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Abstract 

Volcanic earthquakes provide essential information for evaluating volcanic activity. Because volcanic earthquakes are 
often characterized by swarm-like features, conventional methods using manual picking require considerable time 
to construct seismic catalogs. In this study, using a machine learning framework and a trained model from a volcanic 
earthquake catalog, we obtained a detailed picture of volcanic earthquakes during the past 12 years at the Kirishima 
volcano, southwestern Japan. We detected ~ 6.2 times as many earthquakes as a conventional seismic catalog 
and obtained a high-resolution hypocenter distribution through waveform correlation analysis. Earthquake clusters 
were estimated below the craters, where magmatic or phreatic eruptions occurred in recent years. Increases in seis-
mic activities, b values, and the number low-frequency earthquakes were detected before the eruptions. The process 
can be conducted in real time, and monitoring volcanic earthquakes through machine learning methods contributes 
to understanding the changes in volcanic activity and improving eruption predictions.
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Introduction
Volcanic earthquakes, including volcano-tectonic and 
low-frequency earthquakes, are activated in response to 
the migration of magma or hydrothermal fluids (Hayashi 
and Morita 2003; Kato et al. 2015; Shelly et al. 2013) or 
changes in the stress field (Toda et al. 2002). They provide 
important information for evaluating volcanic activities 
(e. g., McNutt 1996). To accurately evaluate the charac-
teristics of earthquake activity, a precise seismic catalog 
must be constructed. The construction of an accurate 
seismic catalog on a real-time basis is also desirable for 
improving eruption forecasting and hazard assessment. 
In conventional procedures for constructing an earth-
quake catalog, an earthquake is detected using an indi-
cator, such as the ratio of the short-time average to the 
long-time average of waveform amplitude (STA/LTA). 
Then, the arrival time and amplitude of the seismic phase 
are picked through visual inspection to obtain reliable 
hypocenter locations and magnitudes. Consequently, 
obtaining a precise seismic catalog is time-consuming.

In volcanic or geothermal regions, earthquake swarms 
are often observed during the activation of volcanic activ-
ity, where numerous volcanic earthquakes occur during a 
short period. As seismic waves from many events crowd 
into the waveform record with a short-time range, detect-
ing earthquakes and picking seismic phases are more 
complicated, even for expert researchers and seismic ana-
lysts. In this regard, the matched filter method (e.g.,Peng 

and Zhao 2009; Shelly et al. 2007) is a powerful tool for 
detecting earthquakes in crowded waveform records. 
However, this method involves cross-correlation analysis 
using the waveforms of template earthquakes and contin-
uous waveforms. Therefore, detection is difficult when an 
earthquake occurs in a location different from the tem-
plate earthquakes or when the waveform characteristics 
temporally change because of changes in focal mecha-
nisms or the surrounding medium, even in identical loca-
tions. In addition, as the number of template earthquakes 
increases, the computational cost increases and real-time 
processing becomes more difficult.

Recently, automatic event detection and phase picking 
using machine learning (ML) have been developed (e. 
g., Mousavi et al. 2020; Ross et al. 2020; Zhu and Beroza 
2019). These methods reveal detailed seismicity images 
that cannot be obtained using conventional methods. For 
example, Ross et al. (2020) detected crustal earthquakes 
in Southern California and revealed highly resolved 
fault structures from the hypocenter distribution and 
temporal changes in the hypocentral area related to the 
migration of crustal fluid within fault zones. Meanwhile, 
Wilding et al. (2022) revealed the detailed structure of a 
sill complex in the deep part of the Hawai’i volcanic sys-
tem using a high-resolution earthquake catalog with a 
ML procedure. In addition to phase picking, based on 
ML, reliable information on seismic activity can be esti-
mated using clustering based on waveform similarity 
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(Perol et  al. 2018), the spatial pattern of wave propaga-
tion (Sugiyama et al. 2021), arrival time differences from 
station-pair cross-correlation (Gal et  al. 2021; Poiata 
et  al. 2016), and classification of the seismic event type 
(Nakano et al. 2019).

Although the application of ML in monitoring seis-
mic activity has been widely promoted, its application 
in volcanic regions remains challenging. One reason 
is that the existing trained models are created from the 
seismic catalog of ordinary (tectonic) earthquakes and 
may not fully reflect the characteristics of volcanic earth-
quakes. It has been reported that applying optimally 
trained models matched to a target region improves the 
detection and phase picking performance (Münchmeyer 
et al. 2022). Kim et al. (2023) constructed a deep learn-
ing model to detect seismic phase onset using a precise 
catalog of volcanic earthquakes at the Hakone volcano 
in central Japan. They showed that the model improved 
the detection rate and accuracy of phase picking for vol-
canic earthquakes compared with the original trained 
model developed by Zhu and Beroza (2019), which they 
used as the starting model. Furthermore, volcanic regions 
often lack precise seismic catalogs based on manual pick-
ing data. Therefore, for such a region, it is difficult to 
construct a trained model using the seismic events that 
occurred there. One of the objectives of this study is to 
evaluate the applicability of trained models developed 
based on seismic catalogs for a given volcano to estimate 
seismic activity in other volcanic regions. We applied the 
architecture of ML developed by Zhu and Beroza (2019) 
and the trained model by Kim et al. (2023) to seismic data 
from the Kirishima volcano and discussed its applicabil-
ity for monitoring volcanic earthquakes.

