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A novel high accuracy finite-difference 
time-domain method
Harune Sekido1*   and Takayuki Umeda1 

Abstract 

The finite-difference time-domain (FDTD) method is widely used for numerical simulations of electromagnetic 
waves and acoustic waves. It is known, however, that the Courant condition is restricted in higher dimensions 
and with higher order differences in space. Although it is possible to relax the Courant condition by utilizing the third-
degree difference in space, there remains a large anisotropy in the numerical dispersion at large Courant numbers. 
This study aims to reduce the anisotropy in the numerical dispersion and relax the Courant condition simultaneously. 
A new third-degree difference operator including the Laplacian is introduced to the time-development equations 
of FDTD(2,4) with second- and fourth-order accuracies. The present numerical simulations have demonstrated 
that numerical oscillations due to the anisotropic dispersion relation are reduced with the new operator.
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Introduction
The FDTD (finite-difference time-domain) method has 
been used for more than a half century for electromag-
netic analyses (Yee 1966; Taflove 1980). The time-devel-
opment equations of the FDTD method are derived by 
applying the finite difference of second-order accuracy 
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in both time and space to Maxwell’s equations. The Yee 
(staggered) grid system is adopted in the spatial differ-
ences so that the numerical divergence is always free for 
both electric and magnetic fields. The FDTD method has 
been used for acoustic analyses as well (Ikata and Tay 
1998). Numerical analyses with the FDTD method have 
been performed for wide range of studies in the Earth, 
planetary, and space sciences, such as geomagnetically 
induced current (GIC) (Nakamura et  al. 2018; Watari 
et al. 2019), extremely low frequency (ELF) and very low 
frequency (VLF) propagations in the Earth-ionosphere 
waveguide (Cummer 2000), ground penetrating radars 
(Ding et  al. 2021), kinetic simulations of space plasma 
(Kimura and Nakagawa 2008; Nakagawa and Kimura 
2011; Umeda 2012; Umeda and Fukazawa 2015; Fujiwara 
et  al. 2022), infrasound associated with volcanic activi-
ties (Yokoo et al. 2019; Ishii and Yokoo 2021), and seismic 
wave (Takenaka et al. 2017).

Numerical oscillations occur due to the error between 
the numerical phase velocity and the theoretical phase 
velocity. The numerical errors in the phase velocity are 
reduced with higher order finite differences in space. The 
fourth-order spatial difference (Fang 1989; Petropou-
los 1994) is used in the FDTD(2,4) method, where the 
FDTD method using tth- and xth-order accuracy in time 
and space, respectively, is called FDTD(t,x). Although 
the numerical dispersion relation of FDTD(2,4) is closer 
to the theoretical one than that of FDTD(2,2), the Cou-
rant condition is more restricted. The numerical dis-
persion relations show that the Courant conditions of 
FDTD(2,2) and FDTD(2,4) in one dimension are C < 1 
and C < 6/7 ∼ 0.857 , respectively. Smaller �t and larger 
number of time steps are required for satisfying the Cou-
rant condition.

The explicit nonstandard-type methods (Hadi and 
Piket-May 1997; Cole 1997a, b; Kudo et  al. 2002; Yang 
and Balanis 2006; Ohtani et al. 2009) use additional diag-
onal difference terms, which correct the numerical dis-
persion and reduce anisotropic errors. However, optimal 
coefficients of the additional terms depend on wavenum-
ber or frequency. Furthermore, the Courant condition 
of the nonstandard-type methods is restricted similarly 
with the standard FDTD methods.

For relaxation of the Courant condition, implicit meth-
ods (Sun and Trueman 2003; Yang et  al. 2006; Chen 
et al. 2018; Namiki 1999; Cooke et al. 2008; Wang et al. 
2013; Zhou et  al. 2015; Xie et  al. 2020) are commonly 
used. However, implicit equations need larger compu-
tational costs than explicit equations because they are 
solved numerically with iterative convergence or matrix 
inversion.

Recently, a new numerical method has been developed 
for relaxing the Courant condition of the FDTD(2,4) 
(Sekido and Umeda 2023). To derive the time-develop-
ment equations of this method, the third-degree differ-
ence terms are appended to FDTD(2,4). By a brute-force 
search, optimal coefficients of the third-degree differ-
ence terms are obtained, which minimize phase velocity 
errors and satisfy the Courant condition. However, there 
remains an anisotropy in the numerical dispersion, which 
results in numerical oscillations at a specific propagation 
angle.

In the present study, a non-dissipative and explicit 
method is developed for reducing the anisotropy in the 
numerical dispersion by appending a new Laplacian 
operator to FDTD(2,4).

Numerical dispersion relation
Maxwell’s equations in vacuum are written as follows: 

where E is electric field, B is magnetic field, and c is the 
speed of light. In the present study, the time-develop-
ment equations are obtained by the Taylor expansion of 
Maxwell’s Eq. (1) as follows: 

 These equations consist of the odd-degree difference 
terms only. If even-degree difference terms are included, 
then a numerical dissipation occurs.

The following time-development equations are provided 
as the discretized form of Eqs. (2), in which third-degree 
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spatial difference terms including the Laplacian are 
appended: 
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 where Dm,n
x  is a one-dimensional mth-degree spatial dif-

ference operator with the nth-order accuracy, and Lm,n
x  

is a new mth-degree spatial difference operator includ-
ing the Laplacian with the nth-order accuracy. Note that 
D

1,n1
z = 0 and L3,n3

z = 0 in two dimensions. By calculat-
ing the first-degree difference with the present new oper-
ator ∂/∂x = D

1,n1
x + L

3,n3
x  , the divergence free condition 

is satisfied for both electric and magnetic fields in the 
time-development Eq. (3).

