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Abstract 

The Hunga Tonga–Hunga Ha’apai (HTHH) undersea volcanic eruption that occurred at 04:15 UT on 15 January 2022 
is one of the most explosive events in the modern era, and a vertical plume reached approximately 55 km, corre-
sponding to a height of the lower mesosphere. The intense explosion and subsequent plume generated acoustic 
and atmospheric gravity waves detected by ground-based instruments worldwide. Because a global-scale atmos-
pheric and ionospheric response to the large volcanic eruption has not yet been observed, it provides a unique 
opportunity to promote interdisciplinary studies of coupling processes in lithosphere–atmosphere–ionosphere 
with ground-based and satellite observations and modeling. Further, this event allows us to elucidate the propaga-
tion and occurrence features of traveling ionospheric disturbances, the generation of equatorial plasma bubbles, 
the cause of electron density holes around the volcano, and the magnetic conjugacy of magnetic field perturbations. 
The most notable point among these studies is that the medium-scale travelling traveling ionospheric disturbances 
(MSTIDs) have magnetic conjugacy even in the daytime ionosphere and are generated by an external electric field, 
such as an E-region dynamo field, due to the motions of neutrals in the thermosphere. This advocates a new genera-
tion mechanism of MSTIDs other than the neutral oscillation associated with atmospheric gravity waves and electri-
fied MSTIDs, which are frequently observed during daytime and nighttime, respectively. This paper reviews the recent 
studies of atmospheric and ionospheric disturbances after the HTHH volcanic eruption and summarizes what we 
know from this extreme event analysis. Further, we analyzed new datasets not shown in previous studies to give some 
new insights to understanding of some related phenomena. As a result, we also found that 4-min plasma flow oscilla-
tions caused by the acoustic resonance appeared with the amplitude of approximately 30 m/s in the northern hemi-
sphere a few hours before the initial arrival of the air pressure waves. The propagation direction was westward, which 
is the same as that of the daytime MSTIDs with a magnetic conjugate feature. This result suggests that the 4-min oscil-
lations are generated by an external electric field transmitted to the northern hemisphere along magnetic field lines.
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Graphical Abstract

Introduction
Natural hazards caused by severe phenomena of geophys-
ical, hydrological, and meteorological origins negatively 
impact human activity or the environment. Many peo-
ple all over the world are threatened by natural hazards 
every year. Although some natural hazards (typhoons, 
tornadoes, and floods) can be predicted in near real-time, 
most geophysical natural hazards, such as earthquakes, 
volcanic eruptions, and tsunamis, are challenging to fore-
cast. Therefore, we need to rapidly and timely detect the 
signals of natural geophysical hazards to reduce human 
loss. Among these geophysical hazards, we experienced 
the Hunga Tonga–Hunga Ha’apai (HTHH) undersea 
volcano’s explosive eruption at 04:15 UT on 15 January 
2022. This eruption is one of the most explosive events 
in the modern era and generated global atmospheric and 
ionospheric disturbances in a broad atmospheric region 
from the troposphere to the ionosphere (Wright et  al. 
2022) in addition to a tsunami in the Pacific Ocean asso-
ciated with an air pressure wave (Kubota et al. 2022). The 
HTHH volcanic eruption provides a unique opportunity 
to promote interdisciplinary studies of coupling pro-
cesses in lithosphere–atmosphere–ionosphere to reduce 
disaster risks.

Astafyeva (2019) has reviewed the detection of iono-
spheric signals associated with earthquakes, tsunamis, 
and volcanic eruptions and discussed future perspectives 

for applications of ionospheric observations to detect 
natural hazards. This paper reviews the studies of atmos-
pheric and ionospheric disturbances observed after the 
HTHH volcanic eruption, shows some new insights to 
the understandings of the phenomena by adding new 
datasets, and summarizes what we know from existing 
analyses of this severe event. In this section, we describe 
several basic concepts of the ionosphere and atmospheric 
waves for understanding atmospheric and ionospheric 
disturbances caused by the HTHH volcanic eruption.

Basic features of the Earth’s ionosphere
The ionosphere is formed by partial ionization of the 
upper atmosphere above 60  km altitude due to solar 
extreme ultraviolet (EUV) radiation and energetic par-
ticle precipitation from interplanetary space and the 
magnetosphere. Percentage of charged particles to neu-
tral atmospheric molecules/atoms increases with alti-
tude. Nevertheless, because the mass of the ionosphere 
is  1012–1013 times smaller than that of the neutral atmos-
phere, charged particles in the ionosphere are regarded 
as a minority component in the upper atmosphere (Asta-
fyeva 2019).

The plasma density distribution in the ionosphere 
depends strongly on latitude, longitude, altitude, and 
local time. Based on the height profile of electron density, 
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the ionosphere is classified into several ionospheric 
regions: D (60–90  km), E (90–150  km), and F (150–
1000 km). The height of the maximum electron density is 
typically located at an altitude of ~ 250–400 km. Such the 
electron density profile is determined by the ionization of 
neutral particles, their recombination processes, dynam-
ics, and electrodynamics in the upper atmosphere and 
ionosphere. Further, the ionosphere highly varies through 
solar/geomagnetic activities and upward propagating 
atmospheric waves originating from lower atmospheric 
disturbances (Hargreaves 1992; Kelley 2009).

Because the ions in the E region frequently collide 
with the neutral upper atmosphere, this process causes 
electric current in the ionosphere and a dynamo elec-
tric field through momentum transfer by ion-neutral 
collisions (e.g., Maeda and Kato 1966; Richmond 1979). 
The dynamo electric field is transmitted along magnetic 
field lines to the F region of the ionosphere and causes 
the plasma density perturbations driven by E× B drift 
of ionospheric plasma (e.g., Yamazaki and Maute 2017; 
Shinbori et  al. 2022). The spatial inhomogeneity of ion-
ospheric conductivity due to the plasma density pertur-
bations creates a polarization electric field to keep the 
current continuity. Oscillations of the neutral atmos-
phere or polarization electric fields can generate traveling 
ionospheric disturbances (TIDs). Some of the TIDs can 
subsequently initiate equatorial plasma bubbles (EPBs).

Basic properties of atmospheric acoustic and gravity waves
Transient perturbations near the Earth’s surface associ-
ated with earthquakes, Rayleigh waves, volcanic erup-
tion, nuclear explosions, rocket launches, tsunamis, and 
severe tropospheric events (tropical storms, typhoons, 
and hurricanes) become a seed of acoustic and gravity 
waves propagating to the upper atmosphere (e.g., Afrai-
movich et al. 2001; Afraimovich et al. 2013; Artru et al. 
2004; Blanc 1985; Calais et  al. 1998; Calais and Minster 
1998; Chou et al. 2017; Dautermann et al. 2009a, b; Fritts 
and Alexander 2003; Heki and Ping 2005; Hines 1960; 
Nishioka et  al. 2013; Occhipinti et  al. 2013; Pokhotelov 
et al. 1995; Rolland et al. 2010). Because the atmospheric 
density exponentially decreases with increasing altitude, 
the amplitude of both acoustic and gravity waves grows 
as they propagate upward according to the energy con-
servation law (Hines 1960). However, a reduction in 
the wave amplitude also occurs due to the dissipation 
of the wave energy associated with molecular viscosity 
and thermal conductivity in the thermosphere (Hines 
1960). Therefore, the damping rate becomes more sig-
nificant with a decreased atmospheric density. Thus, the 
amplitude reaches the maximum value at an altitude 

of ~ 200–300 km for waves with a period of several tens 
of minutes (Blanc et al. 2010).

