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Abstract 

The precise prediction of polar motion parameters is needed for the astrogeodynamics, navigation and positioning 
of the deep space probe. However, the current prediction methods are limited to predicting polar motion for specific 
periods, either short- or long-term. In this study, a sliding multilayer perceptron (MLP) method combined singular 
spectrum analysis (SSA) and autoregressive moving average (ARMA) for short- and long-term polar motion predic-
tion was proposed. MLP was introduced into PM prediction due to its automatic learning characteristics and its ability 
to effectively process nonlinear and multi-dimensional data. The SSA was used to extract and predict the principal 
components of polar motion, while the remaining components were predicted using ARMA. In the meantime, SSA 
and ARMA were used to provide training data and target learning data for the MLP model. MLP input data were 
constructed by sliding processing with a window of 7 days, composed of n series of the same length (18 years). 
Finally, MLP was employed to predict the residuals generated during SSA and ARMA prediction. To evaluate the accu-
racy of the proposed method, the polar motion prediction was applied for a 364-day lead time based on the IERS 
EOP 14C04 product. The method outperformed the IERS Bulletin A, as demonstrated by the mean-absolute errors 
of the x and y components of polar motion on the 30th day, which were lower (5.14 mas and 3.37 mas, respectively) 
than those predicted by IERS Bulletin A (6.66 mas and 3.94 mas). Similarly, the mean-absolute errors on the 364th day 
were 17.79 mas and 16.29 mas, respectively, compared to the 19.24 mas and 18.81 mas predicted by IERS Bulletin A.
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Graphical Abstract

Introduction
Polar motion (PM) refers to the movement of the Earth’s 
rotation axis on its surface (Jin et  al. (2021a); Wu et  al. 
2021; Zhu 1982; Lambeck 1980). The accuracy of real-
time PM parameters is crucial for high-precision satellite 
navigation and positioning systems and spacecraft track-
ing (Stamatakos 2017). To obtain precise PM parameters, 
various technologies such as Global Navigation Satellite 
System (GNSS), Satellite Laser Ranging (SLR), Very Long 
Baseline Interferometry (VLBI), Doppler Orbitography 
and Radiopositioning Integrated by Satellite (DORIS) can 
be employed (Dill and Dobslaw 2010). However, in satel-
lite navigation technology, interruption the communica-
tion link between the satellite and ground are common, 
necessitating the conversion between reference frames 
using earth orientation parameters (EOP). This empha-
sizes the importance of accurately predicting PM and 
obtaining real-time PM parameters (Gambis and Luzum 
2011; Wang et al. 2017).

Polar motion parameters are playing an increasingly 
crucial role in the field of space science. The rapid devel-
opment of celestial dynamics has led to increasingly high 
requirements for the accuracy of polar motion parame-
ters, and the accuracy of polar motion prediction directly 
affects the accuracy of satellite orbit determination. 
Due to the complexity of polar motion data processing, 
obtaining real-time polar motion parameters is not feasi-
ble and they can only be obtained through high-precision 
prediction methods (Su et al. 2014; Shen et al. 2018). The 

excitation source of polar motion is relatively complex, 
which also requires high accuracy of prediction methods. 
At the same time, different prediction methods exhibit 
varying levels of skill across different PM prediction 
time scales, and establishing relatively stable PM predic-
tion methods is a challenge in the current PM prediction 
process.