The first-degree spatial difference operator in the x direc-
tion with the fourth-order accuracy D1,4

x  is defined as fol-
lows (Sekido and Umeda 2023):

Second order
This subsection provides a numerical scheme with first-
degree difference operator with fourth-order accuracy 
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D1,4
x  and the third-degree difference operator including the 

Laplacian with the second-order accuracy L3,2
x  . The opera-

tor L3,2
x  is defined as follows:

where α1 and α2 are coefficients for ∂3/∂x3 terms and 
∂3/(∂x∂y2) (or ∂3/(∂x∂z2) ) terms, respectively. The time-
development Eq. (3) has the fourth-order accuracy in 
space with the coefficient of α1 = α2 = 1/24 but has the 
second-order accuracy with other values as shown in Eqs. 
(2). Here, the second-degree difference operator with the 

(5)

L
3,2

x Et
y

�

x +
�x

2
, y+

�y

2
, z

�

= D
1,2

x

�

α1D
2,2

x + α2D
2,2

y + α2D
2,2

z

�

Et
y

�

x +
�x

2
, y+

�y

2
, z

�

= c2
�t

�x

�

α1

�

�t

�x

�2�

Et
y

�

x + 2�x, y+
�y

2
, z

�

− 3Et
y

�

x +�x, y+
�y

2
, z

�

+3Et
y

�

x, y+
�y

2
, z

�

− Et
y

�

x −�x, y+
�y

2
, z

��



















D
1,2

x D
2,2

x = D
3,2

x

+ α2

�

�t

�y

�2�

Et
y

�

x +�x, y+
3�y

2
, z

�

− 2Et
y

�

x +�x, y+
�y

2
, z

�

+ Et
y

�

x +�x, y−
�y

2
, z

�

−Et
y

�

x, y+
3�y

2
, z

�

+ 2Et
y

�

x, y+
�y

2
, z

�

− Et
y

�

x, y−
�y

2
, z

��



































D
1,2

x D
2,2

y

+ α2

�

�t

�z

�2�

Et
y

�

x +�x, y+
�y

2
, z +�z

�

− 2Et
y

�

x +�x, y+
�y

2
, z

�

+ Et
y

�

x +�x, y+
�y

2
, z −�z

�

−Et
y

�

x, y+
�y

2
, z +�z

�

+ 2Et
y

�

x, y+
�y

2
, z

�

− Et
y

�

x, y+
�y

2
, z −�z

���



































D
1,2

x D
2,2

z

second-order accuracy D2,2
x

 is defined as follows (Sekido 
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This scheme is referred to as “scheme 1” in this paper.
The dispersion relation is derived from the time-devel-

opment Eq. (3) with Eqs. (4) and (5) as follows:

where Cx = c�t/�x , Cy = c�t/�y , and Cz = c�t/�z 
is the Courant number. Numerical frequency and 
wavenumber are defined as W = sin (ω�t/2) and 
Kx = sin (kx�x/2) , respectively. Note that Kz = 0 in 
two dimensions. The right-hand side must take a value 
in the range from 0 to 1 for stability of the numeri-
cal simulations. The Courant condition is satisfied for 
C ≤ 6/7

√
2 ∼ 0.606 and C ≤ 6/7

√
3 ∼ 0.495 in two 

and three dimensions, respectively, at α1 = α2 = 0 and 
C = Cx = Cy = Cz (i.e., �x = �y = �z ). The previous 
study relaxed the Courant condition by adjusting the 
coefficient α1 (Sekido and Umeda 2023).
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Table 1 Sets of optimal coefficients for scheme 1 in two 
dimensions

C α1 α2 C α1 α2

0.50 −0.10858 0.0911 0.76 −0.00714 0.10943

0.51 −0.10124 0.09094 0.77 −0.00515 0.10989

0.52 −0.09433 0.09081 0.78 −0.00315 0.11006

0.53 −0.0878 0.09068 0.79 −0.00115 0.10997

0.54 −0.08165 0.09059 0.80 0.00083 0.10965

0.55 −0.07583 0.09052 0.81 0.00284 0.10909

0.56 −0.07032 0.09045 0.82 0.00483 0.10834

0.57 −0.06511 0.09043 0.83 0.00682 0.10741

0.58 −0.06018 0.09043 0.84 0.00881 0.10631

0.59 −0.0555 0.09045 0.85 0.01079 0.10506

0.60 −0.05106 0.0905 0.86 0.01277 0.10367

0.61 −0.04686 0.0906 0.87 0.01475 0.10215

0.62 −0.04287 0.09074 0.88 0.01674 0.1005

0.63 −0.03908 0.09093 0.89 0.01873 0.09874

0.64 −0.0355 0.09119 0.90 0.02074 0.09686

0.65 −0.0321 0.09152 0.91 0.02277 0.09486

0.66 −0.02889 0.09196 0.92 0.02484 0.09274

0.67 −0.02588 0.09258 0.93 0.02696 0.0905

0.68 −0.02307 0.09345 0.94 0.02919 0.08807

0.69 −0.02057 0.09513 0.95 0.03162 0.08541

0.70 −0.01873 0.09864 0.96 0.03394 0.08277

0.71 −0.0168 0.10159 0.97 0.03609 0.08023

0.72 −0.0149 0.10402 0.98 0.0381 0.0778

0.73 −0.01304 0.10598 0.99 0.03996 0.07547

0.74 −0.01108 0.1075 1.00 0.04169 0.07322

0.75 −0.00911 0.10864
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This scheme is referred to as “scheme  2” in this paper. 
The detailed derivation of the operator D3,4

x  is shown in 
Appendix 1.

The dispersion relation is derived from the time-devel-
opment Eq. (3) with Eqs. (4) and (8) as follows:

Note that Kz = 0 in two dimensions.
Note that there is another type of the third-degree dif-

ference operator with fourth-order accu-
racy:L3,4
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Two dimensions
Optimal coefficients
A brute-force search is performed in the same way as the 
previous study (Sekido and Umeda 2023) to find a set of 
optimal coefficients for the third-degree difference opera-

tors. The optimal coefficients are determined to suppress 
the numerical instability and minimize the phase velocity 
error. The phase velocity is obtained by solving the disper-
sion relations for the angular frequency ω and dividing the 
real part of ω by the wavenumber k. The numerical error in 
the phase velocity is calculated as an average of the entire 
wavenumber space by the following equation:

(10)ε =

�

�

�

�

�

�x�y�z

π3c2

� π/�z

0

� π/�y

0

� π/�x

0







ω(kx, ky, kz)
�

k2x + k2y + k2z

− c







2

dkxdkydkz.



Page 8 of 20Sekido and Umeda  Earth, Planets and Space            (2024) 76:5 

The numerical error ε is a function of the coefficients α1 
and α2 for a specific Courant number C. A set of opti-
mal coefficients is searched such that ε is smallest under 
the condition of Im(ω) ≤ 0 . Hence, the optimal coef-
ficients are obtained as a function of the Courant num-
ber C. Table 1 shows the sets of optimal coefficients for 
scheme 1 for 0.5 ≤ C ≤ 1 . Table 2 shows the sets of opti-
mal coefficients for scheme 2 for 0.5 ≤ C ≤ 1.

The time-development equations with the first-degree 
difference operator with fourth-order accuracy D1,4

x  and 
the one-dimensional third-degree difference operators 
with fourth-order accuracy D3,4

x  are developed in the pre-
vious study (Sekido and Umeda 2023), which is referred 
to as “Sekido23” in this paper.