The acoustic waves exist above the acoustic cutoff fre-
quency ( ωa ≥ 3.3 mHz) and lead to pressure change due 
to compression and rarefaction of the atmosphere (Har-
greaves 1992). The wave propagation speed equals the 
sound speed of ~ 330 m/s on the ground and increases to 
800 m/s in the thermosphere at a 250–300 km altitude. 
Therefore, it takes 8–9  min for the acoustic waves to 
reach the ionosphere. On the other hand, gravity waves 
with longer wavelengths displace parcels of atmospheric 
mass according to the balance between the force of grav-
ity and buoyancy (Fritts and Alexander 2003; Hargreaves 
1992). The gravity waves exist below the Brunt-Väisälä 
frequency ( ωag ≤ ωb

∼= 2.9 mHz in the troposphere). 
They cannot propagate vertically but in the oblique direc-
tion with a much slower sound speed. The direction of 
the group velocity is perpendicular to that of the phase 
velocity in the vertical direction (Hines 1960; Huang 
et al. 2019). Because of the slow speed, the travel time of 
gravity waves with a period of 10–15  min and horizon-
tal phase velocity of 200–310 m/s from the ground to the 
ionosphere is estimated as 45–60 min (Astafyeva 2019).

When the atmospheric acoustic and gravity waves 
reach the ionosphere, the ionospheric plasma density 
fluctuates through dynamical and photochemical pro-
cesses associated with the neutral atmospheric oscil-
lations of these waves. In the region above 250  km, the 
atmospheric waves dominantly interact with ionospheric 
plasmas through momentum transfer by collisions of 
neutral particles with ions. Because the charged particles 
can move along the magnetic field line at the same veloc-
ity as ions, the velocity Vi can be written as Vi = Vncosθ , 
where Vn is the neutral particle velocity and θ is the 
angle between the magnetic field line and direction of 
the neutral particle oscillation. Figure  1 summarizes 
schematically the characteristics of upward propagating 
atmospheric acoustic and gravity waves associated with a 
volcanic eruption.

An overview of the HTHH volcanic eruption 
and related phenomena
The HTHH volcano is located at 20.536° S, 175.382° W 
in the southwest Pacific Ocean and is one of the under-
sea volcanos rising from the seafloor to the sea surface. 
Remnant of the northern and western outer edges of 
the volcanic caldera form two islands each with a length 
of 2  km. The northern and western islands are named 
Hunga Tonga and Hunga Ha’apai. The HTHH volcano 
has been active since an underwater explosion south of 
Hunga Tonga occurred in 1912. All recorded eruptions 
were along the rim of the underwater caldera (Fig.  2). 
During an explosive eruption from December 2014 to 
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January 2015, a tuff cone appeared over the sea level, 
connecting the Hunga Ha’apai and Hunga Tonga islands 
(Garvin et al. 2018). The new island existed over the sea 
surface until a large eruption destroyed it, leaving only 
the two small islands. On 15 January 2022, the HTHH 
volcano erupted with two main explosions that released 
an enormous amount of energy into the atmosphere. Dif-
ferent types of atmospheric and ionospheric disturbances 
after the eruption were globally observed with other 
techniques. Due to the extensive feature, many research-
ers in various fields have studied this event.

The unique and explosive eruption of the HTHH vol-
cano eruption on 15 January 2022 provided us with a few 
important aspects: the exact onset time of the eruption, 
the energy release into the lithosphere and atmosphere, 
the time evolution of the ash plume, global atmos-
pheric oscillations, and the tsunami caused by this erup-
tion. According to the United States Geological Survey 
(USGS) earthquake catalog, this event has been recorded 
as an earthquake with magnitude scale 5.8 that occurred 
at 04:14:45 UT. The equivalent energy released in the 
lithosphere was inferred between 4 and 18 Megaton of 

trinitrotoluene (TNT) (Garvin et  al. 2022), while that 
in the atmosphere and ionosphere was estimated as 
50 Megaton (Campbell-Brown et  al. 2022), more than 
58 Megaton (Kulichkov et  al. 2022) and 9–37 Megaton 
(Astafyeva et  al. 2022). The volcanic explosivity index 
(VEI) value is estimated at 5 (Zhao et al. 2022). The ash 
plume reached ~ 55  km in the mesosphere and 600  km 
in diameter, captured by satellite images (National Aero-
nautics and Space Administration (NASA) 2022). This 
eruption generated atmospheric waves (e.g., Lamb waves, 
acoustic waves, and gravity waves), ionospheric dis-
turbances, geomagnetic field variations, tsunamis, and 
seismic waves observed all over the world (e.g., Aa et al. 
2022a; Aryal et  al. 2023; Astafyeva et  al. 2022; Boyde 
et  al. 2022; Carr et  al. 2022; Carter et  al. 2023; Chen 
et al. 2022, 2023; Chum et al. 2023; Dorrian et al. 2023; 
Gavrilov et al. 2022; Ghent and Crowell 2022; Han et al. 
2023; He et al. 2023; Heki 2022; Hong et al. 2022; Iyemori 
et al. 2022; Kong et al. 2023; Kubota et al. 2022; Kundu 
et al. 2023; Le et al. 2022; Li et al. 2023a, b; Lin et al. 2022; 
Liu et al. 2023; Madonia et al. 2023; Maletckii and Asta-
fyeva 2022; Matoza et al. 2022; Muafiry et al. 2022; Omira 

Ionosphere

Shock waves
(Acous�c)

Gravity waves

~45-60 min~8-9 min

Va Vg

Local pressure and 
density suddenly change 

in associa�on with a 
volcanic erup�on.

The amplitude of 
acous�c and gravity 

waves increases as they 
propagate to the upper 

atmosphere.

Fig. 1 Schematic view of generation of atmospheric and ionospheric disturbances associated with a volcanic eruption. After the onset 
of a volcanic eruption, acoustic and gravity waves are generated by local pressure and density variations. The amplitude grows with increasing 
altitude. The acoustic waves propagating at the sound velocity (Va) arrive in the ionosphere within ~ 8–9 min after the onset of a volcanic eruption. 
Because the propagation velocity of the gravity waves is much slower than that of the acoustic waves, the gravity waves reach the ionosphere 
within ~ 45–60 min after the eruption
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et al. 2022; Pradipta et al. 2023; Rajesh et al. 2022; Rakesh 
et al. 2022; Ravanelli et al. 2023; Saito 2022; Schnepf et al. 
2022; Shinbori et al. 2022; Sun et al. 2022a, b; Tang 2023; 
Takahashi et al. 2023; Tanioka et al. 2022; Themens et al. 
2022; Vadas et al. 2023a, b; Verhulst et al. 2022; Watanabe 
et al. 2022; Yamazaki et al. 2022; Wang et al. 2022; Zhou 
et al. 2022). The dynamo electric field generated by ther-
mospheric natural wind disturbances due to the HTHH 

volcanic eruption modified the plasma density structure 
of equatorial ionization anomaly in the American longi-
tude (e.g., Aa et al. 2022b; Zhang et al. 2022a, b). Light-
ning activities were also enhanced significantly after the 
HTHH volcanic eruption (e.g., Bor et al. 2023; Mezentsev 
et al. 2023; Nickolaenko et al. 2022). In the following sec-
tion, we will mainly survey the characteristics of upper 
atmospheric disturbances (ionospheric and magnetic 

Fig. 2 Two-dimensional map of the summit platform of the submerged HTHH volcanic edifice. The color bar of the upper left side shows the depth 
of the sea surface in a unit of meters. The dashed black line indicates a previously undocumented caldera existing 150 to 180 m below the sea 
surface. The close-up view of the bottom left side represents the detailed locations of the 1988 eruptions (Cronin et al. 2017)
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field perturbations) detected by various kinds of ground-
based instruments and satellites after the 15 January 2022 
HTHH volcanic eruption and discuss their generation 
mechanism from the viewpoint of coupling processes in 
the lithosphere–atmosphere–ionosphere.