Various methods were proposed and utilized, such 
as least squares (LS) (Kosek et  al. 2007; Yao et  al. 2013; 
Wu et  al. 2018; Akulenko et  al. 2002), singular spec-
trum analysis (SSA) (Shen et al. 2017; Jin et al. (2021b)), 
autoregressive model (AR) (Schuh et  al. 2002), wave-
let analysis (Zhao and Lei 2019), copula-based analysis 
(Modiri et al. 2018), and artificial neural networks (ANN) 
(Liao et al. 2012). LS and AR exhibit satisfactory perfor-
mance in short-term PM prediction. However, the pres-
ence of redundant data and inappropriate orders can 
result in overfitting, thereby significantly diminishing 
their efficacy in mid-long-term PM prediction. Therefore, 
both LS and AR are not suitable for mid- to long-term 
PM prediction alone. Wavelet analysis proves effective in 
segregating high and low frequency components within 
PM series. As a result, it is commonly employed in con-
junction with other models to enhance the accuracy of 
mid- to long-term PM prediction. Although existing pre-
diction methods majority provide good ultra short-term 
(< 10 days), short-term (< 30 days) prediction results, they 
do not perform satisfactorily enough for long-term pre-
dictions (Sun et al. 2019). There are many PM prediction 
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methods performing better in the short term or only in 
the mid-long term.

To overcome the limitations and instability of existing 
prediction methods, IERS organized the Earth Orienta-
tion Parameters Combination of Prediction Pilot Pro-
ject (EOPC PPP) in July 2010. The LS + AR prediction 
method officially recognized by IERS, has high accuracy 
in short-term forecasting but substantial error accumula-
tion with increasing predicted time (Kosek et  al. 2011). 
The LS + AR method also has a high requirement on 
data quality, affecting the mid-long-term PM prediction 
accuracy to a certain extent (Su et al. 2014; Guo and Han 
2009).

SSA has been successfully applied in various fields, 
including geophysics, meteorology, and oceanography, 
to extract and reconstruct signals with different periods 
from the original signal and predict their principal com-
ponents (Kong et al. 2020; Marques et al. 2006; Briganti 
and Beltrami 2008; Vautard and Ghil 1989). However, the 
use of SSA alone for polar motion prediction can result 
in distortion at the end of the fitted series (end effect) 
and overfitted. By combining SSA with other models, the 
overall PM predicted accuracy can be improved (Zhang 
et  al. 2011; Zotov 2010; Heng and Suetsugi 2013). Shen 
et al. (2018) combined the SSA and ARMA model, dem-
onstrating the applicability of this method, and improved 
the end effects and overfitting problems. But its short-
term prediction accuracy needs improvement. Further-
more, the MLP model with its nonlinear-mapping and 
self-accommodating characteristics (Zhang 2003; Singh 
2018), has been used to predict in several fields, including 
medicine, meteorology, economics, and geology (Choi 
et al. 2019). Polar motion is influenced by various excita-
tion sources, which have a significant impact on the accu-
racy of long-term polar motion prediction. And although 
the PM series was fitted by SSA + ARMA, there still are 
complex residual changes. As a nonlinear neural network 
model, MLP has the processing ability to dispose com-
plex characteristic of PM time series and improve the 
accuracy of PM prediction. Therefore, using MLP as a 
nonlinear model for predicting polar motion is theoreti-
cally appropriate.

This study proposed a new sliding method for predict-
ing PM by combining the SSA + ARMA model with the 
MLP model. This method takes the characteristics of the 
PM series into consideration, mainly including the peri-
odic characteristics of PM series and the ‘nonlinearity’ 
of PM series caused by complex excitation sources. The 
meaning of ‘nonlinear’ is that the polar motion series is 
not a linear combination of signals due to its complex 
excitation. It is obvious that this excitation caused the 
complexity of polar motion prediction. By decompos-
ing and reconstructing the PM time series using the 

SSA + ARMA model, the obtained data are input into the 
MLP model. This integration of deep learning techniques 
enables the leveraging of their inherent advantages to 
improve the accuracy and stability of PM prediction. The 
sliding SSA + ARMA + MLP method proposed in this 
study has achieved pretty prediction accuracy in ultra-
short term, short term, and mid-long term (364 days).