The Kirishima volcanic complex is located in southern 
Kyushu, Japan, and comprises more than 20 stratocones 
and maars (Fig. 1a). During the last 1000 years, magmatic 
activity, including the eruption of basaltic and andesitic 
lava flows and tephra, has occurred mainly at the Shin-
moedake, Ohachi, and Iwo-Yama volcanoes (Imura and 
Kobayashi 2001). In 1716–1717, an explosive magmatic 
eruption occurred at Shinmoedake. An eruptive volume 
of 0.2   km3 was estimated for this eruption (Imura and 
Kobayashi 1991). Smaller eruptions occurred in 1822, 
1959, and 1991 at Shinmoedake. Since 2008, volcanic 
activity at Shinmoedake  has gradually increased. Small 

phreatic eruptions occurred in August 2008 and March–
July 2010. The first large-scale magmatic eruption 
in ~ 300 years occurred in January 2011 as a sub-Plinian 
eruption. During this eruption, ~ 0.03  km3 of magma 
erupted (e.g., Nakada et  al. 2013). Phreatomagmatic 
eruptions occurred again in October 2017, followed by a 
magmatic eruption in May 2018, during which ~  108 kg of 
tephra and 1.5 ×  107  m3 of lava erupted (e.g., Maeno et al. 
2023). Around Iwo-Yama, located ~ 5-km northwest of 
Shinmoedake, a fumarole has been active since Decem-
ber 2015, and a phreatic eruption occurred in April 2018 
(e. g., Tajima et al. 2020).

Several studies have reported the activity of volcanic 
earthquakes at the Kirishima volcano based on a seismic 
catalog obtained using a conventional event detection 
method (Fukuoka District Meteorological Observatory 
and Kagoshima Local Meteorological Observatory 2013; 
Yamada et al., 2019). However, the detailed spatial–tem-
poral distribution of volcanic earthquakes and their 
relation to eruptive activities have not been fully clari-
fied. Thus, another purpose of this study is to provide a 
detailed estimate of the volcanic seismic activity at the 
Kirishima volcano. We estimated a highly resolved hypo-
center distribution based on phase picking data using 
the ML method to obtain further information associated 
with volcanic activity. We also estimated the temporal 
change in b values and event types using the frequency 
index.

Data and methods
Seismic observation
We used continuous waveform data from the past 
12 years (2008–2019) recorded at 30 permanent stations 
installed in and around the Kirishima volcano (Fig.  1a) 
by the Earthquake Research Institute of the Univer-
sity of Tokyo (ERI), the Japan Meteorological Agency 
(JMA), the National Research Institute for Earth Science 
and Disaster Resilience (NIED), and Kyushu University 
(Fig.  1a). The average station spacing at the Kirishima 
volcano is ~ 2 km. Broadband seismometers are installed 
at ERI stations, whereas short-period seismometers with 
a natural period of 1  Hz are installed at other stations. 
Seismic waveforms were continuously recorded at 100-
Hz sampling intervals at all stations.

(See figure on next page.)
Fig. 1 Map and seismicity at the Kirishima volcano. a Map of the Kirishima volcano showing the locations of permanent seismic stations. The 
inset shows the target regions with respect to the western part of the Japanese island. The orange rectangle corresponds to that shown in (b). b 
Hypocenter distribution of earthquakes beneath the Kirishima volcano for the hypocenter catalog based on ML. The top panel shows the epicentral 
distribution, and the right and bottom panels indicate the depth distribution along the N–S and E–W sections, respectively. The depth of 0 km 
corresponds to the sea level. The red circles indicate the locations of low-frequency earthquakes classified based on the frequency index (FI)
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Fig. 1 (See legend on previous page.)
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Phase picking and hypocenter determination
We conducted the following processing for every hour of 
continuous waveform recording. The continuous wave-
form recordings were preprocessed by removing the 
offset and trend and then applying a 1-Hz high-pass fil-
ter to reduce the contamination of low-frequency noise. 
For each station, phase picking was performed using the 
PhaseNet architecture developed by Zhu and Beroza 
(2019) with a trained model developed by Kim et  al. 
(2023). This model was created based on a seismic catalog 
of ~ 30,000 volcanic earthquakes at Hakone volcano over 
the past 20  years, while the original model by Zhu and 
Beroza (2019) was trained using manually picked seismic 
traces from tectonic earthquakes in northern Califor-
nia. The volcanic earthquake activity in the Hakone and 
Kirishima regions is similar, as both exhibit several earth-
quakes with small epicentral distances and a large frac-
tion of volcano-tectonic earthquakes with clear P- and 
S-wave onsets. In contrast, low-frequency earthquakes 
have less distinguishable onsets and display a lower fre-
quency component than volcano-tectonic earthquakes 
of comparable magnitude. In addition, the instrumenta-
tion installed at Hakone volcano mainly comprises short-
period seismographs, while broadband seismographs are 
mainly used at the Kirishima volcano.

To create their trained model, Kim et  al. (2023) used 
217,5553 seismic waveforms, each containing one man-
ually picked P- and S-wave onset readings. Based on 
these data, they created two trained models: (1) a model 
trained from scratch using the PhaseNet architecture 
(Model 1) and (2) a fine-tuned model derived from the 
original PhaseNet-trained model (Model 2). The Model 
1 results improved the F1 score (e.g., Zhu and Beroza 
2019) for P- and S-wave arrival times using validation 
data based on the seismic waveforms at Hakone vol-
cano beyond that obtained with Model 2 and the original 
trained model by Zhu and Beroza (2019). The F1 scores 
for the P-wave arrivals in the original PhaseNet model, 
Model 1, and Model 2 are 0.823, 0.860, and 0.857, respec-
tively, and those for the S-wave arrivals are 0.641, 0.755, 
and 0.749. Furthermore, Kim et al. (2023) demonstrated 
improved probabilities for P- and S-wave onsets in the 
waveform records including events with multiple distinct 
amplitudes by using the trained model.