Effects of the explosive eruption of the HTHH 
volcano on the upper atmosphere
Global propagation features of traveling ionospheric 
disturbances
As described in “Basic properties of atmospheric acoustic 
and gravity waves” section, the sudden displacement of 
the earth’s surface associated with earthquakes, tsunamis, 
and volcanic eruptions generates atmospheric waves that 
propagated to the upper atmosphere. Neutral oscillations 
in this region due to the atmospheric waves caused TIDs 
in the ionosphere. Using total electron content (TEC) 
and high-frequency Doppler sounding observations, 
Ogawa et  al. (1982) found that TIDs generated after 
the large eruption of Mount St. Helens in 1980 propa-
gated across the Pacific Ocean to Japan. They estimated 
the horizontal speed of ionospheric disturbances (with 
a period of ~ 9  min) as ~ 300  m/s corresponding to the 
propagation speed of a Lamb wave. They interpreted that 
the ionospheric disturbances are caused by upward prop-
agating waves coupled with the Lamb wave. Cheng and 
Huang (1992) also found TIDs after the large eruption of 
Mount Pinatubo in 1991. Nowadays, ionospheric TEC 
observation with the global navigation satellite system 
(GNSS) receiver network enabled us to monitor global 
ionospheric disturbances with high time and spatial 
resolution. Many researchers reported ionospheric dis-
turbances associated with large volcanic eruptions in the 
world using GNSS-TEC observation data (e.g., Astafyeva 
2019; Dautermann et al. 2009a, b; Heki 2006; Manta et al. 
2021; Meng et  al. 2019; Nakashima et  al. 2016; Shults 
et  al. 2016; Cahyadi et  al. 2021; Shestakov et  al. 2021; 
Heki and Fujimoto 2022). The ionospheric disturbances 
with periods of 12–30 min usually appear approximately 
10–45  min after the onset of the volcanic eruption and 
can be observed from the volcano to a long distance 
(> 800  km). The time difference of the onsets between 
the volcanic eruption and ionospheric disturbances cor-
responds to the propagation time of atmospheric waves 
from the surface to the ionosphere. The horizontal prop-
agation speed of the ionospheric disturbances is between 
300 and 1100 m/s, equal to that of acoustic gravity waves, 
acoustic waves, and shock-acoustic waves.

Figure  3 shows the time-series plots of the detrended 
TEC subtracted from the 30-min running average at 
several GNSS stations in New Zealand (A), Australia 
(B), Japan (C), Eastern Canada (D), South Africa (E), 
and Northern Europe (F). To compare the propagation 

between the ionospheric perturbations and Lamb waves 
at the surface, the height variation of the neutral atmos-
phere calculated with the transient inertia gravity and 
rossby wave dynamics (TIGAR) model is overplotted in 
each panel in Fig. 3. In these panels, the TEC perturba-
tions with their amplitude of 0.5–2.0 TECU appear in all 
regions, almost coinciding with an initial arrival of the 
Lamb waves at the surface. This is the first result dem-
onstrating the global impact of the HTHH eruption on 
the ionosphere reported by Themens et al. (2022). Such 
a global signature of ionospheric disturbances associated 
with a volcanic eruption had not been reported in the 
past. Themens et al. (2022) also found two distinct large 
scale ionospheric traveling ionospheric disturbances 
(LSTIDs) and several subsequent medium scale trave-
ling ionospheric disturbances (MSTIDs) that propagate 
outward from the epicenter of the HTHH volcanic erup-
tion. The initial propagation speed of the LSTID with a 
wavelength of > 1600 km was ~ 950 m/s, which is close to 
the acoustic speed at the F-region peak. The propagation 
speed decreased to ~ 700 m/s at a distance of ~ 2300 km 
from the epicenter. MSTIDs with a speed of 200–400 m/s 
continued to be generated near the epicenter for 6 h fol-
lowing the event. Astafeva et al. (2022), for the first time, 
identified five main eruptions based on the N-shaped 
TEC variations during 04:30–05:30 UT on 15 Janu-
ary 2022. Deducing from previous studies showing that 
the amplitude of the TEC perturbations is proportional 
to the VEI value (Shults et  al. 2016), Astafeva et  al. 
(2022) estimated that the major eruption at 04:18:10 UT 
released a huge amount of energy between 9 and 37 Meg-
aton in TNT equivalent. This energy is comparable to the 
1883 Krakatoa volcanic eruption. Using quasi-zenith sat-
ellite system (QZSS)-TEC observation data in Japan, Heki 
(2022) showed that ionospheric disturbances propagating 
as fast as the Lamb wave were triggered by the HTHH 
volcanic eruption. He also found a rapid increase of TEC 
that started ~ 40 min before the initial arrival of the Lamb 
wave from a comparison with several barometer data, 
as shown in Fig.  4. He interpreted that the ionospheric 
disturbances are driven by forward energy leakage of the 
acoustic waves propagating in the ionosphere/thermo-
sphere, which were waster the Lamb waves in the tropo-
sphere. Detailed physical mechanisms should be solved 
in future studies.

Taking advantage of the dense GNSS receiver network 
in New Zealand, Australia, and Japan, Lin et  al. (2022) 
found that TIDs appeared over Japan approximately 
3  h before the initial arrival of an air pressure wave in 
the troposphere. The waveform of TIDs over Japan is 
almost consistent with that over Australia (Fig.  5), and 
the TIDs have a magnetic conjugate feature. Because 
the TIDs appeared over Australia a few hours before the 
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Fig. 3 Time-series plots of detrended TEC (black) and TIGAR-modeled height variation in units of 0.01 m (red) for stations in New Zealand (a), 
Australia (b), Japan (c), Fredericton (d), South Africa (e), and Tromso (f). Panel g Map of GNSS receiver stations (red). The locations of the stations 
in a–f are marked with black “x” symbols. A constant distance from the epicenter of the HTHH eruption every 1500 km is presented as dotted circles 
(Themens et al. 2022)



Page 8 of 27Shinbori et al. Earth, Planets and Space          (2023) 75:175 

conventional tsunami reached the Australian coasts, Han 
et  al. (2023) discussed the possibility of developing tsu-
nami warning systems by monitoring ionospheric vari-
ations with GPS-TEC measurements. Lin et  al. (2022) 
interpreted that the TIDs are driven by electromagnetic 
coupling through the magnetic field lines in both hemi-
spheres. This finding implies that the atmospheric distur-
bances triggered by the HTHH volcanic eruption could 
generate the TIDs with magnetic conjugacy even in the 
daytime, which had not been previously reported in the 
literature. To investigate the magnetic conjugate feature 
of the TIDs, Shinbori et  al. (2022) compared the global 
GNSS-TEC data with the ionospheric plasma flow data 
obtained from the super dual auroral radar network 
(SuperDARN) Hokkaido pair of radars (Nishitani et  al. 
2019). As a result, Shinbori et al. (2022) found the plasma 
flow perturbations in the F-region corresponding to the 
TEC perturbations with a magnetic conjugate feature. 
However, they did not show whether or not an analogous 
magnetic conjugate feature can be seen in the plasma 
flow and detrended TEC data when the air pressure wave 
passed through the field-of-view (FOV) of the SuperD-
ARN radar. For this reason, we investigate the relation-
ship between the northward plasma flow in the northern 
hemisphere and detrended TEC in the southern hemi-
sphere in addition to the results reported by Shinbori 

et  al. (2022). Figure  6 shows a range-time plots of (a) 
northward plasma flow, (b) 15-min high-pass filtered 
northward plasma flow, (c) and (e) temperature deviation 
in the northern and southern hemispheres, respectively, 
and (d) detrended TEC in the southern hemisphere. In 
Fig.  6, the two distinct plasma flow perturbations with 
an amplitude of ~ 100  m/s were observed around 08:00 
and 09:00 UT in the northern hemisphere, simultane-
ously with the onset of the TEC perturbations after the 
arrival of air pressure waves in the southern hemisphere 
(Shinbori et al. 2022). A similar feature of the plasma flow 
variations in the ionosphere was reported by Zhang et al. 
(2022a, b). They further pointed out that the plasma flow 
speed was faster in the E-region than in the F-region. 
In this case, the southern hemisphere corresponds to a 
sunlit region where the ionospheric integrated Hall and 
Pedersen conductivities are 6.8 and 5.5 S, respectively, 
when we estimated them with an ionospheric conduc-
tivity calculation tool (Koyama et al. 2014). On the other 
hand, the air pressure waves passed through the FOV of 
the SuperDARN radar during 12:00–13:00 UT shown 
in Fig. 6g. Associated with the arrival of the air pressure 
waves, the northward plasma flow was observed with an 
amplitude of ~ 100 m/s, and then the flow direction was 
changed from northward to southward. In this case, the 
TEC perturbations corresponding to the plasma flow 