Methodology
Data
The PM time series from January 11, 1987, to Decem-
ber 26, 2019, was analyzed and used to predict PM from 
January 5, 2017, to December 26, 2019 by utilizing the 
sliding SSA + ARMA + MLP model. The original time 
series (PMX, PMY) covering the period of 1982 to 2019 
is shown in Fig. 1. The PM data used in this study were 
sourced from the IERS 14 C04 product (https:// www. iers. 
org/ IERS/ EN/ DataP roduc ts/ Earth Orien tatio nData/ eop. 
html), which provides EOP data, since 1962 with a sam-
pling interval of 1  day (Bizouard et  al. 2019). The IERS 
also publishes fast products and data to meet engineering 
application criteria. Bulletin A is a prediction file regu-
larly issued by the IERS Fast Service and Forecast Center 
of the U.S. Naval Observatory (USNO). Bulletin A pro-
vides the prediction of polar motion parameters for the 
last week and the next year, with a sampling interval of 
1 day and updated once a week, with products delayed by 
one week upon release.

Overview of the SSA + ARMA + MLP
As shown in Fig.  2, SSA and ARMA were used to pro-
vide training data for the MLP model while predict-
ing PM. MLP training data were constructed by sliding 
with a window of 7  days, composed of n rows of the 
same length. The n-th series was obtained by sliding 
the (n-1)-th series backward for 7  days, as outlined in 
Sect. "Prediction of MLP". PM time series were predicted 
using SSA, with the remaining components (RC) and 
SSA predictions obtained. The difference between obser-
vations and SSA predictions was used to derive the SSA 
predicting residuals. ARMA was then used to predict the 
RCs, providing ARMA modeling residuals and predic-
tions. The difference between SSA predicting residuals 
and ARMA predictions was used to obtain ARMA pre-
dicting residuals, with ARMA modeling residuals serving 
as the training data Q, and ARMA predicting residuals as 
the target learning data T. The input data for MLP com-
prised the ARMA modeling and predicting residuals.

The PM prediction process comprised three main 
parts. Firstly, the principal components (PCs) were pre-
dicted using sliding SSA. To better compare Bulletin A 
and construct the MLP input data, the sliding window 
was set to 7 days. After SSA completed one prediction, 

https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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it slid back 7 days to complete the next prediction. The 
predicted part was considered as the missing part, and 
the PCs were repeatedly filled iteratively after filling the 
PM data to obtain the SSA predictions and PM residu-
als. In the second part, the residual components (RCs) 
were predicted using the ARMA model, which obtained 
the ARMA predictions. Lastly, the MLP model was 
used to predict the ARMA modeling residuals. After 
training, the MLP model completed a 364-day PM pre-
diction. Finally, the PM predictions were derived by 
adding the predicted PCs from the SSA model, the pre-
dicted RCs from the ARMA model, and the predicted 
ARMA residuals from the MLP model.

Prediction of SSA
Singular spectrum analysis constructs a one-dimensional 
nonlinear time series into a multi-dimensional trajectory 
matrix, which can be further decomposed and recon-
structed to extract various signals (Elsner and Tsonis 
1996). For the PM time series, SSA can be used to decom-
pose different signals, such as long-term trends, periodic 
terms, or noise, which can reconstruct the original time 
series in PM prediction.

As one of the critical parameters in SSA time series 
analysis, the window size affects the results. A reason-
able window size setting can better separate the PCs of 
the time series, and an appropriate window size should 
be a multiple of the PC period. For long-term PM time 
series, the days of Chandler wobble and annual oscilla-
tion period were both considered in the window size M, 

Fig. 1 The original time series data of PMX and PMY
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which was set to 2190 (Zotov 2010). After SSA decom-
posed and reconstructed the time series, the original 
PM time series could be replaced by the superposition 
of the first j reconstructed components. The size of j 
needs to be determined by SSA analysis. In Sect.  "Sin-
gular spectrum analysis of PM time series analysis", the 
determination process of the j value is introduced in 
detail.

The analysis of filling the PM time series and repeating 
iterations during the SSA prediction period was based 
on previous publications (Shen et al. 2018; Schoelhamer 
2001). In this study, the following are the main steps:

(1) The original PM time series length was set to 
N = 6570 , the PM prediction data length was set 
to u = 364 and a new PM time series (N + u) was 
constructed by adding n zeros at the end of the 
original PM time series, where u is the number of 
zeros.