Numerical error
The numerical errors in the phase velocity of schemes 
1 and 2 are compared with those of Sekido23. Figure  1 
shows the phase velocity errors ε as a function of the 
Courant number C. Panels (a–c) show the numerical 

errors in the entire wavenumber space, at θ = 0◦ and at 
θ = 45◦ , respectively. Here, θ denotes the propagation 
angle from the x axis. The black, red and blue lines show 
the numerical errors with Sekido23, schemes 1 and 2, 
respectively.

The three schemes suppress the numerical insta-
bilities for 0.61 ≤ C ≤ 1 where FDTD(2,4) is unstable. 
Panel (a) shows that the numerical errors of the pre-
sent schemes are smaller than those of Sekido23. Panel 
(b) shows that the numerical errors of the present 
schemes are smaller than those of Sekido23 at θ = 0◦ . 
Especially, the numerical errors of scheme  1 are 
smaller than those of scheme 2 for C ≥ 0.96 . Panel (c) 
shows that the numerical errors of the present schemes 
tend to be close to those of Sekido23 at θ = 45◦.

Figure  2 shows the dependence of the phase velocity 
errors on wavenumber with Sekido23, schemes 1 and 2. 
The horizontal and vertical axes are wavenumber kx�x 
and ky�y , respectively. Panels (a–c) and (d–f ) show the 
phase velocity errors with C = 0.5 and 1, respectively. 
Panels (d–f ) show that the phase velocity errors with 
schemes 1 and 2 have smaller anisotropic errors than 
those with Sekido23 at C = 1 . With scheme 2, the phase 

Table 2 Sets of optimal coefficients for scheme 2 in two dimensions

C α1 α2 C α1 α2

0.50 −0.07781 0.0657 0.76 −0.00245 0.07065

0.51 −0.07245 0.06546 0.77 −0.00106 0.07089

0.52 −0.0674 0.06523 0.78 0.00035 0.07093

0.53 −0.06264 0.06502 0.79 0.00174 0.07081

0.54 −0.05814 0.06482 0.80 0.0031 0.07056

0.55 −0.05388 0.06462 0.81 0.00446 0.07016

0.56 −0.04986 0.06445 0.82 0.0058 0.06965

0.57 −0.04605 0.06428 0.83 0.00712 0.06903

0.58 −0.04244 0.06413 0.84 0.00844 0.06831

0.59 −0.03901 0.06399 0.85 0.00974 0.0675

0.60 −0.03576 0.06387 0.86 0.01101 0.06662

0.61 −0.03267 0.06375 0.87 0.01228 0.06566

0.62 −0.02974 0.06367 0.88 0.01352 0.06464

0.63 −0.02695 0.06359 0.89 0.01475 0.06356

0.64 −0.0243 0.06354 0.90 0.01596 0.06244

0.65 −0.02178 0.06352 0.91 0.01715 0.06127

0.66 −0.01939 0.06354 0.92 0.0183 0.06009

0.67 −0.01712 0.0636 0.93 0.01938 0.05893

0.68 −0.01496 0.06371 0.94 0.0221 0.05619

0.69 −0.01294 0.06395 0.95 0.02422 0.05416

0.70 −0.01106 0.06442 0.96 0.02628 0.05216

0.71 −0.00958 0.06607 0.97 0.02767 0.05088

0.72 −0.00816 0.06753 0.98 0.02925 0.04933

0.73 −0.00673 0.06869 0.99 0.03055 0.04806

0.74 −0.0053 0.06958 1.00 0.0319 0.04667

0.75 −0.00387 0.07022

Fig. 1 Phase velocity errors in two dimensions: a in the entire 
wavenumber space; b at θ = 0◦ ; c at θ = 45◦
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velocity errors are reduced for a wider range than with 
scheme 1.

Numerical results
Test simulations are performed with the same settings 
as the previous study (Sekido and Umeda 2023), i.e., 
c = 10.0 , �x = �y = 1.0 and �t = C�x/c . The same 
input current density is also imposed as the previous 
study (Sekido and Umeda 2023). The boundary condi-
tions in both x and y direction are periodic.

Figure 3 shows the results of the numerical simulations. 
Panels (a–f) show the spatial profiles of the magnetic 
field Bz component with the combination of Sekido23, 
schemes 1 and 2 versus C = 0.5 and 1. The panels focus 
on the first quadrant of the simulation domain.

With both of the Courant number C = 0.5 and C = 1 , 
the numerical simulations are stable with the present 
schemes as well as Sekido23. With C = 0.5 , Panels (a), 
(c) and (e) show that the numerical oscillations occur 
at θ = 0◦ with schemes 1 and 2, although the phase 
velocity errors with schemes 1 and 2 are smaller than 
those with Sekido23 as shown in Fig.  1. Panels (a–c) 
in Fig.  2 show that the phase velocity errors with 
schemes 1 and 2 are larger than those with Sekido23 
at kx�x ≈ 0.7-0.9 and ky = 0 , which corresponds to 
the wavenumber of the numerical oscillations in Fig. 3. 
Panels (d) and (f ) show that the numerical oscillations 
at C = 1 are reduced with the present schemes. There 

appear small numerical oscillations at θ = 45◦ with 
scheme  1, while there are less numerical oscillations 
with scheme  2. This result agrees with Fig.  1, which 
shows that the numerical errors of scheme 1 at θ = 45◦ 
are larger than those of the mean value in the whole 
directions.

Table 3 shows the computational time of the numerical 
simulations. The computational time is measured on the 
same processor and the same compiler as the previous 
study (Sekido and Umeda 2023). In those simulations, the 
electric field Ex and Ey components and magnetic field Bz 
component are computed only.

The computational time of the test simulations with 
C = 0.5 is 2 times as long as that with C = 1.0 . At the same 
Courant number, the computational time increases as the 
number of operations increases. With C = 1 , the computa-
tional time with schemes 1 and 2 are 1.052 and 1.604 times 
as long as that with Sekido23, respectively, although the 
numbers of operations with schemes 1 and 2 are 1.4 and 
2.0 times as large as those with Sekido23, respectively. The 
numbers of memory load with schemes 1 and 2 are 0.846 
and 1.308 times larger than those with Sekido23, respec-
tively. The number of operation, memory load and mem-
ory store contribute in the ratio of 1.00 : 3.89 : 1.96 to the 
computational time. The computational time is obtained 
from the sum of the memory access time and the process-
ing time of operations. The number of floating-point oper-
ations is not proportional to the computational time, since 

Fig. 2 Dependence of the phase velocity errors on wavenumber in two dimensions: a Sekido23 with C = 0.5; b scheme 1 with C = 0.5; c scheme 2 
with C = 0.5; d Sekido23 with C = 1; e scheme 1 with C = 1; f scheme 2 with C = 1
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Fig. 3 Spatial profiles of magnetic field Bz in two dimensions at t = 200�t/C , where C is the dimensionless Courant number: a Sekido23 
with C = 0.5; b Sekido23 with C = 1; c scheme 1 with C = 0.5; d scheme 1 with C = 1; e scheme 2 with C = 0.5; f scheme 2 with C = 1
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the floating-point operations cost shorter computational 
time than the memory accesses.