Fig. 4 Comparison of the pressure (blue) and TEC (black) variations obtained by the geostationary satellite J07 on 15 January around the first 
passage of the Lamb wave. Locations of GNSS stations (red circles), their sub-ionospheric points (pink circles), and barometers near sub-ionospheric 
points (black triangles) are indicated in a center map with labels a–d. SIPs and GNSS stations are tied with red dashed lines. Two TEC peaks are 
indicated by blue and red arrows, but only the first peak is clear in panels b, c (Heki 2022)
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variations cannot be seen in the southern hemisphere 
(panel d). At this time, the northern hemisphere is a dark 
region where the ionospheric integrated Hall and Ped-
ersen conductivities are 0.08 and 0.58 S, respectively. 
These values are two orders of magnitude smaller than 
those in the sunlit region. Therefore, the present analysis 
result suggests that high ionospheric conductivities in the 
sunlit region are necessary to manifest the magnetic con-
jugate TIDs. Further, Shinbori et  al. (2022) found a sig-
nificant phase difference of 10–12 min between the TEC 
and plasma flow perturbations. They reproduced this 
relationship from a simple ionospheric model calculation 
with an external electric field as an input parameter. This 
result suggests that the magnetic conjugate TIDs are gen-
erated by an external electric field driven by an E-region 
dynamo. Jonah et al. (2017), for the first time, found the 
occurrence of the daytime MSTIDs with a magnetic 
conjugate feature over the Brazilian sector based on the 
GPS-TEC analysis. They proposed that the atmospheric 
gravity wave-induced electric fields from one hemisphere 

mapped along the magnetic field lines and generate the 
mirrored MSTIDs in the magnetic conjugate region. 
The generation mechanism described above differs from 
normal MSTIDs due to atmospheric gravity waves in 
the daytime and Perkins instability (Perkins 1973) in the 
nighttime. Thus, the explosive HTHH volcanic eruption 
provides an excellent opportunity to study wind-dynamo 
coupling to drive the magnetic conjugate TIDs in the 
daytime. Considering the results reported by Jonah et al. 
(2017), we need to clarify the occurrence feature of the 
daytime MSTIDs with magnetic conjugacy based on a 
statistical analysis of global GNSS-TEC data.

Rapid changes of the E‑region dynamo and thermospheric 
wind
As described in “Global propagation features of trave-
ling ionospheric disturbances” section, the HTHH 
volcanic eruption generated global atmospheric and 
ionospheric disturbances observed with various kinds 
of ground-based and satellite instruments. This volcanic 

Fig. 5 Two-dimensional maps of band-pass filtered TECs of a–d 30–50 min and e–h 12–20 min periods overplotting the conjugate concentric TIDs 
after mapping Japan (Australia) TECs to Sothern (Northern) hemisphere. The original and conjugate TECs are indicated by the parula and copper 
color codes, respectively. The red-dashed circle shows the propagation of the Lamb wave at ∼315 m/s (Lin et al. 2022)
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eruption also caused a rapid change in the E-region 
dynamo and thermospheric wind pattern. Using ion 
density and drift velocity data obtained from the ICON 
satellite, Gasque et al. (2022) found extreme zonal and 
vertical electric field ion drifts ~ 4000 km away from the 
HTHH volcano within 1  h of the eruption before the 
initial arrival of atmospheric disturbances. The period 
and amplitude of the vertical ion drift were ~ 6  min 
and ~ 100  m/s, respectively. The observation point 
was almost consistent with the magnetically conjugate 
E-region just 400  km from the HTHH volcano. This 
result suggests that the electric field generated by the 
E-region dynamo around the HTHH volcano is trans-
mitted along the magnetic field lines. Gasque et  al. 

(2022) also estimated the amplitude of thermospheric 
wind perturbations as more than 200  m/s based on 
the observed ion drift velocity and a simple theoretical 
model.

After the air pressure wave passed through the day-
side, the Swarm A and Ionospheric Connection Explorer 
(ICON) satellites observed the direction change of the 
equatorial electrojet (EEJ) and neutral wind (90–300 km) 
(Fig. 7). In Fig. 7g, h, the height profile of the zonal wind 
shows an enhancement of eastward and westward winds 
in the Hall (90–110  km) and Pedersen (120–150  km) 
regions, respectively, when the EEJ is directed westward 
(Fig.  7f ). This relationship between the EEJ and ther-
mospheric neutral wind is almost consistent with that 

Fig. 6 Range-time plots of a northward plasma flow, b 15-min high-pass filtered northward plasma flow, c, e temperature deviation, and d 
detrended TEC. The first three panels show the data along the beam-8 direction of the SuperDARN radar in the northern hemisphere, indicated 
by the red line in panels f, g, while the rest panels show the data along the magnetically conjugate beam-8 direction in the southern hemisphere. 
Panels f, g show the two-dimensional map of temperature deviation at 08:00 and 12:30 UT on 15 January 2022. These times are represented 
by the vertical dashed lines in the left panel. The blue and red curves indicate the sunset terminator at an altitude of 105 and 300 km, respectively

Fig. 7 a, b Trajectories of the ICON (red) and Swarm (green) satellites, ground magnetic observatories (yellow), and a wavefront of the air pressure 
wave from the HTHH volcano with the propagation speed of 318 m/s (black). Dots indicate each satellite location at the given time. c, d Height 
profiles of zonal wind at the exact locations above (e, f) EEJ observations on each orbit of the Swarm A satellite. g, h Height profiles of zonal wind 
on each orbit of the ICON satellite. The statistical value of the background wind (gray shaded areas and solid black lines) corresponds to percentiles 
of the entire data set. The background wind (black dotted line) is calculated with the four previous days (Harding et al. 2022)

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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reported by Yamazaki et  al. (2014) and Yamazaki et  al. 
(2021). The physical meaning of the anti-correlation 
between the EEJ and the thermospheric neutral wind 
is the local generation of the electric field. In the Hall 
region, an eastward wind generates an upward dynamo 
electric field which drives the eastward current due to 
the westward drift of the electrons. Finally, the west-
ward electric field is generated in the Hall region. In the 
Pedersen region, an eastward wind generates an upward 
current due to the upward dynamo electric field. This 
current produces a downward electric field. The elec-
tric field is mapped onto the Hall region and drives the 
westward current off the equatorial region in both hemi-
spheres. Finally, this current generates an eastward elec-
tric field. As a result, the westward EEJ is observed near 
the equatorial region. Le et  al. (2022) also showed that 
strong eastward turning of zonal wind in the E-region 
leads to the direction change of the EEJ using space- and 
ground-based observation data. The effect of neutral 
wind on the EEJ had been predicted by Yamazaki et  al. 
(2014), and a few years later Harding et al. (2022) dem-
onstrated through observations that the neutral wind 
in the thermosphere plays an important role in the EEJ 
perturbations based on integrated data analysis of upper 
atmospheric disturbances after the large HTHH volcanic 
eruption.

