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to the Wallace-Bott hypothesis predict fault slip
directions of future large earthquakes?
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Abstract

When evaluating strong ground motions and tsunamis from specified source faults, it is required that the input
parameters, such as fault geometry, rake angle, and slip amount, do not deviate from those of a real earthquake.
Recently, a regional three-dimensional (3D) tectonic stress field was used to estimate rake angles for mapped sub-
marine faults with the Wallace-Bott hypothesis (WBH), the direction of fault slip was parallel to the resolved stress
vector on a preexisting fault, and strong ground motions and tsunamis were simulated. However, this modeling
technique has not been adequately validated. Additionally, it is necessary to examine how the stress field estimated
from seismological data for a limited period (~ 10 years) can be used as a proxy for the long-term tectonic stress

field. In this study, to provide such validation, we utilized two catalogs of focal mechanism solutions for earthquakes
and compared the observed rake angles with those calculated from the regional 3D tectonic stress field with the WBH
by fixing the fault strike and dip angles according to those from the focal mechanism data. The resulting misfit angles
between the observed and calculated rake angles are generally small (ranging between —30° and 30°), exclud-

ing several regions (e.g., the source and surrounding regions of the 2011 off the Pacific coast of Tohoku earthquake
and swarm-like activities activated after the 2011 quake). We also confirmed that the calculated rake angles and classi-
fied fault types are consistent with geomorphologically and geologically evaluated types of faulting for major Quater-
nary active faults in the Kyushu district of southwest Japan. These results support the validity and effectiveness of esti-
mating rake angles for a specific fault with known geometry from the above method and data, while also showing
that close attention is needed to apply this method to, for example, seismically inactive regions where the inverted
stress field includes significant uncertainties and/or near sites of recent and large earthquakes where the stress field
has been perturbed.
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Introduction
In evaluating strong ground motions and tsunamis from
a specified source fault, input parameters such as fault
geometry (fault length, fault width, fault strike, and dip
angle), rake angle, and slip amount are expected not to
deviate from those for a future earthquake. Geometries
of faults have been mainly investigated from geomor-
phological, geological, and seismological studies (e.g.,
aerial photo interpretation, trenching and coring sur-
veys, seismic reflection and refraction surveys, and grav-
ity anomalies). For expected slip amounts when the fault
ruptures from known-geometry faults, empirical scal-
ing relations between fault dimension (e.g., fault length,
fault area) and slip amounts have been developed for
various types of earthquakes (e.g., Wells and Copper-
smith 1994; Takemura et al. 1998; Somerville et al. 1999;
Irikura and Miyake 2001; Murotani et al. 2013, 2015). In
contrast, the rake angle has been conventionally assumed
to be a representative value for each fault type (i.e., 90°
for reverse-fault type, —90° for normal fault type, 0° for
left-lateral faults, and 180° for right-lateral faults), while
setting rake angles is also essential for simulating strong
ground motions and tsunamis. In particular, the appro-
priate setting is an indispensable issue for tsunami haz-
ard assessment (e.g., Annaka et al. 2007; Mulia et al. 2020;
Murotani et al. 2022; Satake et al. 2022).

The Japanese Islands are situated under a complicated
tectonic setting due to the interaction of four major

tectonic plates. The Pacific Plate subducts beneath the
Okhotsk Plate along the Kuril and Japan Trenches and
subducts beneath the Philippine Sea Plate along the Izu-
Bonin Trench. Furthermore, the Philippine Sea Plate
subducts beneath the Okhotsk Plate along the Sagami
Trough and beneath the Eurasia Plate along the Suruga
and Nankai Trough, and Ryukyu Trench. Resulting from
this complicated tectonic setting, various types of faulting
have occurred, and the resulting tectonic stress field has
been investigated over the four past decades (e.g., Yoshii
1979; Huzita 1980; Wesnousky et al. 1982; Nishimura
et al. 2004; Imanishi and Kuwahara 2009; Terakawa and
Matsu’ura 2010; Matsushita and Imanishi 2015, Uchide
et al. 2022).