Three dimensions
Optimal coefficients
Table  4 shows the sets of optimal coefficients for 
scheme 1 for 0.4 ≤ C ≤ 1 . Table 5 shows the sets of opti-
mal coefficients for scheme 2 for 0.4 ≤ C ≤ 1.

Numerical error
The numerical errors in the phase velocity of schemes 
1 and 2 are compared with those of Sekido23. Figure  4 
shows the phase velocity errors ε as a function of the Cou-
rant number C. Panels (a–d) show the numerical errors 
in the entire wavenumber space, at (θ ,φ) = (0◦, 0◦) , at 

Table 3 Computational time of the two-dimensional simulations

C = 0.5 C = 1

FDTD(2,4) 1.45085564391688 –

Sekido23 1.79326340754516 0.897651936393231

scheme 1 1.88822376185097 0.944139619106427

scheme 2 2.87715115441941 1.44003295952454

Table 4 Sets of optimal coefficients for scheme 1 in three 
dimensions

C α1 α2 C α1 α2

0.40 −0.23452 0.09424 0.71 −0.00591 0.09064

0.41 −0.21938 0.09393 0.72 0.00215 0.08691

0.42 −0.20534 0.09366 0.73 0.00956 0.08338

0.43 −0.19225 0.0934 0.74 0.01637 0.08005

0.44 −0.18008 0.09318 0.75 0.02264 0.07689

0.45 −0.16872 0.09298 0.76 0.0284 0.07389

0.46 −0.1581 0.0928 0.77 0.03368 0.07106

0.47 −0.14817 0.09265 0.78 0.03855 0.06836

0.48 −0.13887 0.09253 0.79 0.04303 0.06579

0.49 −0.13016 0.09244 0.80 0.04713 0.06335

0.50 −0.12201 0.0924 0.81 0.05089 0.06104

0.51 −0.11438 0.09241 0.82 0.05434 0.05883

0.52 −0.10726 0.09249 0.83 0.0575 0.05673

0.53 −0.10062 0.09266 0.84 0.06039 0.05473

0.54 −0.09449 0.09298 0.85 0.06302 0.05283

0.55 −0.089 0.09362 0.86 0.06545 0.051

0.56 −0.08674 0.09751 0.87 0.06754 0.04943

0.57 −0.0854 0.10191 0.88 0.06896 0.04838

0.58 −0.08358 0.10546 0.89 0.07037 0.04727

0.59 −0.08133 0.10825 0.90 0.07165 0.04619

0.60 −0.07872 0.11037 0.91 0.07302 0.04499

0.61 −0.07576 0.11188 0.92 0.07443 0.04372

0.62 −0.07249 0.11284 0.93 0.07523 0.04282

0.63 −0.06893 0.1133 0.94 0.07562 0.04216

0.64 −0.06507 0.11329 0.95 0.07631 0.04126

0.65 −0.06079 0.11279 0.96 0.07675 0.0405

0.66 −0.05589 0.11172 0.97 0.07736 0.03959

0.67 −0.04581 0.10786 0.98 0.07806 0.03859

0.68 −0.03455 0.10317 0.99 0.07785 0.0382

0.69 −0.02419 0.09875 1.00 0.07805 0.0375

0.70 −0.01466 0.09457

Table 5 Sets of optimal coefficients for scheme 2 in three 
dimensions

C α1 α2 C α1 α2

0.40 −0.16648 0.06796 0.71 −0.00393 0.06042

0.41 −0.15548 0.06759 0.72 0.00143 0.05794

0.42 −0.14527 0.06725 0.73 0.00637 0.05559

0.43 −0.13577 0.06693 0.74 0.01161 0.05301

0.44 −0.12691 0.06663 0.75 0.01552 0.05104

0.45 −0.11864 0.06634 0.76 0.01963 0.04891

0.46 −0.1109 0.06607 0.77 0.0222 0.04784

0.47 −0.10365 0.06581 0.78 0.02515 0.04646

0.48 −0.09687 0.06557 0.79 0.02764 0.04529

0.49 −0.0905 0.06535 0.80 0.02993 0.04416

0.50 −0.08451 0.06514 0.81 0.03206 0.04305

0.51 −0.0789 0.06496 0.82 0.03383 0.04211

0.52 −0.07359 0.06478 0.83 0.03576 0.04098

0.53 −0.06863 0.06465 0.84 0.03742 0.03997

0.54 −0.06398 0.06456 0.85 0.03896 0.03898

0.55 −0.05962 0.06452 0.86 0.03999 0.03829

0.56 −0.0556 0.06459 0.87 0.04039 0.038

0.57 −0.05287 0.06591 0.88 0.04273 0.03628

0.58 −0.05156 0.06823 0.89 0.04253 0.03632

0.59 −0.04956 0.06984 0.90 0.04238 0.03633

0.60 −0.0471 0.07089 0.91 0.04224 0.03633

0.61 −0.04481 0.07174 0.92 0.0421 0.03634

0.62 −0.04235 0.07224 0.93 0.04197 0.03635

0.63 −0.03979 0.07245 0.94 0.04184 0.03636

0.64 −0.03706 0.07237 0.95 0.04169 0.03638

0.65 −0.03422 0.07204 0.96 0.04154 0.03641

0.66 −0.03122 0.07146 0.97 0.04141 0.03643

0.67 −0.02792 0.07058 0.98 0.04132 0.03643

0.68 −0.02303 0.06878 0.99 0.04119 0.03645

0.69 −0.01612 0.06583 1.00 0.04106 0.03648

0.70 −0.00978 0.06305
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(θ ,φ) = (45◦, 0◦) and at (θ ,φ) = (45◦, 45◦) , respectively. 
Here, θ and φ denote zenith and azimuth angles, respec-
tively. The black, red and blue lines show the numerical 
errors with Sekido23, schemes 1 and 2, respectively.

The three schemes suppress the numerical instabili-
ties for 0.4 ≤ C ≤ 1 . Panel (a) shows that the numerical 
errors of the present schemes are smaller than those of 
Sekido23. The numerical errors of scheme 2 in the entire 
wavenumber space are smaller than those of scheme  1. 
Panels (b) and (c) show that the numerical errors are 
smaller with the present schemes than with Sekido23 at 
(θ ,φ) = (0◦, 0◦) and (θ ,φ) = (45◦, 0◦) . Panel (d) shows 

that the numerical errors of the present schemes tend to 
be close to those of Sekido23 at (θ ,φ) = (45◦, 45◦).