Using the data of the X- and Y-components of the geo-
magnetic field obtained at 13 geomagnetic observatories 
from mid-latitudes to the equator, Sun et al. (2022a, b, c) 
showed that the HTHH volcanic eruption caused pertur-
bations of the E-region current density by 22–55 mA/m 
within a radius of 8000  km from the HTHH volcano. 
Corresponding to the appearance of the ionospheric 
currents, the TEC data showed the start of ionospheric 
electron density variation in the F-region at an altitude 
of ~ 350  km. From the onset of the magnetic field per-
turbations, Sun et  al. (2022a, b, c) estimated the propa-
gation speed of the leading front as ~ 740  m/s, which 
corresponds to the acoustic velocity in the ionosphere 
(thermosphere) at an altitude of 200–300  km (Shinbori 
et al. 2023). The magnetic field disturbances from several 
minutes to hours persisted for more than 10 h after the 
HTHH eruption.

It is well-known that geomagnetic field variation asso-
ciated with acoustic waves is frequently observed with 
a period of several mHz range after earthquakes and 
volcanic eruptions (e.g., Iyemori et al. 2005; Hasbi et al. 
2009; Aoyama et al. 2016; Zettergren and Snively 2019). 
Also, in the case of the HTHH volcanic eruption, the 
geomagnetic field oscillations were observed in the pulsa-
tions continuous (Pc) 5 range (150–600 s or 1.7–6.7 mHz) 
(Fig. 8). The dominant frequency of the geomagnetic field 
oscillations was 3.8  mHz, which is almost equal to the 

acoustic resonance frequency (e.g., Inchin et  al. 2020; 
Kanamori et al. 1994; Lognonné et al. 1998; Matsumura 
et al. 2012, 2011; Shinagawa et al. 2007; Tahira 1995). This 
frequency corresponds to the period required for the 
acoustic waves to go back and forth between the ground 
and the ionosphere. Yamazaki et  al. (2022) described 
that the amplitude of the geomagnetic field oscillations 
reached ~ 3 nT at Apia, located 835  km north-north-
east of the HTHH volcano, which is much larger than 
those during other events previously reported. Fur-
ther, Yamazaki et  al. (2022) found that the waveform of 
the geomagnetic field oscillations at Apia resembles the 
waveform observed at Honolulu, located near the mag-
netic conjugate point of the HTHH volcano, as shown in 
Fig. 8. The amplitude of the geomagnetic field oscillation 
at Honolulu was much smaller than at Apia. The ampli-
tude difference could be due to the local time dependence 
on ionospheric conductivities (Iyemori et al. 2022). Iyem-
ori et al. (2022) estimated the Pedersen and Hall conduc-
tivities to be 8.3 S and 12.6 S at Apia and 1.9 S and 3.2 S 
at Honolulu, respectively. However, because the observed 
amplitude difference cannot be explained only by the 
ionospheric conductivity difference, Iyemori et al. (2022) 
suggested that the geomagnetic longitudinal difference 
may also be one of the causes of the observed amplitude 
difference. The phase of the geomagnetic field oscillation 
at Honolulu is opposite to that at Apia. A possible mech-
anism of the anti-phase oscillation is shown in Fig.  9 
(Iyemori et  al. (2022)). In this figure, after the HTHH 
volcanic eruption, an eastward electric field is gener-
ated in the dynamo layer at an altitude of the E-region, 
and the field-aligned currents flow between the northern 
and southern hemispheres. Then, a polarization electric 
field accompanying the field-aligned currents is transmit-
ted along the magnetic field lines to another hemisphere. 
The dynamo and polarization electric fields drive the Hall 
currents in both hemispheres, shown in Fig.  9. Because 
the Hall current direction is anti-parallel to each other 
on the left and right sides of the footprint of the field-
aligned current, the phase of the observed geomagnetic 
field variations shows an anti-correlation, depending on 
the location of the geomagnetic observatories. Iyemori 
et  al. (2022) and Yamazaki et  al. (2022) interpreted that 
the geomagnetic field oscillations are caused by the effect 
of the ionospheric dynamo in the sunlit region. Thus, 
simultaneous detection of the geomagnetic field oscilla-
tions at magnetic conjugate points has not been reported 
before. Yamazaki et al. (2022) pointed out that modeling 
studies are essential for understanding the three-dimen-
sional distribution of the ionospheric current caused by 
the HTHH volcanic eruption.

To give further confirmation and insight of the mag-
netic conjugate feature of 4-min oscillations reported 
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by Iyemori et  al. (2022) and Yamazaki et  al. (2022), we 
analyzed the northward plasma flow observed by the 
SuperDARN Hokkaido east radar. The result is shown 
in Fig.  10. In this figure, two negative excursions of the 
northward plasma flows appeared with their amplitudes 
of approximately 100  m/s around 08:10 UT and 08:50 
UT. These phenomena have already been reported by 
Shinbori et  al. (2022). After the large plasma flow per-
turbations, the short-period oscillations were observed 
for approximately 20 min indicated by the horizontal red 

arrows. The average amplitude and period are 30  m/s 
and 4  min, respectively. The period of the northward 
plasma flow variations is almost consistent with that 
derived from different parameters (e.g., Iyemori et  al. 
2022). Therefore, it can be thought that the plasma flow 
oscillations are generated by the acoustic resonance trig-
gered by the air pressure waves. In the range-time plots 
in Figs. 10a, c, e, the 4-min plasma flow oscillations tend 
to move in the direction of the decreasing range gate 
with time. This result indicates that the plasma flow 

Fig. 8 High-pass filtered Y component of the geomagnetic field at Apia, Honolulu, and Pamatai with a cut-off frequency of ~ 0.8 mHz. The green 
boxes indicate the time interval where the waveform of ΔY at Honolulu is similar to that at Apia (Yamazaki et al. 2022)
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oscillations propagate westward when we consider that 
the beams-6, 7, and 8 of the SuperDARN Hokkaido east 
radar are directed in the north-east direction. The propa-
gation direction is almost the same as that of the two 
main plasma flow variations reported by Shinbori et  al. 
(2022). Considering the propagation feature and occur-
rence of the 4-min oscillations before the initial arrival 
of the air pressure wave to the FOV of the SuperDARN 
radar, the observed 4-min oscillations can be generated 
by a transmission of an electric field along the magnetic 
field line from the sunlit southern hemisphere as shown 
in a model of Shinbori et al. (2022). Because the magnetic 
field intensity and inclination at an altitude of the iono-
sphere (300 km) are calculated as 52,084.8 nT and 62.83 
degrees with the IGRF-13 model, we can further estimate 
the eastward electric field of the 4-min oscillations as 
approximately 1.39 mV/m. This value is smaller than that 
of the two main plasma flow variations shown by Shin-
bori et al. (2022).

Appearance of an ionospheric hole over the HTHH volcano
Electron density depletions (“hole”) in the ionosphere 
had been observed after large earthquakes such as the 
2011 Tohoku-Oki earthquake (e.g., Astafyeva et  al. 
2013a, b; Kakinami et al. 2012). Astafyeva et al. (2013b) 
reported that the magnitude and duration of the iono-
spheric hole depend on the earthquake’s magnitude and 
interpreted that the hole is generated by the rarefaction 

of the shock-acoustic waves triggered by earthquakes and 
tsunamis. For the 2011 Tohoku-Oki earthquake, the ion-
ospheric hole was formed after 30–50 min, and the TEC 
value decreased by − 5 to − 6 TECU from the level before 
the earthquake (Astafyeva et al. 2013a, b). Such an iono-
spheric hole appeared with an amplitude of − 18 to − 13 
TECU over the HTHH volcano after the large eruption. 
This phenomenon persisted for at least 1.5–2  h (Asta-
fyeva et al. 2022). The huge ionospheric hole with a mag-
nitude of more than 10 TECU extended around 2000 km 
away from the epicenter of the HTHH volcanic eruption 
(Aa et  al. 2022a). Astafyeva et  al. (2022) proposed that 
the HTHH volcanic eruption generated stronger shock 
waves with large amplitude and prolonged the rarefac-
tion phase compared to those from other earthquakes. 
Aa et al. (2022a) indicated that the ionospheric hole con-
sists of cascading TEC decreases associated with differ-
ent acoustic waves.