(2) SSA decomposed the new PM time series (N + u) . 
The last n values of the new PM time series were 
replaced those at the end of the first PC (PC1), and 
this process was repeated until PC1 converged.

(3) After the first cycle, a second PC (PC2) was added 
to reconstruct the prediction data. PC1 and PC2 
were superimposed to obtain the prediction data. 
Step (2) was repeated until the PC1 + PC2 series 
converged.

(4) The above process was repeated iteratively until the 
j PC series complete the numerical replacement. 
Finally, the u values at the end of the new PM time 
series were the j PC predictions of the PM time 
series.

Prediction of ARMA
After obtaining the RC through SSA prediction, they still 
contained various other stationary periods or noises. 
Therefore, the RCs were further modeled and predicted 
using the ARMA. According to the principles of multiple 
regression, the ARMA model used in this study can be 
expressed as:

where βi(i = 1, 2, . . . , p) and θi(i = 1, 2, . . . , q) represent 
the autoregressive (AR) and moving average (MA) coef-
ficients, respectively, and αN is white noise. To deter-
mine the appropriate orders of p and q for the model, 
the extended autocorrelation function (EACF) analysis 
was selected in this study. Based on the EACF analysis, 
the ARMA (2, 1) model was suitable for PM prediction, 
where p = 2 and q = 1.

Prediction of MLP
After ARMA completed the RC prediction and output 
the residuals, the MLP model used the ARMA residuals 
as the training data. Considering the complex character-
istics of the PM time series, the MLP model leveraged 
its deep learning capability to enhance overall PM pre-
diction accuracy. MLP is a typical feedforward artificial 
neural network, where each neuron is only connected to 
the previous layer of neurons, making is well suited for 
classifying extensive data and establishing complex prob-
lems (Pal and Mitra 1992). By selecting a limited number 
of input and output variables, the MLP model can effec-
tively simulate the relationship between the input and 
output data, thereby facilitating the establishment of a 
prediction method based on the MLP model (Kuremoto 

(1)

YN = β1YN−1 + β2YN−2 + . . .+ βpYN−p − θ1αN−1

− θ2αN−2 − . . .− θqαN−q + αN ,

Fig. 2 Flowchart of the sliding SSA + ARMA + MLP method for PM 
prediction (singular spectrum analysis (SSA), autoregressive moving 
average model (ARMA), multilayer perceptron (MLP), principal 
components (PC), remaining components (RC), 6570 is the train data 
P volume, 364 is the target data T volume)
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et  al. 2014). Given that the PM prediction method 
employed in this study entails mapping multiple input 
variables to output variables, the MLP model is utilized.

As depicted in Fig. 3, the MLP model represents a net-
work comprising densely connected information pro-
cessing nodes, known as neurons. Neurons serve as the 
fundamental units constituting neural networks, func-
tioning as mathematical models that emulate biological 
neurons for information processing and transmission 
purposes. The MLP model encompasses an input layer, 
one or more hidden layers, and an output layer (Ghasem-
loo et  al. 2022). The input layer serves as the neuron 
responsible for data input, with its number aligning with 
the count of data variables. The hidden layers and output 
layer consist of neurons and output variables, respec-
tively. Adjacent layers are fully interconnected, while 
neurons within the same layer remain unconnected.

The MLP model consists of three basic elements: 
weights, biases, and activation functions. The training 
process consists of two steps: from input to hidden layers 
and from hidden to output layers. From input to hidden 
layers, I = h(W1x + r1) , where I is the output vector of 
the hidden layer, h is the activation function, W1 is the 
weight, x is the input vector, and r1 is the bias. From hid-
den to output layers, O = g(W2y+ r2) , where O is the 
output vector of the output layer, g is the activation func-
tion, W2 is the weight, y is the input vector, and r2 is the 
bias.