Figure  5 shows the dependence of the phase veloc-
ity errors on wavenumber in the kx-ky and kr-kz planes 
at C = 1 . Here, we define the x = y, z = 0 line as an axis 
“r” ( (θ ,φ) = (45◦, 0◦) ). Panels (a–f) and (g–l) show the 
phase velocity errors with C = 0.4 and 1, respectively. 
Panels (g–l) show that the anisotropy in the phase veloc-
ity errors with schemes 1 and 2 is smaller than that with 
Sekido23. With scheme  2, the phase velocity errors are 
reduced for a wider range than with scheme 1.

Numerical results
Test simulations are performed with the same settings 
as the previous study (Sekido and Umeda 2023), i.e., 
c = 10.0 , �x = �y = �z = 1.0 and �t = C�x/c . The 
same input current density is also imposed as the previ-
ous study (Sekido and Umeda 2023). The boundary con-
ditions in all the x, y and z directions are periodic.

Figure  6 shows the results of numerical simulations. 
Panels (a–l) show the spatial profiles of the magnetic 
field Bz component with the combination of Sekido23, 
schemes 1 and 2 versus C = 0.4 and 1. The panels focus 
on the first quadrant of the x-y and r-z planes.

With both of the Courant number C = 0.4 and C = 1 , 
the numerical simulations are stable with the present 
schemes as well as Sekido23. With C = 0.4 , Panels (a), 
(c) and (e) show that the numerical oscillations occur at 
(θ ,φ) = (0◦, 0◦) with schemes 1 and 2, although the phase 
velocity errors with schemes 1 and 2 are smaller than 
those with Sekido23 as shown in Fig.  4. Panels (a–c) in 
Fig. 5 show that the phase velocity errors with schemes 1 
and 2 are larger than those with Sekido23 at kx�x ≈ 0.7

-0.9 and ky = kz = 0 , which corresponds to the wavenum-
ber of the numerical oscillations in Figs.  6. Panels (i–l) 
show that the numerical oscillations are reduced at C = 1 
with the present schemes. The numerical oscillations 
with scheme 1 are larger than those with scheme 2. These 
results agree with Fig. 4, which shows that the numerical 
errors of scheme 1 are larger than those of scheme 2.

Table 6 shows the computational time of the test sim-
ulations. The computational time of the test simulations 
with C = 0.4 is 2.5 times as long as those with C = 1.0 . 
At the same Courant number, the computational time 
increases as the number of operations increases. With 
C = 1 , the computational time with schemes 1 and 2 
are 1.017 and 1.646 times as long as that with Sekido23, 
respectively, although the numbers of operations with 
schemes 1 and 2 are 2.0 and 3.0 times as large as those 

Fig. 4 Phase velocity errors in three dimensions: a in the entire 
wavenumber space; b at (θ ,φ) = (0◦ , 0◦); c at (θ ,φ) = (45◦ , 0◦) ; d 
(θ ,φ) = (45◦ , 45◦)
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with Sekido23, respectively. The numbers of memory 
load with schemes 1 and 2 are 1.130 and 2.000 times 
larger than those with Sekido23, respectively. The num-
ber of operations, memory load and memory store 

contribute in the ratio of 1.00 : 17.7 : 95.9 to the compu-
tational time. In three dimensions, the size of the simu-
lation data is much larger than that in two dimensions. 
The simulation data in three dimensions is stored on 

Fig. 5 Dependence of the phase velocity errors on wavenumber in three dimensions: a Sekido23 with C = 0.4 in the kx-ky plane; b Sekido23 
with C = 0.4 in the kr-kz plane; c scheme 1 with C = 0.4 in the kx-ky plane; d scheme 1 with C = 0.4 in the kr-kz plane; e scheme 2 with C = 0.4 
in the kx-ky plane; f scheme 2 with C = 0.4 in the kr-kz plane; g Sekido23 with C = 1 in the kx-ky plane; h Sekido23 with C = 1 in the kr-kz plane; i 
scheme 1 with C = 1 in the kx-ky plane; j scheme 1 with C = 1 in the kr-kz plane; k scheme 2 with C = 1 in the kx-ky plane; l scheme 2 with C = 1 
in the kr-kz plane



Page 14 of 20Sekido and Umeda  Earth, Planets and Space            (2024) 76:5 

main memory while the simulation data in two dimen-
sions is stored on cache memory. Therefore, the contri-
butions of memory load and store to the computational 
time in three dimensions are much larger than those in 
two dimensions.

Conclusions
A novel non-dissipative and explicit FDTD method is 
developed to reduce an anisotropy in the numerical dis-
persion and relax the Courant condition simultaneously. 
Although the Courant condition of FDTD(2,4) is relaxed 
in our previous study (Sekido and Umeda 2023), there 
remains a large anisotropy in the numerical dispersion.

In the present study, third-degree spatial difference opera-
tors including the Laplacian are appended to the time-devel-
opment equations of FDTD(2,4) (Fang 1989; Petropoulos 
1994) in the way similar to the recent study (Sekido and 
Umeda 2023). A set of the optimal coefficients is searched 
to minimize the mean value of the phase velocity errors in 
the whole wavenumber space. The numerical simulations 
have demonstrated that the anisotropy in the numerical dis-
persion is reduced. For large Courant numbers up to C = 1 , 
the numerical instability is also suppressed.

Note that the present method is able to use acoustic anal-
yses straightforwardly.

Appendix 1. Derivation of D3,4
x

The third-degree spatial difference operator in the x direc-
tion with the fourth-order accuracy D3,4

x  is defined as fol-
lows (Sekido and Umeda 2023):

The operator D3,4
x  is factored out as

which is derived as follows.
The combined operators D1,2

x D2,2
x  and D1,2

x D2,2
x D2,2

x  are 
derived from Eq. (6) as follows: 
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Fig. 6 Spatial profiles of magnetic field Bz in three dimensions at t = 200�t/C , where C is the dimensionless Courant number: a Sekido23 
with C = 0.4 in the x-y plane; b Sekido23 with C = 0.4 in the r-z plane; c scheme 1 with C = 0.4 in the x-y plane; d scheme 1 with C = 0.4 in the r-z 
plane; e scheme 2 with C = 0.4 in the x-y plane; f scheme 2 with C = 0.4 in the r-z plane; g Sekido23 with C = 1 in the x-y plane; h Sekido23 
with C = 1 in the r-z plane; i scheme 1 with C = 1 in the x-y plane; j scheme 1 with C = 1 in the r-z plane; k scheme 2 with C = 1 in the x-y plane; l 
scheme 2 with C = 1 in the r-z plane