Because the TEC value is an integration of electron 
density in the ionosphere along the path between the 
satellite and receiver on the ground, we cannot obtain 
information on the vertical profile of electron density 
and its variation from the GNSS-TEC observation. Fur-
ther, we cannot investigate the temporal and spatial evo-
lution of the TEC variation in most of the ocean areas 
due to the lack of ground-based receivers. To solve the 
above problems, Sun et  al. (2022a) examined the elec-
tron density variations in the vertical direction associ-
ated with the HTHH volcanic eruption using the electron 
density profile obtained from the RO technique onboard 
the satellites of the FORMOSAT-7/COSMIC2 mis-
sion. Figure  11 shows the vertical profiles of the aver-
age electron density in the area near the epicenter of the 
HTHH volcanic eruption. In Fig.  10a, the peak value of 
the electron density is ~ 10× 10

5 el/m3, and the height 
of the peak value is ~ 330  km during 00:00–04:15 UT 
on 13–15 January. These electron density profiles are 
almost consistent with those under normal conditions 
before the HTHH volcanic eruption at 04:15 UT on 15 
January. During 04:15–10:00 UT after the eruption, the 
electron density profile on 15 January shows a signifi-
cant decrease above 250 km, compared with that on 13 
and 15 (Fig. 11b). The F-region of the ionosphere almost 
disappeared and did not satisfy the usual Chapman layer 
(Davies 1990) anymore in the nighttime during 10:00–
18:00 UT on 15 January (Fig. 11c). In Fig. 10d, the elec-
tron density profile on 15 January shows the recovery to 
reach the same level as that on other days after sunrise. 
Sun et al. (2022a) also showed that the disappearance of 
the F-region of the ionosphere with a horizontal scale 
of ~ 4000 km persisted for ~ 8 h over the HTHH volcano 
due to the eruption. However, it has been believed that 
the ionospheric hole is generated by the vertical motion 

Fig. 9 A schematic view of the relationship among the HTHH 
volcanic eruption, geomagnetically conjugate point, 
inter-hemispheric field-aligned currents, electric field transmission, 
ionospheric Hall current, and magnetic effect on the ground. In 
this figure, the symbol ‘V’ represents the neutral wind velocity 
in the ionospheric dynamo layer (mainly E-layer) caused by the HTHH 
eruption. Ep and V × B indicate the polarization and Lorentz electric 
fields (Iyemori et al. 2022)
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of the neutral atmosphere due to earthquakes and tsu-
namis (Kakinami et al. 2012; Kakinami et al. 2012). The 
disappearance of the Chapman-layer structure was not 
identified in the case of the 2011 Tohoku earthquake (Liu 
et al. 2019). Therefore, we need to consider another pro-
cess that may cause the disruption of the Chapman-layer 
structure associated with an explosive eruption. Sun et al. 
(2022a) proposed that the explosive eruption released the 

molecular particles up to the upper atmosphere, which 
reduced the ratio of the atomic and molecular densities 
(e.g., [O]/[N2]) and increased the recombination process 
of ionospheric plasmas. This process seems to maintain 
the ionospheric hall or the disruption of the Chapman-
layer structure for several hours after the HTHH volcanic 
eruption. Further, Sun et  al. (2022a) concluded that the 
disappearance of the major ionospheric layers leads to the 

4-minute oscilla�on

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10 Range-time plots of the northward plasma flow in the beam-6, 7, and 8 directions observed by the SuperDARN Hokkaido east radar (a, c, 
e). The color bar of each panel indicates the northward component of the line-of-site velocity in a range from − 150 to 150 m/s. Panels b, d, f show 
the time-series plots of the northward plasma flow at the range gate number of 17 in each beam. The horizontal red arrows in the panels b, d, f 
indicate the observed periods of 4-min oscillations. The phase variation of the 4-min oscillations for the range gate number is shown in the dashed 
blue arrows
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electron density depression due to the explosive eruption 
of the HTHH volcano, which is much more effective than 
the 2011 Tohoku earthquake and tsunami for the upper 
atmosphere and ionosphere. Accelerometer data from 
the Gravity Recovery And Climate Experiment—Follow 
On (GRACE-FO) and Swarm-C observations showed 

that a large-scale neutral density depletion was formed 
within a radius of approximately 10,000  km around the 
epicenter and this structure persisted for a long time (Li 
et al. 2023a, b). The location of the neutral density deple-
tion was almost consistent with that of the TEC deple-
tion in the ionosphere (Aa et  al. 2022a; Astafyeva et  al. 

Fig. 11 Comparison of the average electron density profiles (a) before and b–d after the large HTHH volcanic eruption on 15 January and those 
on the two days before (13 and 14 January) and the one day after (16 January). The error bar indicates the standard deviation of the electron density 
at each altitude. The F2 layer vanished between 10:00 and 18:00 UT (Sun et al. 2022a, b, c)
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2022). On the other hand, He et al. (2023) discussed the 
relative contributions of the HTHH eruption and the 
geomagnetic storm that occurred on 14 January 2022 
before the HTHH eruption, based on an integrated 
analysis of GNSS-derived vertical TEC, O/N2 ratio by 
Thermosphere, Ionosphere, Mesosphere Energetics and 
Dynamics (TIMED)/Global Ultraviolet Imager (GUVI), 
ion density and temperature by ICON/ion velocity meter 
(IVM), and—thermosphere ionosphere electrodynam-
ics general circulation model (TIEGCM). Their results 
showed that the TEC near the HTHH volcano decreased 
by ∼80–95% below the quiet-time values. Approximately 
20 percent of the TEC depletion was caused by the ther-
mospheric composition changes due to a moderate 
geomagnetic storm. In the future, the detailed physical 
mechanism of the formation of ionospheric holes should 
be examined with the atmosphere–ionosphere coupling 
model.

Generation of plasma bubbles in the equatorial 
and low‑latitude ionosphere
Equatorial plasma bubble (EPB) is one of the iono-
spheric irregularities with a sharp plasma density deple-
tion frequently observed in the nighttime equatorial 
and low-latitude ionosphere. The EPB is generated by 
the Rayleigh–Taylor (R–T) instability at the bottom 
side of the F-region. Atmospheric waves may seed the 
R–T instability. The growth rate of the R–T instability is 
enhanced by the prereversal enhancement (PRE) of the 
eastward electric field around the duskside terminator 
of the ionosphere (e.g., Kelley 2009; Abdu 2019). As the 
EPBs are developed, the region of plasma density deple-
tion extends to higher altitudes through the polarization 
electric field inside the EPBs. The EPB structure is formed 
along the magnetic field lines and mapped to the low-
latitude ionosphere away from the equator (Otsuka et al. 
2002; Keskinen et al. 2003; Sori et al. 2022). The plasma 
density irregularity associated with the EPB causes signal 
fading, scintillation, and loss-of-lock in satellite-based 
communication and navigation systems in a wide region 
(e.g., Seo et al. 2009; Alfonsi et al. 2013). Therefore, it is 
essential to clarify the occurrence features of EPB to 
reduce the possible risks of the influence of radio wave 
propagation. Although the day-to-day variability of the 
EPB occurrence has not yet been fully understood due to 
the atmospheric and ionospheric conditions, including 
seeding sources and driving forces (e.g., Li et  al. 2021), 
the explosive HTHH volcanic eruption provides us with 
an excellent opportunity to demonstrate that the EPB can 
be induced by lower atmospheric disturbances originat-
ing from the eruption.