The MLP accomplishes the mapping from input to 
output by processing and transmitting information via 
neurons. The core of MLP learning lies in the iterative 
adjustment of the activation function and bias, achieved 

through information transmission and error backpropa-
gation within the network. This iterative process aims to 
minimize the discrepancy between the desired output of 
the MLP and the actual output.

Lippmann (1988) proved that a two hidden-layer neu-
ral network can generate arbitrarily complex decision 
regions and approximate continuous nonlinear functions 
with any precision. In this study, considering the number 
of input neurons, three hidden layers were set to achieve 
a better training effect.

The ARMA residuals were used as the training data 
and target learning data by sliding, respectively. The MLP 
model was trained and used to predict PM using the fol-
lowing steps:

(1) Network initialization involved weight and bias 
initialization to determine the activation func-
tion simultaneously. The window size of L = 6570 
was set to the length of the 18-year historical data, 
which is the length of the training data, and the tar-
get step size N = 364 was set to the size of the pre-
diction period.

(2) For data normalization, selecting the maximum and 
minimum values of the PM series in the PMX and 
PMY, respectively. Then, min–max normalization 
was used to normalize the PMX and PMY of the 
MLP model training dataset. x was mapped to x′:

(3) To construct the training data Q by sliding, the 
ARMA modeling residuals were utilized, taking 
into account the training window size L and the 

(2)x′ = (x − xmin)/xmax − xmin.

Fig. 3 Structure of the multilayer perceptron (MLP)
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prediction period size N. The normalized data were 
also incorporated, the training data Q are expressed 
as:

The target learning data T were generated based 
on the ARMA predicting residuals and can be 
expressed as:

where, x1 =
{

x1,1 x1,2 x1,3 · · · x1,L
}

 is the 
ARMA modeling residuals between January 
11, 1987 and January 6, 2005, the data length is 
L, and x2 =

{

x2,1 x2,2 x2,3 · · · x2,L
}

 is the 
ARMA modeling residuals obtained by slid-
ing x1 backward for 7  days. The sliding win-
dow was maintained as remains 7  days, the 
data length L remained unchanged, and 
xn =

{

xn,1 xn,2 xn,3 · · · xn,L
}

 is the ARMA 
modeling residuals sliding to the predicted start 
time (PST). y1 =

{

y1,1 y1,2 y1,3 · · · y1,N
}

 is 
the ARMA predicting residuals corresponding to 
ARMA modeling residuals x1 and the data length is 
N. y2 =

{

y2,1 y2,2 y2,3 · · · y2,N
}

 is the ARMA 
predicting residuals corresponding to x2 and 
yn =

{

yn,1 yn,2 yn,3 · · · yn,N
}

 corresponds to xn 
ARMA predicting residuals.

(4) The MLP model was established and trained. The 
window size L for the long-term PM series was set 
to 6570, which considered the Chandler wobble and 
the annual oscillations. During the PM prediction 
with a period of 364 days, the number of neurons 
was 6570, 128, 64, 32, and 364 in sequence. Figure 3 
shows the structure of the MLP model.

(5) Using the trained MLP model for predic-
tion, the ARMA modeling residuals were 
used as the input data, and the prediction was 
yn+1 =

{

yn+1,1 yn+1,2 yn+1,3 · · · yn+1,N

}

 . The 
denormalized formula is:

(6) The iterative prediction process was repeated 20 
times, and the final MLP predictions were obtained 
by taking the average value, which is a common 
practice to reduce the effects of random fluctua-
tions and obtain more stable and reliable results.

(3)Q =







x1,1 . . . x1,L
.
.
.

. . .
.
.
.

xn,1 · · · xn,L







(4)T =







y1,1 . . . y1,N
.
.
.

. . .
.
.
.

yn,1 · · · yn,N






,

(5)y′n+1 = yn+1(xmax − xmin)+ xmin.