In this study, we chose Model 1 by Kim et  al. (2023) 
to use as a trained model and selected a value of 0.3 as 
the threshold for the normalized probability density 
functions for identifying P- and S-wave onsets. Phase 
association was conducted on the P- and S-wave arrival 
times picked by PhaseNet using the REAL code devel-
oped by Zhang et al. (2019). We set thresholds of ≥ 3 sta-
tions and ≥ 2 stations for P- and S-waves, respectively, to 
identify the same event. For the phase association, the 

theoretical arrival time from an assumed source to each 
station was calculated using the 1-D velocity structure 
beneath the Kirishima volcano that has been used for 
routine hypocenter determination at the ERI Kirishima 
Volcano Observatory (Mikada 1996). Seismic phases 
attributed to the same event by the REAL code were then 
used to determine hypocenter locations following the 
method of Hirata and Matsu’ura (1987). Their approach 
combines a maximum-likelihood method with a 1-D 
velocity model to obtain the hypocenter location via the 
inversion of absolute arrival times. The local magnitude 
was determined based on the maximum amplitude fol-
lowing the empirical relation established by Watanabe 
(1971). The hypocenter locations of 61,402 earthquakes 
were estimated over a period of 12 years.

We improved the original 1-D velocity structure 
(Mikada 1996) and estimated station corrections using 
the JHD method (Kissling et  al. 1994) to obtain reliable 
absolute earthquake locations. In this analysis, we used 
earthquakes with at least eight phase pickings of both 
P- and S-waves obtained using the above procedure. We 
excluded events whose picking data showed travel time 
residuals ≥ 1.5  s for the initial hypocenter determina-
tions. As a result, we used 4000 events to estimate the 
1-D velocity model and station corrections. Given the 
estimated 1-D velocity structure and station corrections 
(Additional file 1: Fig. S1), the hypomh_ps code (Kawani-
shi et  al. 2009) was used to determine the hypocenter 
only for each earthquake with at least four phase pickings 
of P- and S-waves. The hypomh_ps code is a modified 
version of Hirata and Matsu’ura (1987) that allows the 
application of 1-D velocity structures to P- and S-waves 
separately. We obtained the initial hypocenters of 57,357 
events. By applying the modified 1-D velocity mode and 
station corrections, the travel time residuals for the P- 
and S-waves were improved (Additional file  1: Fig. S2). 
The root-mean-square residuals of travel time decreased 
from 0.151 to 0.112  s for P-waves and from 0.290 to 
0.226 s for S-waves.

We relocated the hypocenters using the double differ-
ence (DD) method (Waldhauser and Ellsworth 2000). In 
addition to the relative arrival time data (catalog data) 
obtained by PhaseNet, we also used relative travel time 
data through waveform correlation analysis (cross-cor-
relation data). Waveforms within a time window of 0.1 s 
before and 0.4 s after the P- or S-wave arrival times were 
used for correlation processing. For stations, where pick-
ing data were not available, the waveforms were trimmed 
based on the theoretical arrival time using a time window 
of the same length. We used cross-correlation data with a 
cross-correlation coefficient ≥ 0.8. Consequently, 4.6 mil-
lion station pairs for catalog data and 12.5 million station 
pairs for cross-correlation data were applied to the DD 
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method. To conduct relocation using the DD method, 
earthquakes with large travel time residuals (defined as 
values greater than or equal to 6 times the standard devi-
ation of the travel time residuals) or with a determined 
depth above ground level were eliminated. After apply-
ing the DD method, the locations of 41,349 events were 
finally obtained; we call this hypocenter catalog the ML 
catalog. The JMA catalog contains 6401 events within the 
same period.

b Values
We estimated the temporal variation of b values for the 
earthquakes beneath Shinmoedake and Iwo-Yama using 
the ZMAP code (Wiemer 2001). The b value is defined by 
the following equation:

Earthquakes were selected using a time window that 
stretched and contracted to include a constant number 
of events, chosen as 300. We estimated the b and a val-
ues in Eq.  (1) using the maximum-likelihood estimate 
method (Aki 1965) for earthquakes that met the criteria 
M ≥ Mc, where Mc is the completeness magnitude. For 
reliable estimation of b values, we estimated the b value 
only for data sets within the time window for which the 
number of events with M ≥ Mc was above 200 (Roberts 
et al. 2015). The confidence regions for the b and a val-
ues were estimated by 100-bootstrap resampling. Fol-
lowing the workflow proposed by Roberts et al. (2015) to 
validate the optimal estimation for Mc, we estimated the 
temporal variation in the b value using three methods: 
the maximum curvature (Wiemer and Wyss 2000) (Addi-
tional file 1: Fig. S3), goodness of fit (GFT) (Wiemer and 
Wyss 2002) (Additional file 1: Fig. S4), and b value stabil-
ity (BVS) (Cao and Gao 2002) methods (Additional file 1: 
Fig. S5). According to Roberts et al. (2015), it is recom-
mended to use the BVS method, if Mc can be stably esti-
mated. However, for our seismic catalog, Mc estimation 
via the BVS method was unstable, yielding a large b value 
error. In contrast, the b value error as computed using 
the GFT method was small (< 0.25 for most time win-
dows for earthquakes beneath Shinmoedake). Following 
the workflow of Roberts et al. (2015), we considered the 
b value result obtained using the GFT method accept-
able. Following the results of Gulia et al. (2016), the time 
window was shifted by one event. We also estimated the 
magnitude bandwidth (e.g., Konstantinou 2022), which 
is defined as the difference between the maximum mag-
nitude and Mc in each time window. The seismic cata-
log was split before and after the occurrence time of the 
eruptions to avoid mixing pre-seismicity and post-seis-
micity data for the eruption. In the GFT method, we esti-
mated the synthetic magnitude–frequency distribution 

(1)logN = a− bM

using the optimal b and a values for each minimum mag-
nitude to evaluate the GFT of the power law based on the 
following equation:

where Bi and Si are the observed and synthetic cumu-
lative number of events in each magnitude bin, respec-
tively, Mi is the minimum magnitude, and R is the 
residual defined as the GFT for the power law distribu-
tion. In this study, we defined Mi that minimized the 
residual as Mc. We considered b values with residu-
als ≤ 10% as a reliable estimation.

