powerful CME magnetic storms for the Arase 
satellite era have been considered: May 27–29, 2017, Sep-
tember 7–10, 2017, and August 25–28, 2018.
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During three events under consideration the relativ-
istic electron fluxes during storm (with an average solar 
wind speed) are found to be greater than during non-
storm intervals with a high solar wind speed. During 
magnetic storms, the flux intensity maximum shifts to 
lower L-shells compared to intervals without storms. 
The necessary condition for the increase of relativistic 
electron fluxes is the substorm intensification charac-
terized by the growth of AE index. The examination of 
the event on May 27–30, 2017 has shown that a high 
solar wind speed is not always necessary condition for 
the appearance of the MeV electrons. Since the jump of 
the solar wind density generates ULF waves in the mag-
netosphere which can accelerate electrons.

The analysis shows that the growth of VLF and ULF 
wave activity occurs approximately at the same time, 
1–3 days before the growth of the relativistic electrons, 
and coincides with the growth of substorm activity. We 
suppose that the ULF/VLF activity is responsible for 
the electron acceleration in the first phase, while the 
betatron mechanism due to recovering magnetic field 
gives an additional energy to electrons during the sec-
ond phase, in absence of the high ULF/VLF activities.
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