Results and discussion
Singular spectrum analysis of PM time series analysis
SSA is a method for identifying and analyzing signals 
based on their time and frequency domain characteris-
tics (Ghil et al. 2002). To determine the principal compo-
nents of the PM series, the PM time series from January 
11, 1987, to December 26, 2019, was analyzed by SSA. 
As described in the prediction of SSA, considering the 
Chandler wobble and annual wobble periods, the window 
size L generally needed to meet 1 < L < N/2 (N is the 
length of the data), L was set to 2190.

The correlation between the PM time series was ana-
lyzed using the W-correlation method (Hassani 2007). 
Different signals with greater correlation can be divided 
into a group by SSA, and PCj is the j-th PC obtained by 
SSA. To determine the optimal value of j, the variance 
contribution rate of PM is shown in Fig.  4, while Fig.  5 
displays the results of the W-correlation analysis of the 
PM time series.

As illustrated in Figs.  4 and 5, in the PMX, the vari-
ance contribution rates of PC1 and PC2 were relatively 
large, at 38.80% and 37.51%, respectively. PC3 had a 
variance contribution rate of 7.83%, and those of PC4 
and PC5 were 7.34% and 7.27%, relatively. All other PCs 
had low variance contribution rates, which decreased 
with increasing order. For the PMY, PC1 had the largest 
variance contribution rate, reaching 85.54%, while PC2, 
PC3, PC4, and PC5 contributed 6.16%, 6.11%, 0.99%, 
and 0.96%, respectively. Figure  5 demonstrates strong 
independence among the first seven PCs, the first seven 
PCs account for 99.42% and 99.88% of the total variance 
contribution rates in both the X and Y directions of PM. 
Therefore, the first seven PCs of PMX and PMY were able 
to more accurately represent the original PM time series.

Figure  6 shows the PM components decomposed by 
SSA. For PMX, the Chandler wobble, the annual term, 
and a periodic term of approximately 489 days were three 
relatively prominent periodic components for PMX, cor-
responding to PC1 and PC2, PC4 and PC5, and PC6 and 
PC7, respectively. PC3 represented the trend term, while 
other components were not well separated due to their 
small correlation and were considered residual terms. 
For the Y direction of the PM series, PC2 and PC3 rep-
resented the Chandler wobble, PC4 and PC5 represented 
the annual term, and PC6 and PC7 represented the peri-
odic term of approximately 489 days. The trend term was 
represented by PC1.

Prediction of PM
This study was based on historical data. The fundamental 
data used for the prediction were the historical observa-
tions from January 11, 1987, a period of 18 years before 



Page 8 of 14Wu et al. Earth, Planets and Space          (2023) 75:179 

PST. The basic time series was updated with each pre-
diction, and the historical length of 18 years remained 
unchanged. For each year, 52 time series were selected, 
and a total of 156 time series were selected for PM pre-
diction. The PM prediction was compared to that of the 
IERS EOP 14 C04 product. In addition, the mean abso-
lute error (MAE) was selected as the evaluation standard 
(Kalarus et al. 2010):

where Pi is the predicted value corresponding to period i, 
Oi is the observed value corresponding to period i, and t 
is the prediction length.

Bulletin A (https:// datac enter. iers. org/ eop/-/ somos/ 
5Rgv/% 20get TX/6) releases a PM prediction series once 

(6)MAE =

t
∑

i=1

|Pi − Oi|/t,

Fig. 4 Variance contribution rates of PM series determined by SSA

https://datacenter.iers.org/eop/-/somos/5Rgv/%20getTX/6
https://datacenter.iers.org/eop/-/somos/5Rgv/%20getTX/6
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Fig. 5 W-correlation analysis of the first 12 PCs

Fig. 6 PMX and PMY components obtained by SSA decomposition
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a week, with approximately 52 PM prediction series per 
year. To enable better comparison with Bulletin A, a 
sequence of 52 PM series was selected each year, result-
ing in a total of 156 PM time series analyzed in this 
study. The accuracy of PM prediction was compared 
with Bulletin A, which was released by IERS. Figure 7 
shows a comparison of MAE (364-day lead prediction), 
and Table 1 lists the relevant statistics. The reliability of 
the prediction method proposed in this study is illus-
trated in Fig. 7 and Table 1, with the Bulletin A solution 
represented in blue, the SSA-predicted data in orange, 
the combined results of SSA + ARMA in green, and the 
combined results of SSA + ARMA + MLP in red.