Frequency index
We classified the type of seismic signal based on the fre-
quency index (FI) (Helena and Michael 2010; Matoza 
et al. 2014) as defined by the following equation:

where  AH and  AL represent the average spectral ampli-
tude within the high-frequency and low-frequency 
bands, respectively. The types of volcanic earthquakes 
are labeled in the JMA catalog (Additional file 1: Figs. S6, 
S7 and S8). Examples of spectra for volcano-tectonic and 
low-frequency earthquakes (defined by A- and B-type 
earthquakes, respectively, following the definition of 
Minakami (1974)) are shown in Additional file 1: Fig. S9. 
Low-frequency earthquakes had significant amplitude in 
the frequency range of 1–4  Hz compared with those of 
volcano-tectonic earthquakes. Therefore, to classify these 
events, we defined the ratio of the average amplitude 
over the 1–4 Hz range to the average amplitude over the 
10–15 Hz range as FI. We used the waveform record at 
the stations within 5 km from the epicenter to reduce the 
path effect. For the horizontal components at each sta-
tion, the spectra were calculated using a time window of 
4  s from the theoretical arrival time of the S-wave. The 
noise waveform was obtained using a time window of 2 s 
from 3 s before the theoretical arrival time of the P-wave, 
and the spectrum for the noise waveform was obtained. 
The signal-to-noise (SN) ratio was defined as the ratio of 
the average amplitude of spectra for the signal and noise 
waveforms within the 1–4  Hz and 10–15  Hz ranges. FI 
was calculated only for events with ≥ 3 stations having an 
SN ratio greater than 2 within both frequency ranges. We 
found that the frequency distribution of the FI values at 
a given station displays an offset over the entire distribu-
tion (Additional file 1: Fig. S10a, b). Following the method 
given by Wilding et al. (2022), we applied a station cor-
rection to each station by subtracting the median of all 

(2)R(a, b,Mi) =

∑Mmax
Mi

|Bi − Si|
∑

i
Bi

× 100,

(3)FI = log10

(

AH

AL

)
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FI values at that station from the estimated FI values. 
After applying the station correction, we averaged the FI 
values for all stations and components and assigned it as 
the final value for each event. We could estimate the FI 
values for 38,761events. The frequency distribution of the 
standard deviation of the FI values, estimated from the 
FI values at the available stations, is shown in Additional 
file  1: Fig. S10c. Most standard deviations are less than 
0.2.

The relationships between FI and magnitude for the 
JMA and ML catalogs are shown in Additional file  1: 
Fig. S11a, b, respectively. Most of the earthquakes iden-
tified as low-frequency earthquakes in the JMA catalog 
have FI < − 0.2. In addition, there were no low-frequency 
earthquakes with M > 0.6 in the JMA catalog. In the ML 
catalog (Additional file  1: Fig. S11b), another trend is 
observed between the FI values and magnitudes in the 
range FI < − 0.2 and magnitude ≤ 0.6. Based on the results 
from the JMA catalog (Additional file  1: Fig. S11a) and 
the standard deviation of the final FI values (Additional 
file 1: Fig. S10c), we categorized events that fell within the 
range FI < −  0.4 and magnitude ≤ 0.6 as low-frequency 
earthquakes. Examples of waveforms classified as low-
frequency and volcano-tectonic earthquakes in the ML 
catalog based on the FI value are shown in Additional 
file 1: Fig. S11c, d, respectively.

Results
The hypocenter distribution of the ML catalog is shown 
in Fig. 1b. For comparison, we also show the hypocenter 
distribution based on the JMA catalog in Additional 
file  1: Fig. S6. We also show the time–depth distribu-
tion and cumulative number of earthquakes beneath the 
Kirishima volcano in Fig.  2. The magnitude–frequency 
distributions of the ML and JMA catalogs are shown in 
Additional file 1: Fig. S8. We obtained ~ 6.2 times as many 
earthquakes as the JMA catalog using ML. The magni-
tude completeness was − 0.8 for the ML catalog, whereas 
that of the JMA catalog was 0.0, indicating an improve-
ment in the detectability of earthquakes. Clusters of vol-
canic earthquakes were identified beneath Shinmoedake, 
Iwo-Yama, and in the western part of the Kirishima vol-
cano in both catalogs (Figs. 1b, 3, and Additional file 1: 
Fig. S6). However, the ML catalog revealed a detailed 

pattern of seismic activities associated with eruptive 
activities beneath Shinmoedake and Iwo-Yama.

The seismic activity beneath Shinmoedake is shown 
in Figs.  2c, d, and 3a. Beneath Shinmoedake, numerous 
small volcanic earthquakes occurred in the depth range 
from − 0.5 to 3 km below the crater (Depth of 0 km cor-
responds to sea level), showing a vertical hypocenter 
lineament that may reflect the magma pathway. At Shin-
moedake, several eruptive events occurred: small phre-
atic eruptions in August 2008 and March–July 2010, a 
sub-Plinian eruption on January 26, 2011, phreatomag-
matic eruption on October 11, 2017, and a magmatic 
eruption on March 1, 2018. Although the corresponding 
earthquake cluster is also identified in the JMA catalog 
(Additional file 1: Fig. S6), our proposed method revealed 
the detailed time sequence of seismic activity. The seis-
mic activity was gradually activated toward the 2011 
magmatic eruption since 2010. The activity in the shallow 
part of the crater was also enhanced from March 2017, 
preceding the 2017 eruption. The upper depth of the 
seismicity area became shallower toward the 2017 erup-
tion since March 2017 (Fig. 2c). After the 2017 eruption, 
the seismic activity was quiescent for ~ 1  month. From 
December 2017, the earthquakes were activated again, 
showing a burst-like increment, leading to the 2018 erup-
tion. The seismic activity remained high after the 2018 
eruption until October 2018.