For the first time, Aa et  al. (2022a) found equato-
rial plasma troughs and EPBs with small-scale plasma 

density irregularities over the Asia-Oceania area after 
the HTHH volcanic eruption from ground-based GNSS-
TEC and Swarm/ICON satellite observations. The onset 
time of an enhancement of the rate of the TEC index 
(ROTI) enhancement (Pi et  al. 1997) that indicated the 
EPB occurrence was almost coincident with the arrival 
time of a Lamb wave at a speed of ~ 315 m/s. The ICON-
IVM observation data showed upward plasma drifts 
of 60–120  m/s in the dusk sector, whose ionospheric 
motion creates one of the favorable conditions of the EPB 
generation (Aa et al. 2022a). Sun et al. (2022a, b, c) also 
reported the EPB occurrence at midlatitudes (up to ~ 35° 
in geographic latitude) over China after the passage of 
the sunset terminator at an E-region altitude (100  km). 
Further, Sun et al. (2022a, b, c) pointed out that the EPB 
occurrence associated with the HTHH volcanic erup-
tion had three interesting aspects compared with that in 
a usual case. (1) Over the Asian sector, EPB is frequently 
observed in the equinox of solar maximum (e.g., Shi et al. 
2011; Buhari et  al. 2017). In the HTHH case, EPB was 
activated in the northern hemisphere’s winter under the 
solar minimum condition, and the EPB occurrence was 
not recognized except for the HTHH eruption day (Shin-
bori et al. 2023) (2) The EPB usually tends to move east-
ward (e.g., Fejer et al. 2005), but the EPB associated with 
the HTHH volcanic eruption moved westward. (3) EPB is 
mainly observed at low latitudes within ±20

◦ under the 
solar minimum condition (Li et al. 2021). However, in the 
HTHH case, the upper limit of the observed latitude of 
EPB extended to midlatitudes more than 30◦ N that can 
be categorized as super plasma bubbles (e.g., Aa et  al. 
2018; Cherniak and Zakharenkova 2016; Ma and Maruy-
ama 2006; Rajesh et al. 2022; Shinbori et al. 2023). Shin-
bori et  al. (2023) reported that the EPB observed over 
100–150° E reached ~ 30° N in geomagnetic latitude after 
the initial arrival of the air pressure waves propagating in 
the troposphere (Fig. 12a). The apex altitude is estimated 
as ~ 3000  km. To confirm the EPB occurrence in the 
ionosphere, Shinbori et  al. (2023) analyzed the electron 
density data derived from in-situ plasma waves (upper 
limit frequency of upper hybrid resonance (UHR) waves) 
observed by the plasma wave experiment (PWE)-high-
frequency analyzer (HFA) instrument (Kumamoto et  al. 
2018) onboard the Arase satellite (Miyoshi et al. 2018a). 
For the derivation of the electron density data, Shinbori 
et al. (2023) used magnetic field data obtained from the 
Arase magnetic field (MGF) instrument (Matsuoka et al. 
2018a). The electron density variation shows several 
depletions of one or two orders of magnitude after the 
rapid increase associated with the initial arrival of the 
air pressure waves (Fig.  12b). The occurrence region of 
electron density depletions is almost consistent with the 
enhanced ROTI region (Fig. 12c). In this case, the Arase 
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satellite traveled in the evening sector after the sunset 
terminator in the ionosphere, and the EPB was detected 
from 400 km (ionosphere) to at least 2000 km (low-alti-
tude plasmasphere). Such super plasma bubbles could be 
caused by the combination of volcano-induced atmos-
pheric perturbations (Shinbori et  al. 2023) and strong 
PRE in the evening ionosphere (e.g., Rajesh et al. 2022).

To influence the propagation of electromagnetic waves 
in the ionosphere associated with the EPB, we investi-
gated plasma wave dynamic spectra of the electric field 
component obtained from the PWE-HFA instrument 
onboard the Arase satellite. Figure 13 shows the plasma 
wave dynamic spectra in a frequency range from 3 kHz 
to 6  MHz when the Arase satellite encountered an air 
pressure wave propagating in the troposphere shown 
in Fig. 12b. In Fig. 13, a lot of narrow-banded line spec-
tra appeared with a constant frequency for time above 

the UHR frequency indicated by the pink line after the 
encounter of the air pressure wave. These phenomena 
have been called the hectometric line spectra (HLS) 
(Hashimoto et  al. 2018). The HLS in a frequency range 
from 1.0 to 1.5  MHz were trapped inside the electron 
density depletions corresponding to EPBs. Hashimoto 
et  al. (2018) identified the origin of the HLS of the fre-
quency component from 525 kHz to 1.7 MHz as ampli-
tude modulation (AM) broadcasting waves propagating 
from the ground through the electron density depletions. 
Further, Hashimoto et al. (2021) confirmed that the HLS 
were frequently observed in the occurrence region of 
EPBs or low electron density region in the post-midnight 
sector using GNSS-TEC and Arase plasma wave observa-
tions. Therefore, appearance of such HLS in space found 
in the present study indicates that broadcasting waves 
in a wide frequency range escaped to space through 

Fig. 12 Observation of the EPB and air pressure wave between 11:20 to 12:00 UT on 15 January 2022. a Two-dimensional map of ROTI 
and the Himawari-8 temperature deviation (d3) at 11:40 UT, indicated by the color and gray scales, respectively. The yellow and red lines represent 
the 105 and 300 km sunset terminators. The horizontal dashed curves show the geomagnetic latitude every 10°. b Electron density observed 
by the Arase satellite and geographic latitude-time plot of Himawari-8 d3 data along the geographic longitude of the Arase satellite location. c 
Two-dimensional map of ROTI with the electron density along the Arase satellite path in the same period as in Fig. 11b. The smoothed gray curve 
is the Arase satellite orbit, while the thick orange line around the smoothed curve is the electron density variation (Shinbori et al. 2023)
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the low electron density region produced by the super 
plasma bubbles triggered by the HTHH volcanic erup-
tion. Therefore, it can be considered that such super EPBs 
severely impacted the propagation of the HF broadcast-
ing waves between the ground and ionosphere (Fig. 13).

Huba et al. (2023) investigated the impact of the HTHH 
volcanic eruption on the ionosphere and plasmasphere 
using the coupled SAMI3 model (Sami3 is also a model 
of the ionosphere/plasmasphere) and the high altitude 
mechanistic general circulation model (HIAMCM) whole 
atmosphere model in addition to primary gravity wave 
effects from the model for gravity wave sources, ray trac-
ing and reconstruction (MESORAC) model. Their simu-
lation results showed that the HTHH volcanic eruption 
generated a super EPB extending to ∼30° in longitude 
and up to 500  km in altitude with an electron density 
depletion of 3 orders of magnitude. Further, Huba et al. 
(2023) found that the EPB reached high altitudes of more 
than 4000 km, which is much higher than that shown in 
previous simulation studies (e.g., Huba and Liu 2020). 
This result is consistent with the Arase satellite observa-
tion in space reported by Shinbori et al. (2023).

Carter et  al. (2023) demonstrated the impacts of the 
HTHH volcanic eruption on the ionosphere and what 
subsequent impacts they had on precise point posi-
tioning (PPP) with a network of ionosondes located 

throughout the Australian region together with GNSS 
receivers. As a result, PPP accuracy was not significantly 
affected by the TIDs and Spread-F under the condi-
tion that PPP convergence had already been completed. 
However, when the PPP procedure was started either 
shortly before or after the TID arrivals, it took much 
more time (~ 5 h) to achieve the PPP convergence. Carter 
et al. (2023) also found that the convergence times were 
affected by a super EPB which is the largest phenomenon 
observed over Australia to date. It showed a depression 
of ∼42 TECU and propagated eastwards at 30 m/s. Based 
on these results, Carter et  al. (2023) concluded that the 
HTHH volcanic eruption was a good example of how 
ionospheric disturbances could adversely influence satel-
lite-based precise positioning.