Based on the results presented in Fig.  7, it can be 
observed that the proposed method outperformed Bul-
letin A predictions for the PM prediction period. Spe-
cifically, for PMX, our method exhibited higher accuracy 
than Bulletin A for days 1–57 and 99–364. Further-
more, for the 364-day-lead prediction, the MAE of the 
SSA + ARMA + MLP model for the first 312-day predic-
tions was superior to that of the SSA + ARMA model. 
Similarly, for PMY, the MAE of SSA + ARMA + MLP was 
significantly smaller than that of Bulletin A for days 1–37 
and 127–364. Additionally, the SSA + ARMA + MLP 
model achieved better predictions than the SSA + ARMA 
model for days 1–70 and 106–301. The MAE for the first 

Fig. 7 MAEs of Bulletin A, SSA, SSA + ARMA, SSA + ARMA + MLP predictions from 1 to 364 days

Table 1 Comparison of the MAEs (mas) of the Bulletin A, SSA, SSA + ARMA and SSA + ARMA + MLP model

Lead time (day) Bulletin A SSA SSA + ARMA SSA + ARMA + MLP

PMX PMY PMX PMY PMX PMY PMX PMY

5 1.49 1.09 10.44 11.93 1.12 0.84 0.80 0.35

10 2.85 1.75 10.88 12.31 2.20 1.63 1.57 0.66

15 4.15 2.39 11.29 12.68 3.26 2.44 2.40 1.12

20 5.06 2.85 11.66 13.04 4.30 3.24 3.28 1.71

25 5.92 3.41 12.01 13.39 5.31 4.05 4.20 2.41

30 6.66 3.94 12.38 13.71 6.29 5.02 5.14 3.37

60 10.64 6.69 13.70 15.50 11.50 9.61 10.59 8.95

120 15.35 13.72 14.52 16.63 15.53 15.15 13.62 14.53

180 17.08 21.56 15.82 16.38 16.68 16.20 14.37 15.38

240 17.49 23.90 16.40 16.76 16.44 16.03 15.25 15.35

300 20.25 22.07 16.60 15.89 16.38 15.79 16.20 15.79

360 19.37 18.88 16.82 15.56 16.63 15.58 17.71 15.94
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30-day-lead prediction were separately compared, and 
the results presented in Fig.  8 showed that our method 
outperformed Bulletin A predictions in terms of MAE for 
both PMX and PMY, with MAE ranging from 0.23 mas to 
5.14 mas and 0.22 mas to 3.37 mas, respectively.

The MAE values are shown in Table  1. The MAEs 
of SSA + ARMA + MLP in the 30-day, 180-day, and 
360-day predictions for PMX were 5.14mas, 14.37mas 
and 17.76mas, respectively, which are lower than the 
6.66 mas, 17.08 mas, and 19.37 mas obtained for the 
Bulletin A predictions. For PMY, the MAEs from 
SSA + ARMA + MLP in the 30-day, 180-day, and 360-
day were 3.37mas, 15.38mas, and 15.94mas, respectively, 
lower than those of Bulletin A (3.94mas, 21.56mas, and 
18.88mas).

Because the SSA model can effectively extract the 
Chandler and annual wobbles of the PM series, it has an 
advantage in reconstructing and predicting the PC. At 
the same time, the ARMA model in predicting the sta-
tionary RC of the PM series after removing the trend and 
periodic terms were leveraged in this study. Addition-
ally, the MLP model combined with the SSA + ARMA 

model enhanced the overall adaptability of the predic-
tion model, leading to improved precision of mid-long-
term PM prediction. However, it should be noted that the 
MAE predicted by our proposed method for days 38–126 
was still greater than that of Bulletin A, particularly for 
PMY. The complex variation in high-frequency signals 
during this period may have been the cause, which needs 
further investigation.