The seismic activity beneath Iwo-Yama is shown in 
Figs.  2e, f, and 3b. Volcanic earthquakes are concen-
trated in the depth of −  0.5 to 0.5  km below sea level 
beneath Iwo-Yama. A phreatic eruption occurred on 
April 19, 2018, at Iwo-Yama. In this area, seismic activ-
ity has increased since 2014. The upper depth limit of 
seismicity became shallower toward the 2018 eruption 
(Fig. 2e). Moreover, before the eruption, seismic activity 
was remarkably activated since the end of February 2018. 
Seismic activity quiesced for a month after the eruption 
and was activated again from late June 2018 through 
April 2019.

Low-frequency earthquakes were concentrated in an 
area just beneath the Shinmoedake and Iwo-Yama cra-
ters. Another cluster of low-frequency earthquakes was 
also identified at a depth of 3  km below Karakuni-dake 
(Fig.  1b). The temporal seismicity pattern indicates a 

Fig. 2 Depth–time distribution and cumulative number of earthquakes. The red circles correspond to low-frequency (LF) earthquakes. The blue 
and red lines show the cumulative curves of the volcanic and LF earthquakes, respectively. The dotted vertical yellow lines show the occurrence 
times of main events: the 2011 Shinmoedake eruption, the 2016 Kumamoto earthquake, the 2017 and 2018 Shinmoedake eruptions, and the 2018 
Iwo-Yama phreatic eruption. a Whole region, c Shinmoedake, and e Iwo-Yama. Panels b, d, and f show the cumulative curve of LF earthquakes 
and the ratio of LF earthquakes to volcano-tectonic earthquakes (thin black line) in each region. We used a time window of 7 days, moving at 2-day 
intervals, to estimate the LF ratio. The Shinmoedake and Iwo-Yama regions correspond to the maps shown in Fig. 3a, b, respectively

(See figure on next page.)
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Fig. 3 Hypocenter distributions beneath Shinmoedake and Iwo-Yama. a Hypocenter distribution of earthquakes beneath Shinmoedake. (top) 
Epicentral distribution and (right and bottom) depth distributions along the N–S and E–W sections. Red circles correspond to the hypocenters 
of low-frequency earthquakes. b Hypocenter distribution of earthquakes beneath Iwo-Yama
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greater number of low-frequency earthquakes just below 
Shinmoedake and Iwo-Yama prior to the eruptions 
(Fig. 2d, f ). A slight additional increase in the number of 
low-frequency earthquakes was also observed from 2014 
to 2015 (Fig. 2b).

The temporal changes in b values within the two 
regions are shown in Fig. 4. The b values of earthquakes 
beneath Shinmoedake (Fig.  4a) exceeded 1.1 before the 
2011 eruption. After the 2011 eruption, the b values 
remained high, dropped temporarily, and again increased 
at the end of 2011. The b value rose again to a high value 
of 1.5 in early 2013 and then gradually declined through 
2015, showing slight fluctuations. From the beginning of 
2017, it increased again toward the 2017 eruption. After 
the eruption, the b values increased again toward the 
2018 magmatic eruption. Although the fitness for the 
Gutenberg–Richter law is not very good in the Iwo-Yama 
region (Fig. 4b), the b value increased through the middle 
of 2015, decreased at the end of 2016, and then increased 
again in 2017. After one drop, we see an abrupt increase 
in the b values just before the 2018 phreatic eruption at 
Iwo-Yama.

Discussion and conclusions
In this study, we developed a seismic catalog for the 
Kirishima volcano using automatic phase picking 
based on the ML framework. The resulting catalog was 
improved in terms of detectability compared with the 
JMA catalog based on manual phase picking (Additional 
file  1: Fig. S8). Even using the trained model derived 
from the hypocenter catalog at a different volcano, we 
obtained a detailed history of volcanic earthquakes at 
the Kirishima volcano, which supports the idea that the 
trained model can be applied to other volcanic regions. 
Following the 2016 Kumamoto earthquake in the central 
part of Kyushu, when numerous aftershocks occurred 
(e.g., Asano and Iwata 2016), the seismicity beneath the 
Kirishima volcano did not change according to both 
manual and automatic seismic catalogs (Fig.  2a, Addi-
tional file 1: Fig. S7). This result implies that even when 
the waveforms recorded in the study area were contami-
nated by wave trains from outside the study area, event 
detection based on ML caused hardly any false detection.

Kim et al. (2023) demonstrated that the detectability of 
events using Model 1 is often low when multiple events 
are contained within a single waveform trace. To improve 
detection performance in such cases, they created two 
additional trained models using 100,000 semisynthetic 
training data, each containing two randomly selected 
events within each waveform trance. The first model was 
trained from scratch using the original PhaseNet-trained 
model (Model 3), and the second was a fine-tuned ver-
sion of Model 1 by Kim et  al. (2023) (Model 4). Their 

evaluation indicated that Model 4 outperformed Model 
1 in terms of event detectability for the Hakone data. To 
evaluate the applicability of Model 4 for the Kirishima 
data, we used Model 4 to estimate the seismic catalog for 
the period 2016–2019 using the aforementioned work-
flow. We detected around twice as many earthquakes 
as in the seismic catalog obtained using Model 1 for 
the same period (Additional file  1: Fig. S12). However, 
the seismic catalog created with Model 4 also included 
numerous false detections. For example, many earth-
quakes were detected immediately after the occurrence 
of 2016 Kumamoto earthquake (Additional file  1: Fig. 
S12). Upon visually inspecting the automatically picked 
P- and S-wave onsets in the waveforms of these events, 
we determined that the false detections were a result 
of Model 4 identifying the P- and S-wave trains from 
the aftershocks of the Kumamoto earthquake as differ-
ent earthquakes. This result indicates that Model 1 is 
versatile enough to reflect the general characteristics of 
earthquake waveforms in various volcanic regions, while 
Model 4 is more specifically targeted to the Hakone data.