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Appendix 2. Another type of the third‑degree 
difference with fourth‑order accuracy
See Tables 7 and 8

Another type of the operator L3,4
x  is derived by replacing 

the last part of the one-dimensional difference D2,2
x  with 

the Laplacian difference D2,2
x +D2,2

y +D2,2
z :

Table 6 Computational time of the three-dimensional 
simulations

C = 0.4 C = 1

FDTD(2,4) 483.256176739000 -

Sekido23 580.575721512921 232.383280383982

Scheme 1 588.418191240355 236.389930321835

Scheme 2 953.918908680975 382.573950446397

Table 7 Sets of optimal coefficients for scheme 3 in two 
dimensions

C α1 α2 C α1 α2

0.50 −0.07797 0.06549 0.76 −0.00282 0.07102

0.51 −0.07262 0.06527 0.77 −0.00142 0.07125

0.52 −0.06758 0.06506 0.78 0.0 0.07128

0.53 −0.06282 0.06486 0.79 0.00139 0.07116

0.54 −0.05833 0.06468 0.80 0.00275 0.07091

0.55 −0.05409 0.06451 0.81 0.00412 0.0705

0.56 −0.05007 0.06435 0.82 0.00547 0.06998

0.57 −0.04627 0.0642 0.83 0.00679 0.06936

0.58 −0.04266 0.06406 0.84 0.00812 0.06863

0.59 −0.03925 0.06395 0.85 0.00942 0.06782

0.60 −0.03601 0.06385 0.86 0.0107 0.06693

0.61 −0.03293 0.06376 0.87 0.01198 0.06596

0.62 −0.03 0.06368 0.88 0.01322 0.06494

0.63 −0.02722 0.06363 0.89 0.01445 0.06386

0.64 −0.02458 0.0636 0.90 0.01567 0.06273

0.65 −0.02207 0.0636 0.91 0.01687 0.06155

0.66 −0.01968 0.06363 0.92 0.01805 0.06034

0.67 −0.01742 0.06372 0.93 0.0192 0.05911

0.68 −0.01528 0.06387 0.94 0.02082 0.05741

0.69 −0.01327 0.06414 0.95 0.02256 0.05571

0.70 −0.01143 0.06471 0.96 0.02447 0.05387

0.71 −0.00996 0.06645 0.97 0.02627 0.05213

0.72 −0.00854 0.06791 0.98 0.02779 0.05067

0.73 −0.0071 0.06906 0.99 0.02948 0.04896

0.74 −0.00567 0.06995 1.00 0.03055 0.04794

0.75 −0.00424 0.07059

Table 8 Sets of optimal coefficients for scheme 3 in three 
dimensions

C α1 α2 C α1 α2

0.40 −0.16674 0.06767 0.71 −0.00393 0.06042

0.41 −0.15577 0.06733 0.72 0.00143 0.05794

0.42 −0.14558 0.06701 0.73 0.00637 0.05559

0.43 −0.1361 0.06671 0.74 0.01161 0.05301

0.44 −0.12726 0.06643 0.75 0.01552 0.05104

0.45 −0.11902 0.06617 0.76 0.01963 0.04891

0.46 −0.11129 0.06591 0.77 0.02229 0.04754

0.47 −0.10406 0.06567 0.78 0.02504 0.04624

0.48 −0.09729 0.06545 0.79 0.02785 0.04487

0.49 −0.09096 0.06526 0.80 0.02961 0.0441

0.50 −0.08499 0.06507 0.81 0.03185 0.04294

0.51 −0.07938 0.0649 0.82 0.03381 0.04189

0.52 −0.07412 0.06476 0.83 0.03572 0.0408

0.53 −0.06918 0.06465 0.84 0.03709 0.04001

0.54 −0.06454 0.06458 0.85 0.03843 0.03918

0.55 −0.06022 0.06458 0.86 0.03993 0.03818

0.56 −0.05625 0.06471 0.87 0.04026 0.03795

0.57 −0.05389 0.06642 0.88 0.04209 0.03661

0.58 −0.0522 0.06855 0.89 0.04207 0.03654

0.59 −0.0503 0.07021 0.90 0.04202 0.03651

0.60 −0.04818 0.07143 0.91 0.04202 0.03644

0.61 −0.04589 0.07228 0.92 0.04201 0.03638

0.62 −0.04345 0.07279 0.93 0.04198 0.03634

0.63 −0.04087 0.07299 0.94 0.04184 0.03635

0.64 −0.03814 0.07291 0.95 0.04172 0.03636

0.65 −0.03526 0.07256 0.96 0.04157 0.03638

0.66 −0.03222 0.07196 0.97 0.04145 0.03639

0.67 −0.02882 0.07103 0.98 0.04132 0.03641

0.68 −0.02303 0.06878 0.99 0.04122 0.03641

0.69 −0.01612 0.06583 1.00 0.04112 0.03642

0.70 −0.00978 0.06305
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The dispersion relation is derived from the time-develop-
ment Eq. (3) with Eqs. (4) and (16):

Note that Kz = 0 in two dimensions. This method is 
referred to as “scheme 3” in this paper.

Table  7 shows the sets of optimal coefficients for 
scheme  3 for 0.5 ≤ C ≤ 1 in two dimensions. Table  8 
shows the sets of optimal coefficients for scheme  3 for 
0.4 ≤ C ≤ 1 in three dimensions.

The numerical errors with scheme  3 are almost the 
same as those with scheme  2 in both two and three 
dimensions. However, the computational cost with 
scheme 3 is slightly larger than that with scheme 2.

Abbreviations
FDTD  Finite-difference time-domain
GIC  Geomagnetically induced current
ELF  Extremely low frequency
VLF  Very low frequency

Acknowledgments
Computations of this work were performed on the CIDAS computer system at 
the Institute for Space-Earth Environmental Research, Nagoya University as a 
computational joint research program.