Terakawa and Matsu’'ura (2008) developed the CMT
data inversion method to estimate the three-dimensional
(3D) pattern of tectonic stress from the CMT data of seis-
mic events by using Akaike’s Bayesian Information Crite-
rion (ABIC; Akaike et al. 1980). The essential difference
between the CMT data inversion method and traditional
stress inversion methods (e.g., Gephart and Forsyth 1984;
Michael 1984, 1987) is the use of CMT data, which can
be directly related to a tectonic stress field without any
knowledge of actual physical processes in a source region
and does not directly use the Wallace—Bott hypothesis
(WBH; Wallace 1951; Bott 1959) (Fig. 1) to estimate
the 3D tectonic stress field. Terakawa and Matsu'ura
(2010) (TM2010) applied the CMT data inversion
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Fig. 1 Schematic illustration of the method for estimating rake
angles from 3D tectonic stress fields with WBH

method to more than 12,500 moment tensor solutions
(3.0<M<5.0) from January 1997 to January 2007 deter-
mined by using the Full Range Seismograph Network of
Japan (F-net) and estimated the 3D tectonic stress field
at depths ranging from 0 to 100 km in and around Japan
(Fig. 2). In TM2010, each component of the 3D stress
fields is represented by the superposition of 146,848 tri-
cubic B splines with 20 and 10 km equally spaced grid
intervals in the horizontal and vertical directions, respec-
tively. This enables us to estimate six components of tec-
tonic stress fields as continuous functions defined in the
model region with estimation errors, although only rela-
tive values of six components have physical meaning. Fig-
ure 2 shows the spatial pattern of tectonic stress fields at
a depth of 10 km. The stress pattern is represented with
the lower hemisphere projections of focal spheres whose
nodal planes indicate maximum shear stress planes. The
colors of focal spheres indicate types of faulting according
to the classification criteria by Frohlich (1992). TM2010
also verified that the estimated spatial pattern of stress
field accorded with the focal mechanisms of large events
(M >5.0), which were not used for the CMT data inver-
sion, and that they were well correlated with the present-
day (Quaternary) tectonics of the Japanese islands.

Types and slip directions for inland faults have been
mainly evaluated geologically and geomorphologically.
Tectonic landforms due to a repetition of faulting include
fault scarps and fault flexures for dip-slip faults and off-
sets for strike-slip faults. However, types and slip direc-
tions are not necessarily well known, especially those
with low slip rates and/or those in regions with high ero-
sion rates. Furthermore, landforms from strike-slip are
usually less distinct than those from dip-slip, and types
and slip directions are sometimes insignificant or contro-
versial. Revealing fault types and slip directions for sub-
marine faults generating tsunamis is further arduous due
to limited data.
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Recently, realistic rake angles for active submarine
faults in Japan have been seismologically evaluated from
3D tectonic stress fields with WBH, and those rake angles
were utilized for evaluating strong ground motions and
tsunamis. For example, Research Committee on Large
Earthquakes in the Sea of Japan (2014) and the Integrated
Research Project on Seismic and Tsunami Hazards
Around the Sea of Japan (Takeda et al. 2014) calculated
rake angles expected from the 3D tectonic stress field by
TM2010 with WBH, and then strong ground motions
and tsunamis were simulated (e.g., Iwata et al. 2018;
Satake et al. 2022).

However, the method of estimating rake angles from
seismologically estimated stress fields with WBH has
two outstanding issues. The first is that it has not been
sufficiently validated. Because TM2010 did not directly
use WBH, it is necessary to examine whether the tec-
tonic stress field by TM2010 can reproduce the observed
rake angles. The second is that the average recurrence
interval of a characteristic earthquake in Japan gener-
ally ranges from tens to hundreds of years for events on
a plate boundary (e.g., Ishibe and Shimazaki 2009) and
several thousand years to tens of thousands of years for
those on major Quaternary active faults (e.g., Ishibe and
Shimazaki 2008, 2012). Considering that an earthquake
releases the stress accumulated during those periods, it
is necessary to examine whether the stress field estimated
from seismological data for a limited period (~ 10 years)
can be used as a proxy for the long-term tectonic stress
fields.