In contrast, a comparison of the normalized cumula-
tive curves between the JMA and ML catalogs prior to 
the 2011 eruption (Additional file  1: Fig. S13) revealed 
no notable detection enhancement for the ML catalog 
compared to the JMA catalog. We interpret this lack of 
enhancement to be due to the limited number of avail-
able stations during this period. However, the increases 
in seismicity before the 2017 and 2018 eruptions at Shin-
moedake and the 2019 phreatic eruption at Iwo-Yama 
were considerably better revealed by the ML catalog than 
by the JMA catalog.

We evaluated the time difference between manu-
ally and automatically picked phases for ~ 400 events 
in the ML catalog from June 2008 to February 2011 
(Fig.  5). Additional file  1: Figure S14 provides examples 
of waveform records with manually and automatically 
picked arrival times for earthquakes occurring beneath 
Shinmoedake. No significant difference in travel time 
for P-wave onsets was evident between manually and 
automatically picked data. Similarly, insignificant dif-
ferences for P-wave onsets were found for the Hakone 
volcano (Kim et  al. 2023). In contrast, several S-wave 
onsets showed large differences in arrival times between 
manually and automatically picked data compared with 
P-wave onsets. We also estimated precision, recall, and 
F1 score (e.g., Zhu and Beroza 2019) for P- and S-wave 
phase picking. Arrival time differences of less than 0.1 s 
were counted as true positives following the defini-
tion by Zhu and Beroza (2019). Precision, recall, and 
F1 scores were 0.994, 0.994, and 0.994 for P-waves and 
0.854, 0.747, and 0.797 for S-waves. These results reflect 
the difficulty in picking the arrival time of the S-wave due 



Page 11 of 17Yukutake et al. Earth, Planets and Space          (2023) 75:183  

Fig. 4 Temporal changes in b values and Mc as estimated using the goodness-of-fit method (Wiemer and Wyss 2002) for a Shinmoedake and b 
Iwo-Yama. The horizontal and vertical lines at each point show the time window for selecting the earthquakes and the error bar of the datum (b 
value in the top panel,  Mc in the bottom panel) as estimated using the bootstrap resampling method. In the top panel, red circles represent reliable 
b value estimations with residuals for the theoretical Gutenberg–Richter law distribution ≤ 10%. Color in the bottom panel shows the magnitude 
bandwidth, which is equal to the largest magnitude minus the Mc in each time window. Inset diagrams in the top panel in a and b show magnified 
plots around the 2017 and 2018 eruptions at Shinmoedake and the 2018 eruption at Iwo-Yama, respectively
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to the contaminating effect of wave scattering caused by 
structural heterogeneity. However, these uncertainties in 
phase picking are expected to be reduced by estimating 
travel time differences using cross-correlation analysis 
during DD relocation.

We compared the final ML catalog with that derived 
from the original trained model developed by Zhu 
and Beroza (2019) from 2017 to 2019 to evaluate the 
performance of the trained model based on volcanic 
earthquakes (Kim et  al. 2023). Although the main char-
acteristics of hypocenter distributions did not differ con-
siderably between the two catalogs (Additional file  1: 
Fig. S15), we detected ~ 15% more earthquakes using the 
learning model derived from volcanic earthquakes in the 
Hakone region (Model 1) than using the original model 
trained on tectonic earthquakes in California. Additional 
file 1: Figures S16 and 6 show the magnitude–frequency 
distribution and hypocenter distribution, respectively, 
of the newly detected events by Model 1. Many earth-
quakes of small magnitude, particularly those occurring 
at shallow depths beneath Shinmoedake and Iwo-Yama, 
were successfully detected using Model 1. However, we 
must note that several events were detected only by the 
original trained model by Zhu and Beroza (2019) and not 
by the model trained on volcanic earthquakes. Although 
both trained models missed several earthquakes, our 
model trained on volcanic earthquakes showed better 
performance than the original model in detecting small 
earthquakes. The accuracy of automatic phase picking 

may be further improved by modifying the trained model 
through transfer learning (e.g., Lapins et al. 2021) or fine-
tuning using the manual picking data at the Kirishima 
volcano. This issue will be addressed in future work.