(17)

W
2 =

[

16

{

C2
xK

2
x

(

α1C
2
xK

2
x + α2C

2
yK

2
y + α2C

2
zK

2
z

)2
+ C2

yK
2
y

(

α2C
2
xK

2
x + α1C

2
yK

2
y + α2C

2
zK

2
z

)2

+C2
zK

2
z

(

α2C
2
xK

2
x + α2C

2
yK

2
y + α1C

2
zK

2
z

)2
}

+ 16

{

C2
xK

4
x

(

α1C
2
xK

2
x + α2C

2
yK

2
y + α2C

2
zK

2
z

)2
+ C2

yK
4
y

(

α2C
2
xK

2
x + α1C

2
yK

2
y + α2C

2
zK

2
z

)2

+C2
zK

4
z

(

α2C
2
xK

2
x + α2C

2
yK

2
y + α1C

2
zK

2
z

)2
}

+ 4

{

C2
xK

6
x

(

α1C
2
xK

2
x + α2C

2
yK

2
y + α2C

2
zK

2
z

)2
+ C2

yK
6
y

(

α2C
2
xK

2
x + α1C

2
yK

2
y + α2C

2
zK

2
z

)2

+C2
zK

6
z

(

α2C
2
xK

2
x + α2C

2
yK

2
y + α1C

2
zK

2
z

)2
}]

− 2
[

4
{

C2
xK

2
x

(

α1C
2
xK

2
x + α2C

2
yK

2
y + α2C

2
zK

2
z

)

+ C2
yK

2
y

(

α2C
2
xK

2
x + α1C

2
yK

2
y + α2C

2
zK

2
z

)

+C2
zK

2
z

(

α2C
2
xK

2
x + α2C

2
yK

2
y + α1C

2
zK

2
z

)}

+
8

3

{

C2
xK

4
x

(

α1C
2
xK

2
x + α2C

2
yK

2
y + α2C

2
zK

2
z

)

+ C2
yK

4
y

(

α2C
2
xK

2
x + α1C

2
yK

2
y + α2C

2
zK

2
z

)

+C2
zK

4
z

(

α2C
2
xK

2
x + α2C

2
yK

2
y + α1C

2
zK

2
z

)}

+
1

3

{

C2
xK

6
x

(

α1C
2
xK

2
x + α2C

2
yK

2
y + α2C

2
zK

2
z

)

+ C2
yK

6
y

(

α2C
2
xK

2
x + α1C

2
yK

2
y + α2C

2
zK

2
z

)

+C2
zK

6
z

(

α2C
2
xK

2
x + α2C

2
yK

2
y + α1C

2
zK

2
z

)}]

+
{

(

C2
xK

2
x + C2

yK
2
y + C2

zK
2
z

)

+
1

3

(

C2
xK

4
x + C2

yK
4
y + C2

zK
4
z

)

+
1

36

(

C2
xK

6
x + C2

yK
6
y + C2

zK
6
z

)

}

.

Author contributions
HS developed the novel scheme, the numerical codes, performed the 
numerical tests, analyzed the numerical results, drafted the manuscript. TU 
suggested the basic concept of the numerical operator. Both of authors read 
and approved the final manuscript.

Funding
This work was supported by MEXT/JSPS under Grant-In-Aid (KAKENHI) for 
Scientific Research (B) No.JP19H01868.

Availability of data and materials
The numerical code used in the present study is available from the corre-
sponding author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 5 April 2023   Accepted: 9 November 2023



Page 20 of 20Sekido and Umeda  Earth, Planets and Space            (2024) 76:5 

References
Chen W, Ma P, Tian J (2018) A novel ADE-CN-FDTD with improved computa-

tional efficiency for dispersive media. IEEE Microwave Wirel Compon Lett 
28:10. https:// doi. org/ 10. 1109/ LMWC. 2018. 28612 08

Cole JB (1997a) High accuracy solution of Maxwell’s equations using non-
standard finite differences. Comput Phys 11:3. https:// doi. org/ 10. 1063/1. 
168620

Cole JB (1997b) A high-accuracy realization of the Yee algorithm using non-
standard finite differences. IEEE Trans Microw Theory Tech 45:6. https:// 
doi. org/ 10. 1109/ 22. 588615

Cooke SJ, Botton M, Antonsen TM Jr, Levush B (2008) A leapfrog formulation 
of the 3-D ADI-FDTD algorithm. Int J Numer Model Electron Netw Dev 
Fields 22:2. https:// doi. org/ 10. 1109/ CEMTD. 2007. 43735 46

Cummer SA (2000) Modeling electromagnetic propagation in the Earth-
ionosphere waveguide. IEEE Trans Antennas Propag 48:9. https:// doi. org/ 
10. 1109/8. 898776

Ding C, Xiao Z, Su Y (2021) A potential subsurface cavity in the continuous 
ejecta deposits of the Ziwei crater discovered by the Chang’E-3 mission. 
Earth Planets Space 73:53. https:// doi. org/ 10. 1186/ s40623- 021- 01359-7

Fang J (1989) Time domain finite difference computations for Maxwell’s equa-
tions. Dept. of Elec. Eng., Univ. of California, Berkeley, CA

Fujiwara Y, Nogi T, Omura Y (2022) Nonlinear triggering process of whistler-
mode emissions in a homogeneous magnetic field. Earth Planets Space 
74:95. https:// doi. org/ 10. 1186/ s40623- 022- 01646-x

Hadi MF, Piket-May M (1997) A modified FDTD (2, 4) scheme for modeling 
electrically large structures with high-phase accuracy. IEEE Trans Anten-
nas Propag 45:2. https:// doi. org/ 10. 1109/8. 560344

Ikata E, Tay G (1998) Finite-difference time domain acoustic-wave algorithm. Il 
Nuovo Cimento D 20:12. https:// doi. org/ 10. 1007/ BF030 36596

Ishii K, Yokoo A (2021) Combined approach to estimate the depth of the 
magma surface in a shallow conduit at Aso volcano, Japan. Earth Planets 
Space 73:187. https:// doi. org/ 10. 1186/ s40623- 021- 01523-z

Kimura S, Nakagawa T (2008) Electromagnetic full particle simulation of the 
electric field structure around the moon and the lunar wake. Earth Plan-
ets Space 60:591–599. https:// doi. org/ 10. 1186/ BF033 53122

Kudo H, Kashiwa T, Ohtani T (2002) Numerical dispersion and stability condi-
tion of the nonstandard FDTD method. Electron Commun 85:1. https:// 
doi. org/ 10. 1002/ ecjb. 1083

Nakagawa T, Kimura S (2011) Role of the solar wind magnetic field in the 
interaction of a non-magnetized body with the solar wind: an electro-
magnetic 2-D particle-in-cell simulation. Earth Planets Space 63:477–486. 
https:// doi. org/ 10. 5047/ eps. 2011. 02. 006

Nakamura S, Ebihara Y, Fujita S, Goto T, Yamada N, Watari S, Omura Y (2018) 
Time domain simulation of geomagnetically induced current (GIC) flow-
ing in 500-kV power grid in Japan including a three-dimensional ground 
inhomogeneity. Space Weather 16:12. https:// doi. org/ 10. 1029/ 2018S 
W0020 04

Namiki T (1999) A new FDTD algorithm based on alternating-direction implicit 
method. IEEE Trans Microw Theory Tech 47:10. https:// doi. org/ 10. 1109/ 
22. 795075