In this study, we mainly focus on the first issue. As the
first attempt at such verification, we compare rake angles
for focal mechanism solutions of earthquakes from two
catalogs: i.e., the F-net mechanism solutions (National
Research Institute for Earth Science and Disaster Resil-
ience 2023) and the Japan University Network Earthquake
Catalog of First-Motion Focal Mechanisms (JUNEC FM?;
Ishibe et al. 2014), with rake angles expected from the 3D
tectonic stress field with WBH. We also compare the geo-
morphologically and geologically evaluated fault types
with those estimated from the tectonic stress field with
WBH for major Quaternary active faults in the Kyushu
district, southwest Japan, including the Futagawa and
Hinagu fault zones (FZs) that were ruptured by the 2016
Kumamoto earthquake sequence.

Method and data

As part of this basic method to estimate stress fields, the
WBH, in which the fault plane’s slip direction is parallel
to the direction of shear traction on the fault plane, has
been widely utilized (Fig. 1). Given a stress tensor o, the
traction vector at the fault plane whose normal vector is
n can be described by the following equation:
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Fig. 2 The stress pattern at 10 km in depth after Terakawa and Matsu'ura (2010). The stress pattern is represented by the lower hemisphere
projection of focal mechanisms of potential seismic events. The colors indicate types of faulting according to the classification criteria by Frohlich

(1992)

t=on.

The normal and tangential components of this vector are
the normal and shear traction vectors and are given by:

th=(m-t)n=[n-(on)]n,

ts=t—t, =on—[n-(on)].

Fault slip occurs to release the shear stress, and
hence, the theoretical slip direction can be described
by the unit vector tg/|ts|, where |t is the length of the
shear traction vectors. The rake angles can be obtained
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by taking angles between the fault slip direction and
fault strike.

The National Research Institute for Earth Science and
Disaster Resilience (NIED) began to install a nationwide
broadband seismograph network in 1994 under the Fun-
damental Research on Earthquakes and Earth’s Interior
Anomaly (FREESIA) project, and after the project termi-
nated in March 2001, the seismograph network was inte-
grated into the network installed as a part of the measure
by the Headquarter for Earthquake Research Promotion
(HERP) as F-net (Okada et al. 2004).

In the present study, we validate the method of estimat-
ing rake angles from the 3D tectonic stress field obtained
by TM2010 with WBH for F-net data spanning from Jan-
uary 1997 to December 2021 with the centroid ranging
from 125° to 150° E in longitude and 25°-47° N in latitude.
To validate the applicability of the method to Quaternary
active faults in the shallow crust, we utilize all available
focal mechanism solutions of earthquakes with a centroid
depth of 30 km or shallower regardless of their variance
reductions (VR). The number of validated F-net mecha-
nism solutions is 20,148 with moment magnitudes (M,,)
ranging from 3.1 to 8.7. We fix the strike and dip angles of
the fault to nodal planes of the focal mechanism solutions
and calculate (theoretical) rake angles expected from the
3D tectonic stress field by TM2010 with WBH (hereafter
referred to as calculated rake angles). The calculated rake
angles are then compared with the actual rake angles of
focal mechanisms for earthquakes (hereafter referred to
as observed rake angles) by calculating misfit angles. The
misfit angles (hereafter, denoted by 1) are defined by the
O (observed rake angles by the F-net) — C (calculated rake
angles). Here, the smaller absolute misfit angle (hereaf-
ter denoted by |1|) between the first and second nodal
planes is adopted as a representative value. We separate
the period of the F-net mechanism data into three inter-
vals (Fig. 3): from January 1997 to January 2007 (Period
I), from February 2007 to the occurrence of the 2011 off
the Pacific coast of Tohoku earthquake (Mj49.0 [mag-
nitude determined by the Japan Meteorological Agency
(JMA)], M, 8.7 [F-net]; hereafter referred to as the 2011
Tohoku-oki earthquake) (Period II), and the postseis-
mic period of the 2011 Tohoku-oki earthquake (Period
III). We set Period I to confirm the applicability of the
method because TM2010 does not directly use WBH to
invert the 3D tectonic stress field. We further divide the
latter period into two periods at the occurrence of the
2011 Tohoku-oki earthquake on March 11 because sig-
nificant changes in seismicity were reported following
the 2011 event (e.g., Hirose et al. 2011; Ishibe et al. 2011a,
2015, 2017; Toda et al. 2011). The numbers of validated
focal mechanisms are 6191, 2623, and 11,334 for Period I,
Period I, and Period III, respectively.
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We also utilize JUNEC EM? (Ishibe et al. 2014; Addi-
tional file 1: Fig. S1) for validation. JUNEC FM? contains
focal mechanism solutions for 14,544 earthquakes that
occurred in and around the Japanese Islands from July
1985 to December 1998. This catalog was determined by
using first-motion polarities reported by the Japan Uni-
versity Seismic Network and covers small-magnitude
earthquakes (M >2.0) prior to the recent development
of seismic observation networks and automated wave-
form data processing systems. We validate the method
for 7221 focal mechanism solutions of earthquakes with
qualities of “A’, “B’, or “C’, epicenters ranging from 125° to
150° E in longitude and 25°-47° N in latitude, and depths
of 30 km or shallower. All results for JUNEC FM? are
shown in the supplementary materials (Additional file 1:
Fig. S1, Additional file 2: Fig. S2, Additional file 3: Fig. S3,
Additional file 4: Fig. S4).