The highly resolved seismic catalog provides impor-
tant information that may correspond to precursory or 
unrest signals prior to eruptions. We detected the acti-
vation of volcanic earthquakes before the eruptions at 
Shinmoedake and Iwo-Yama (Fig. 2). We clearly detected 
gradual increases in seismicity (Fig. 2) and b value (Fig. 4 
and Additional file  1: Fig. S17) leading up to the 2017 
and 2018 eruptions at Shinmoedake which are less pro-
nounced in the JMA catalog (Additional file  1: Figs. S7 
and S13) and other routine seismic catalogs (Yamada 
et al. 2019). The 2017 and 2018 eruptions at Shinmoedake 
occurred when the b values were close to 1.5 (Fig. 4a). The 
high b values observed during fluid-induced seismicity 
are interpreted to reflect a low shear stress level on fault 
planes (Mukuhira et al. 2021). The activation of volcanic 
earthquakes with increasing b values is caused by an ele-
vation in magmatic fluid pressure (Nanjo et al. 2018). The 
high b values with increasing seismic activity before an 
eruption (Figs. 2 and 4) may reflect unstable conditions in 
and around a volcanic conduit due to the increase in fluid 
pressure accompanied by the supply of magma. Ichihara 
et  al. (2023) showed a gradual increase in the seismic 
background level (SBL) at stations near Shinmoedake 
starting in early 2017. They interpreted the increase in 
SBL during this period as reflecting interactions between 
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the shallow water table and the slowly migrating mag-
matic fluid prior to the 2017 Shinmoedake eruption. The 
timing of seismic activation and b value increase in 2017 
is mostly consistent with that of the SBL elevation. These 
observations likely reflect changes in the shallow hydro-
thermal system beneath Shinmoedake due to the supply 
of magmatic fluid during the precursory period. On the 
other hand, sufficient earthquake data were not obtained 
before the 2011 eruption at Shinmoedake. Moreover, 
during 2009–2010, the estimation of b values is less reli-
able due to the narrow bandwidth of magnitude (Fig. 4). 
Therefore, the detailed temporal sequence of b values 
preceding the 2011 eruption could not be discussed 
in this study. We also observed an abrupt increase in b 

values prior to the 2018 eruption at Iwo-Yama (Fig. 4b), 
although this increase is difficult to quantify because of 
the large uncertainty in the b value estimates. The b value 
gradually increased toward the end of 2015 and again in 
the middle of 2017 (Fig. 4b). Aizawa et al. (2022) docu-
mented several episodes of rapid tilt changes accompa-
nied by volcanic tremors and electric-field changes near 
the vent of the phreatic eruption during late 2015, August 
2014, and mid-2017, as well as before the 2018 phreatic 
eruption. They interpreted these episodes as repeated 
intrusions of hydrothermal fluid. Fumarolic activity at 
Iwo-Yama resumed in December 2015 (Tajima et  al. 
2020). Shallow seismic activity in this region occurred 
beneath the low-resistivity layer, which is interpreted 

Fig. 6 Hypocenter distribution of earthquakes detected only by the trained model of Kim et al. (2023) during 2017–2019
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as the low-permeability cap structure developed in the 
hydrothermal system (Tsukamoto et  al. 2018). These 
results reveal that the b value increase observed at Iwo-
Yama reflects an increase in the pore-fluid pressure 
beneath the cap structure due to the intrusion of hydro-
thermal fluid.

Our seismic catalog also reveals the highly resolved 
hypocenter distribution of volcanic earthquakes beneath 
the crater at Shinmoedake (Fig.  3a) compared with the 
JMA catalog. The cylindrical hypocenter distribution ver-
tically extending with a radius of ~ 500 m within the depth 
range of 1.0 to − 0.5 km includes the source locations of 
volcanic tremors during the magmatic eruptions in 2011, 
2017, and 2018 (Ichihara and Matsumoto 2017; Ichihara 
et  al. 2023). They interpreted that a continuous tremor 
signal was generated during magmatic fluid movement. 
The hypocenter distribution of volcanic earthquakes 
(Fig. 3a) may reflect the structure of the magma pathway 
in the shallow part of the volcanic conduit.

We also detected the activation of low-frequency 
earthquakes before 2011, 2017, and 2018 Shinmoedake 
eruptions (Fig. 2d). The increase in the ratio of low-fre-
quency earthquakes to volcano-tectonic earthquakes 
before eruptions may reflect the interaction between 
magmatic and shallow hydrothermal fluids (e.g., McNutt 
1996). The activation of low-frequency earthquakes at 
the deeper part of the volcano (deeper than 10 km) and 
crustal expansions due to an inflation of pressure source 
at a depth of 8 km were detected ~ 1 year before the 2011 
eruptions, suggesting the supply of magma into the vol-
canic root (Kurihara et al. 2019; Nakao et al. 2013). The 
rapid increase in the ratio of low-frequency earthquakes 
since April 2010 suggests the supply of new magmatic 
fluid into the shallow part beneath the volcanic con-
duit. The number of low-frequency earthquakes slightly 
increased from 2014 to 2015 (Fig. 2b). Although no erup-
tions occurred during this period, an expansion of the 
GPS baseline length was observed (Kurihara et al. 2019), 
indicating the initiation of a magmatic fluid supply. The 
cluster of low-frequency earthquakes at a depth of 3 km 
beneath Karakuni-dake (Fig. 1) corresponds to the upper 
extension of the subvertical conductive body, which is 
interpreted as a magma pathway (Aizawa et  al. 2014). 
The low-frequency earthquakes in this cluster may have 
been triggered by the migration of magmatic fluid at this 
depth.

Using the ML architecture developed by Zhu and 
Beroza (2019) and a trained model from the seismic cata-
log of the Hakone volcano (Kim et al. 2023), we obtained 
a high-quality seismic catalog of volcanic earthquakes at 
the Kirishima volcano from 2008 to 2019. We produced 
a seismic catalog with higher detectability than the con-
ventional seismic catalog based on manual phase picking 