Discussion and conclusions
The explosive eruption of the HTHH undersea volcano 
occurred at 04:15 UT on 15 January 2022, and a verti-
cal ash plume released by the HTHH volcanic eruption 
reached approximately 55  km, corresponding to the 
height of the lower mesosphere. The HTHH volcanic 
eruption generated acoustic waves, atmospheric grav-
ity waves, strong shock waves, and air pressure waves 
(Lamb waves) to propagate in the troposphere. Further-
more, these atmospheric waves triggered tsunamis and 

fUHR

fce

HLS

Encounter of an 
air pressure wave

Fig. 13 Dynamic spectra of plasma waves in a frequency range from 3 to 6000 kHz obtained from the PWE-HFA instrument onboard the Arase 
satellite. The pink and red curves indicate the upper limit frequency of the UHR waves and the electron cyclotron frequency, respectively. The 
vertical dashed line is the time when the Arase satellite encountered an air pressure wave propagating in the troposphere. The right color bar shows 
the power spectrum of the electric field in a unite of  mV2/m2/Hz
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ionospheric disturbances detected by ground-based 
instruments worldwide. Such a global-scale atmospheric 
and ionospheric response to a large volcanic eruption had 
not yet been observed since the 1980s, when the global 
observation of the Earth’s atmosphere and ionosphere 
started. Therefore, the HTHH volcanic eruption provides 
a unique opportunity to promote interdisciplinary stud-
ies of coupling processes in lithosphere–atmosphere–
ionosphere with ground-based and satellite observations 
and modeling.

Through such interdisciplinary studies using various 
kinds of observation and simulation data, we could reveal 
the propagation feature and generation mechanisms of 
TIDs, the triggering mechanism of EPBs associated with 
the large-scale lower atmospheric disturbances, the cause 
of the electron density hole around the HTHH volcano, 
the modification of the plasma density structure of equa-
torial ionization anomaly (EIA), and the magnetic conju-
gacy of magnetic field perturbations. The most notable 
point among these studies is that the TIDs have magnetic 
conjugacy even in the daytime ionosphere and are gen-
erated by an external electric field, such as an E-region 
dynamo field, due to the motion of neutrals in the lower 
thermosphere. Jonah et al. (2017) also found that normal 
MSTIDs appeared in South America with magnetic con-
jugacy during the daytime and proposed that the MSTIDs 
were generated by the atmospheric gravity-induced elec-
tric fields transmitted to the other hemisphere. Therefore, 

these results advocate another generation mechanism of 
MSTIDs other than the oscillation of neutrals associated 
with atmospheric gravity waves. The TIDs which have 
magnetic conjugacy after the HTHH volcano eruption 
also show different feature from the electrified MSTIDs, 
which are frequently observed at middle latitudes dur-
ing nighttime although both TIDs are caused by polari-
zation electric fields (e.g. Otsuka 2021). For the case of 
the nighttime electrified MSTIDs, the electron density 
increase (decrease) coincides with westward (eastward) 
component of polarization electric fields. This indicates 
that the polarization electric fields both generates and 
are generated by the electron density perturbations. On 
the other hand, Shinbori et  al. (2022) have shown that 
the electric field perturbations were ahead of the TEC 
perturbations associated with the TIDs after the HTHH 
volcanic eruption and suggest that the external electric 
fields are responsible for the TID generation. Further, we 
analyzed the GNSS-TEC and SuperDARN Hokkaido east 
radar data when the air pressure wave passed through 
the FOV of the SuperDARN radar to check whether or 
not the magnetic conjugate effect of the TIDs can occur 
in the dark region of both hemispheres. In the analysis, 
an enhancement of the northward plasma flow was found 
to occur with a timing that corresponds to the arrival of 
air pressure wave, but no clear signature of TEC pertur-
bations was observed at the magnetic conjugate point in 
the southern hemisphere at that time. In this case, the 

Fig. 14 Schematic view of the generation process of atmospheric and ionospheric disturbances observed after the explosive eruption of the HTHH 
volcano. The vertical axis in the left panel indicates the altitude and atmospheric layers
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Hall and Pedersen conductivities in the dark region were 
much smaller than those in the sunlit region. This result 
suggests that the occurrence of the magnetic conjugate 
TIDs triggered by the air pressure waves requires a high 
ionospheric conductivity enough to drive an E-region 
dynamo due to the oscillation of neutrals in the thermo-
sphere. This point gives a new insight of understanding 
the magnetic conjugate TIDs observed after the explosive 
eruption of the HTHH volcano. This is one of the three 
new points found by the present study.

The second new point found by the present analysis of 
the SuperDARN Hokkaido east radar data is an appear-
ance of 4-min ionospheric plasma flow oscillations after 
the two large plasma flow disturbances reported by Shin-
bori et al. (2022). The plasma flow oscillations are gener-
ated by the acoustic resonances with their frequencies of 
3.7 and 4.6 mHz (period of 3.5 and 4.5 min) (Kanamori 
and Mori 1992; Kanamori et al. 1994; Iyemori et al. 2005; 
Shinagawa et  al. 2007). Using the SuperDARN radar to 
measure a two-dimensional distribution of ionospheric 
plasma flows (almost corresponding to ionospheric elec-
tric fields), the present study showed that the 4-min iono-
spheric plasma flow oscillations appeared in the northern 
hemisphere several hours before the air pressure waves 
arrived at the FOV of the SuperDARN radar. Further, it 
was found that the plasma flow oscillations propagated 
westward in the range-time plot of northward plasma 
flow (Fig. 10). The direction is consistent with that of the 
two large plasma flows generated by an external electric 
field transmitted to the northern hemisphere along the 
magnetic field lines. From these characteristics of the 
4-min plasma flow oscillations, it can be concluded that 
the acoustic waves generated by the westward propagat-
ing air pressure waves drive an E-region dynamo in the 
sunlit hemisphere and that the dynamo electric fields 
transmitted to the northern hemisphere cause the 4-min 
plasma flow oscillations in the ionosphere.

The Arase satellite observation and high-resolution 
simulation revealed not only that the lower atmospheric 
disturbances, such as a volcanic eruption, become the 
seeds of the EPB generation but also that the EPB can 
grow beyond the ionosphere and reach the lower plas-
masphere (2000–4800  km). In the present study, it was 
found that many HLS appeared above the UHR frequency 
after the Arase satellite encounter the air pressure wave 
triggered by the HTHH volcanic eruption. The HLS in a 
frequency range from 1.0 to 1.5 MHz were trapped inside 
the electron density depletions corresponding to EPBs. 
Considering that the origin of the HLS is the broadcast-
ing waves propagating from the ground through EPB, 
appearance of such HLS in space found in the present 
study implies that the broadcasting waves escaped to 
space through the super plasma bubbles triggered by the 

HTHH volcanic eruption. Therefore, it can be said that 
such super plasma bubbles severely impacted the propa-
gation of the HF broadcasting waves between the ground 
and ionosphere.

These above results suggest that the explosive eruption 
of the HTHH volcano had a significant impact on space, 
the ionosphere, and the atmosphere. Figure  14 summa-
ries a schematic view of the generation process of atmos-
pheric and ionospheric disturbances triggered by the 
explosive eruption of the HTHH volcano. From the view-
point of studies of the coupling process of the atmos-
phere–ionosphere system, what we learned through the 
explosive eruption of the HTHH volcano suggests that 
we should pay attention to the connection with space 
at a higher altitude than the ionosphere for a cataclys-
mic natural phenomenon. Therefore, we need to include 
natural phenomena that occurred on the ground in space 
weather research focusing on the space environmental 
changes associated with solar activity and geomagnetic 
disturbances. On the other hand, scientific knowledge 
obtained from recent studies of coupling processes of 
lithosphere–atmosphere–ionosphere through the HTHH 
volcanic eruption helps to understand a new picture of 
heliospheric science to investigate space environmental 
changes associated with an eruption of an active volcano 
in the solar system. To achieve such frontier studies, we 
need to promote a strong collaboration with a wide range 
of research fields in geoscience, such as volcanology, 
meteorology, upper atmospheric physics, and plasma 
physics.
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