The prediction and accuracy of the SSA + ARMA + MLP 
model in this study are compared with Shen et al (2018), 
and the results are shown in Table  2. As depicted in 
Table  2, in the Y direction, the prediction accuracy of 
the SSA + ARMA + MLP model surpasses that of the 
SSA + ARMA model (Shen et  al. 2018) on the 30th and 
360th days of the prediction period. Similarly, in the 
X direction, this study achieves significantly superior 
results compared to the SSA + ARMA model (Shen et al. 
2018) on the 180th and 360th days of the prediction 
period.

Figure  9 clearly shows the improvement analysis of 
SSA + ARMA + MLP model. Yellow color indicates 
improvement, the MAE of SSA + ARMA + MLP is lower 
than that of Bulletin A. Green color indicates failure, the 
prediction accuracy of SSA + ARMA + MLP is higher 
than that of Bulletin A. SSA + ARMA + MLP improved 
the accuracy of short-term, mid-term and long-term 
polar motion prediction.

Figure  10 displays the distribution of absolute errors 
for the entire 364-day period. The results showed that 
for the SSA + ARMA + MLP model, the percentage of 
absolute errors for PMX and PMY that were smaller 
than 30 mas were 89.71% and 89.55%, respectively, which 

Fig. 8 MAEs of Bulletin A, SSA, SSA + ARMA, SSA + ARMA + MLP predictions from 1 to 30 days

Table 2 Comparison of the MAEs (mas) of the SSA + ARMA 
(Shen et al. 2018) and SSA + ARMA + MLP model

Lead time (day) SSA + ARMA SSA + ARMA + MLP

PMX PMY PMX PMY

30 4.26 3.87 5.14 3.37

180 16.84 14.86 14.37 15.38

360 20.67 20.42 17.71 15.94
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are higher than the corresponding values for Bulletin A 
of 85.59% and 81.51%. These findings indicate that the 
SSA + ARMA + MLP model can significantly reduce the 
overall range of PM prediction errors, and the incorpora-
tion of the MLP model can further enhance the precision 
of PM prediction.

Conclusion
In this study, we analyzed the PM time series using SSA 
and demonstrated that it can effectively separate and 
extract the principal components of PM. Subsequently, 
we incorporated ARMA into the SSA to mitigate over-
fitting and the end effects. Considering the ‘nonlinear’ 

Fig. 9 Comparison of improvement in PM prediction

Fig. 10 Absolute error distribution of PM prediction from 1 to 364 days
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characteristics of PM time series, which are caused by 
complex excitation source, and processing complex 
SSA + ARMA predicting residuals, we further intro-
duced MLP into the SSA + ARMA model. By leveraging 
the nonlinear processing capabilities and deep learn-
ing techniques offered by MLP, we aimed to enhance 
the accuracy of mid-long term PM prediction. Sum-
mary, we considered that different predicting method 
have different predicting skills on different time scales, 
and then we proposed the sliding SSA + ARMA + MLP 
model for short- and long-term PM prediction and con-
ducted 156 experiments to compare the performance of 
our method with that of Bulletin A. Our results show 
that the SSA + ARMA + MLP model outperforms Bul-
letin A in the 30-day-lead and 364-day-lead prediction, 
achieving better accuracy on days 1–57 and 99–364 for 
PMX and days 1–37 and 127–364 for PMY, with smaller 
MAEs compared to Bulletin A. This improvement can 
be attributed to the introduction of the MLP model, 
whether compared with the SSA + ARMA model pro-
posed by other scholars or the SSA + ARMA model in 
this study, the introduction of MLP has improved the 
short-term and long-term accuracy of pole shift pre-
diction, which enhances the overall accuracy of PM 
prediction. Overall, our proposed method takes the 
advantages of SSA, ARMA and MLP models, exhibiting 
high reliability and accuracy and is well suited for the 
prediction of PM in both short- and long-term period.
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