and estimated the highly resolved hypocenter distribu-
tion through relative hypocenter relocation using wave 
cross-correlation analysis. From the seismic catalog, the 
activation of volcanic earthquakes and increment of b 
values were detected preceding the magmatic and phre-
atic eruptions at the Kirishima volcano. This improved 
detectability enables the evaluation of eruption risks 
through statistical analysis based on b values and the tem-
poral sequence of low-frequency earthquake activity, as 
well as the spatial–temporal sequence of volcanic earth-
quakes. Using a standard Linux machine, the computa-
tion time required to obtain the initial hypocenters for a 
1-h waveform record of 30 stations is only a few minutes. 
Therefore, this system contributes to the improvement of 
our ability to perform eruption forecasting.
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Additional file 1: Figure S1. Estimated 1D velocity model and station 
corrections. (a) 1D velocity model for P- and S-waves; the Vp/Vs structure 
is shown on the right. The dotted lines represent the initial velocity, and 
the solid lines represent the velocity model modified by the JHD method. 
(b) Station (travel time) corrections for the P-waves (left) and S-waves 
(right). Circles show positive travel time residuals (i.e., an observed travel 
time is later than a theoretical one), while crosses show negative travel 
time residuals. Figure S2. Comparison of frequency distribution of the 
travel time residuals between the initial hypocenters ((a) and (b)) and the 
relocated hypocenter ((c) and (d)) by applying the modified 1D velocity 
model and station corrections. Figure S3. Temporal changes in b-values 
and Mc as estimated using the maximum curvature method. The horizon-
tal and vertical lines at each point show the time window for selecting the 
earthquakes and the error bar of the b-value (top panel) or Mc (bottom 
panel) as estimated using the bootstrap resampling method. The color 
spectrum in the bottom figure shows the delta M value or magnitude 
bandwidth equal to the largest magnitude minus Mc in each time win-
dow. Please note that the seismic catalog is not split before and after the 
eruption occurrence time. Figure S4. Temporal changes in b-values and 
Mc values as estimated by the goodness-of-fit test. Figure S5. Temporal 
changes in b-values and Mc values estimated using the b-value stability 
method. Figure S6. Hypocenter distribution of the earthquake beneath 
the Kirishima volcano in the JMA catalog. The top panel shows the epicen-
tral distribution, and the top-right and bottom panels indicate the depth 
distribution along the N–S and E–W sections, respectively. The depth of 0 
km corresponds to the sea level. Figure S7. Depth–time distribution and 
cumulative number of earthquakes in the JMA catalog. The blue lines indi-
cate the cumulative curve containing volcano tectonic and low-frequency 
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earthquakes. The black circles indicate the depth–time plot of the 
earthquakes. The dotted vertical yellow lines show the occurrence times 
of the main events: the 2011 Shinmoedake eruption, the 2016 Kumamoto 
earthquake, the 2017 and 2018 Shinmoedake eruptions, and the 2018 
Iwo-yama phreatic eruption. (a) Whole region, (b) Shinmoedake, and (c) 
Iwo-Yama. The regions of Shinmoedake and Iwo-Yama correspond to the 
maps shown in Figures 3a and 3b, respectively. Figure S8. Comparison of 
magnitude–frequency distribution between two seismic catalogs: (a) ML 
and (b) JMA. Squares represent cumulative magnitude–frequency distri-
bution; triangles represent the number of events in each magnitude bin; 
blue inverted triangles represent Mc; and red lines represent linear regres-
sions for both catalogs. Figure S9. Comparison of the amplitude spectra 
of the seismograms of A-type (blue line) and B-type (red line) earthquakes 
based on the JMA catalog. The light blue and red lines show several 
examples of spectrograms of B- and A-type earthquakes, respectively. The 
dark blue and red lines show the stacked spectrograms. (a) EV. KVO and (b) 
EV. EBS stations. Figure S10. (a) and (b) shows frequency distribution of FI 
values obtained at (a) EV. KOV and (b) EV. EBS stations. We estimated the 
median of FI values at each station and subtracted it from the estimated 
FI values. (c) Frequency distribution of the standard deviation for the final 
FI values after applying the station correction Figure S11. Relationship 
between FI and magnitude: (a) JMA catalog and (b) ML catalog. (c) and 
(d) show examples of waveform records in the EW component at EV. KAR 
station. (c) and (d) correspond to the waveforms of low-frequency and vol-
cano-tectonic earthquakes in ML catalog classified based on the FI value, 
respectively. The text at the top of (c) and (d) indicates the origin time, 
latitude, longitude, depth, magnitude, and FI value of the earthquake. 
Figure S12. Hypocenter distribution, depth–time distribution, and cumu-
lative number of earthquakes during 2016–2019 detected using Model 
4 by Kim et al. (2023). Hypocenters were relocated using the DD method. 
Figure S13. Comparison of cumulative numbers of earthquake between 
JMA (blue line) and ML (red line) catalogs. (a) Whole region, (b) Shin-
moedake, and (c) Iwo-Yama. The regions of Shinmoedake and Iwo-Yama 
correspond to the maps shown in Figures 3a and 3b, respectively. Figure 
S14. Examples of waveform records of vertical motion, showing manually 
picked (solid line) and automatically (broken line) picked arrival times. The 
red and blue lines show the onset times of the P and S waves, respectively. 
The text in the upper portion of each panel indicates the origin time and 
magnitude. Figure S15. Comparison of the initial hypocenters before the 
DD relocation and their temporal seismicity sequence during 2017–2019: 
(a) learning model derived from volcanic earthquakes (Kim et al., 2023) 
and (b) original learning model by Zhu and Beroza (2018). The dotted 
vertical yellow lines in each bottom panel show the occurrence time of 
the main events, as shown in Figure S4. Figure S16. Histograms showing 
the frequency distribution of magnitude for earthquakes detected by 
the model trained on the volcanic earthquake catalog (Kim et al. 2023) 
from 2017 to 2019. (Left) Blue bins constitute a histogram for all events; 
red bins constitute a histogram for only those events detected by the 
trained model of Kim et al. (2023) (Model 1). (Right) Red bins constitute 
a histogram for only those events detected by the trained model of Zhu 
and Beroza (2019). Figure S17. Example of Magnitude–frequency distri-
bution of earthquakes beneath Shinmoedake for two periods: (left) March 
1, 2016– July 24, 2016 (right) January 2, 2018–February 27, 2018. Each 
panel contains 300 events, which is the same number of events used to 
estimate the temporal distribution of b-value in Figure 4 of the main text. 
Red line represent linear regressions.
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