Ohtani T, Taguchi K, Kashiwa T, Kanai Y, Cole JB (2009) Nonstandard FDTD 
method for wideband analysis. IEEE Trans Antennas Propag 57:8. https:// 
doi. org/ 10. 1109/ TAP. 2009. 20244 67

Petropoulos PG (1994) Phase error control for FD-TD methods of second and 
fourth order accuracy. IEEE Trans Antennas Propag 42:6. https:// doi. org/ 
10. 1109/8. 301709

Sekido H, Umeda T (2023) Relaxation of the Courant condition in the explicit 
finite-difference time-domain method with higher-degree differential 
terms. IEEE Trans Antennas Propag 71:2. https:// doi. org/ 10. 1109/ TAP. 2023. 
32340 97

Sun G, Trueman CW (2003) Unconditionally stable Crank-Nicolson scheme for 
solving two-dimensional Maxwell’s equations. Electron Lett 39:7. https:// 
doi. org/ 10. 1049/ el: 20030 416

Taflove A (1980) Application of the finite-difference time-domain method to 
sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans 
Electromagn Compat 22:3. https:// doi. org/ 10. 1109/ TEMC. 1980. 303879

Takenaka H, Komatsu M, Toyokuni G et al (2017) Quasi-Cartesian finite-differ-
ence computation of seismic wave propagation for a three-dimensional 
sub-global model. Earth Planets Space 69:67. https:// doi. org/ 10. 1186/ 
s40623- 017- 0651-1

Umeda T (2012) Effect of ion cyclotron motion on the structure of wakes: a 
Vlasov simulation. Earth Planets Space 64:16. https:// doi. org/ 10. 5047/ eps. 
2011. 05. 035

Umeda T, Fukazawa K (2015) A high-resolution global Vlasov simulation 
of a small dielectric body with a weak intrinsic magnetic field on 
the K computer. Earth Planets Space 67:49. https:// doi. org/ 10. 1186/ 
s40623- 015- 0216-0

Wang X, Yin W, Chen ZZ (2013) (D.) One-step leapfrog ADI-FDTD method for 
simulating electromagnetic wave propagation in general dispersive 
media. Opt Express 21:18. https:// doi. org/ 10. 1364/ OE. 21. 020565

Watari S, Nakamura S, Ebihara Y (2021) Measurement of geomagnetically 
induced current (GIC) around Tokyo, Japan. Earth Planets Space 73:102. 
https:// doi. org/ 10. 1186/ s40623- 021- 01422-3

Xie G, Huang Z, Fang M, Wu X (2020) A unified 3-D ADI-FDTD algorithm with 
one-step leapfrog approach for modeling frequency-dependent disper-
sive media. Int J Numer Model Electron Netw Dev Fields 33:2. https:// doi. 
org/ 10. 1002/ jnm. 2666

Yang B, Balanis CA (2006) An isotropy-improved nonstandard finite-difference 
time-domain method. IEEE Trans Antennas Propag 54:7. https:// doi. org/ 
10. 1109/ TAP. 2006. 877185

Yang Y, Chen RS, Yung EKN (2006) The unconditionally stable Crank Nicolson 
FDTD method for three-dimensional Maxwell’s equations. Microw Opt 
Technol Lett 48:8. https:// doi. org/ 10. 1002/ mop. 21684

Yee KS (1966) Numerical solution of initial boundary value problems involving 
Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:3. 
https:// doi. org/ 10. 1109/ TAP. 1966. 11386 93

Yokoo A, Ishii K, Ohkura T et al (2019) Monochromatic infrasound waves 
observed during the 2014–2015 eruption of Aso volcano, Japan. Earth 
Planets Space 71:12. https:// doi. org/ 10. 1186/ s40623- 019- 0993-y

Zhou L, Yang F, Zhou H (2015) A novel efficient nonstandard high-order finite-
difference time-domain method based on dispersion relation analysis. 
Electromagnetics 35:1. https:// doi. org/ 10. 1080/ 02726 343. 2015. 971669

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/LMWC.2018.2861208
https://doi.org/10.1063/1.168620
https://doi.org/10.1063/1.168620
https://doi.org/10.1109/22.588615
https://doi.org/10.1109/22.588615
https://doi.org/10.1109/CEMTD.2007.4373546
https://doi.org/10.1109/8.898776
https://doi.org/10.1109/8.898776
https://doi.org/10.1186/s40623-021-01359-7
https://doi.org/10.1186/s40623-022-01646-x
https://doi.org/10.1109/8.560344
https://doi.org/10.1007/BF03036596
https://doi.org/10.1186/s40623-021-01523-z
https://doi.org/10.1186/BF03353122
https://doi.org/10.1002/ecjb.1083
https://doi.org/10.1002/ecjb.1083
https://doi.org/10.5047/eps.2011.02.006
https://doi.org/10.1029/2018SW002004
https://doi.org/10.1029/2018SW002004
https://doi.org/10.1109/22.795075
https://doi.org/10.1109/22.795075
https://doi.org/10.1109/TAP.2009.2024467
https://doi.org/10.1109/TAP.2009.2024467
https://doi.org/10.1109/8.301709
https://doi.org/10.1109/8.301709
https://doi.org/10.1109/TAP.2023.3234097
https://doi.org/10.1109/TAP.2023.3234097
https://doi.org/10.1049/el:20030416
https://doi.org/10.1049/el:20030416
https://doi.org/10.1109/TEMC.1980.303879
https://doi.org/10.1186/s40623-017-0651-1
https://doi.org/10.1186/s40623-017-0651-1
https://doi.org/10.5047/eps.2011.05.035
https://doi.org/10.5047/eps.2011.05.035
https://doi.org/10.1186/s40623-015-0216-0
https://doi.org/10.1186/s40623-015-0216-0
https://doi.org/10.1364/OE.21.020565
https://doi.org/10.1186/s40623-021-01422-3
https://doi.org/10.1002/jnm.2666
https://doi.org/10.1002/jnm.2666
https://doi.org/10.1109/TAP.2006.877185
https://doi.org/10.1109/TAP.2006.877185
https://doi.org/10.1002/mop.21684
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1186/s40623-019-0993-y
https://doi.org/10.1080/02726343.2015.971669

	A novel high accuracy finite-difference time-domain method
	Abstract 
	Introduction
	Numerical dispersion relation
	Second order
	Fourth order

	Two dimensions
	Optimal coefficients
	Numerical error
	Numerical results

	Three dimensions
	Optimal coefficients
	Numerical error
	Numerical results

	Conclusions
	Appendix 1. Derivation of 
	Appendix 2. Another type of the third-degree difference with fourth-order accuracy
	Acknowledgments
	References