In Japan, the HERP has selected 114 (as of November
2023) major active FZs as basic survey targets, consider-
ing the degree of activity and the impact on society when
the fault ruptures, to efficiently survey many active faults.
HERP also compiled the outcomes of previous sur-
veys, evaluated fault geometry (fault length, width, dip
angle, fault strike), fault type, histories of past activities,
and average recurrence intervals, and then conducted
long-term evaluations (e.g., expected earthquake mag-
nitude, earthquake occurrence probability during the
next 30 years) (e.g., HERP 2013). To investigate whether
the above geomorphologically and geologically evalu-
ated fault types can be reproduced from the 3D tectonic
stress field with WBH, we compare geomorphologically
and geologically evaluated fault types with calculated
rake angles for major Quaternary active faults in the
Kyushu district, southwest Japan. Along the Futagawa
and Hinagu FZs in the central part of the Kyushu district,
large earthquakes called the 2016 Kumamoto earthquake
sequence occurred in April 2016 and caused severe dam-
age near the source region (e.g., Yamada et al. 2017).
We use the fault types evaluated by HERP and the fault
models obtained from the Japan Seismic Hazard Infor-
mation Station (J-SHIS) by NIED. We calculate the rake
angles at the center of each fault and classify these faults
as reverse-fault type (rake angle: 90°+45°), normal fault
type (rake angle: —90° +45°), left-lateral fault (rake angle:
0°+45°), and right-lateral fault (rake angle: 180°+45°).
These fault types are then compared with geomorpho-
logically and geologically estimated fault types.

Validation of the method for the F-net focal
mechanism catalog

Period | (January 1997-January 2007)

During Period I, in which the moment tensor solutions
of earthquakes were used for the CMT data inversion by
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TM2010, the calculated rake angles are mostly consist-
ent with the observed rake angles (Figs. 4 and 5). Mis-
fit angles A mostly range between —30° and 30° with an
average of —1.81° and a standard deviation of 20.78°. The

histogram of A shows a clear Gaussian distribution with a
center of approximately zero. Among 6191 earthquakes,
[A] is <30° (class A) for 5846 (~94.4%) earthquakes,
whereas 204 (~3.3%), 34 (~0.5%) and 107 (~1.7%)
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with calculated rake angles from the 3D tectonic stress fields with WBH for Period I. The colors indicate fault types according to the classification

criteria by Frohlich (1992)

earthquakes exhibit 30°<|1| <60° (class B), 60°<|A| <90°
(class C) and [1]>90° (class D), respectively (Fig. 6).
Earthquakes with large |A| are concentrated in subduc-
tion zones and aftershock regions following large (M, 6.0
or above) earthquakes, such as the AM,7.9 interplate
earthquake that occurred along the Kuril Trench on 26th
September 2003 in southeastern off Tokachi (called the
2003 Tokachi-oki earthquake by JMA) (No. 13 in Fig. 7a
and Table 1), while || is mostly small for the mainshock
as discussed in the next paragraph. The close-up figures
of the comparison of the calculated rake angles with the
observed rake angles in Hokkaido (Additional file 5: Fig.
S5, Additional file 6: Fig. S6, Additional file 7: Fig. S7),
Tohoku (Additional file 8: Fig. S8, Additional file 9: Fig.
S9, Additional file 10: Fig. S10), Kanto and Chubu (Addi-
tional file 11: Fig. S11, Additional file 12: Fig. S12, Addi-
tional file 13: Fig. S13), Chugoku and Shikoku (Additional
file 14: Fig. S14, Additional file 15: Fig. S15, Additional
file 16: Fig. S16), and Kyushu (Additional file 17: Fig. S17,
Additional file 18: Fig. S18, Additional file 19: Fig. S19)
districts, Ryukyu Trench region (Additional file 20: Fig.
S20, Additional file 21: Fig. S21, Additional file 22: Fig.
S$22) and Izu-Bonin Trench region (Additional file 23:
Fig. S23, Additional file 24: Fig. 524, Additional file 25:

Fig. S25) for each period are shown in Additional files.
The basic characteristics of faulting [i.e., the reverse fault-
ing dominantly distributed in northeastern Japan (Addi-
tional file 9: Fig. S9), the mixture of reverse faulting and
strike-slip faulting in central Japan (Additional file 12:
Fig. S12), and strike-slip faulting and normal faulting
in southwestern Japan (Additional file 15: Fig. S15 and
Additional file 18: Fig. S18)] are well reproduced from the
3D tectonic stress field with WBH.

The |A| values are also small for large (M,,6.0 or above)
earthquakes. Among 29 earthquakes with A,,6.0 or above
during Period I, |1]| is smaller than 20° for 24 (~82.8%)
earthquakes and smaller than 30° for 25 (~86.2%) earth-
quakes (Table 1). For example, the calculated rake
angle is 82.58° and A is 4.42° for a reverse-type M,6.1
earthquake that occurred on 26th July 2003 in north-
ern Miyagi Prefecture (No. 12 in Fig. 7a and Table 1).
The observed rake angle of the M 6.6 earthquake that
occurred on 20th March 2005 in the southwestern off
Kyushu district (—177°% named the 2005 Fukuoka-ken
Seiho-oki earthquake by JMA) can also be well repro-
duced by the method (169.49°) with A=13.51° (No. 26 in
Fig. 7a and Table 1). Furthermore, the M,7.9 interplate
earthquake that occurred along the Kuril Trench on 26th
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September 2003 in southeastern off Tokachi (called the
2003 Tokachi-oki earthquake by JMA) is well repro-
duced by the method with 1=8.01° (No. 13 in Fig. 7a and
Table 1). On the other hand, four earthquakes exhibit
|1 >30° (Fig. 7a). A typical example is the M, 6.5 earth-
quake, which occurred on 19th January 2005 in the far
southeastern off Boso Peninsula near the triple junction
among the Pacific, Philippine, and Okhotsk plates (No.
25 in Fig. 7a and Table 1). The observed focal mechanism
solution for this earthquake is a reverse-type with a rake

angle of 105°, whereas the calculated one is a left-lateral
with a normal-faulting component, and the resulting A is
142.90°. The possible causes of the relatively large |1| for
these earthquakes are discussed in the next chapter.

Period Il (February 2007—the 2011 Tohoku-oki
earthquake)

Similarly, the calculated rake angles are mostly consistent
with the observed rake angles for Period II (Figs. 8 and
9). |A| values are also mostly <30° and the histogram of
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A shows a clear Gaussian distribution with an average of  from the 3D tectonic stress field with WBH. Among the
—2.93° and a standard deviation of 50.01°. The basic char- 2623 earthquakes, |1| is classified as class A for 1970
acteristics of faulting in Japan are also well reproduced  (~75.1%) earthquakes, whereas 237 (~9.0%), 97 (~3.7%)
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and 319 (~12.2%) earthquakes are classified as classes
B, C and D, respectively (Fig. 10). The larger standard
deviation results from several regions where the rela-
tively large |A| values are concentrated, i.e., along the Izu—
Bonin Trench and Ryukyu Trench (Fig. 9). Furthermore,

aftershocks in the source and nearby regions of major
earthquakes exhibit relatively large |A| values, such as
the 2007 Noto Hanto earthquake and 2008 Iwate-Miyagi
Nairiku earthquake, while the mainshock is well repro-
duced by the method as described below.
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Fig. 8 a Distribution of F-net focal mechanism solutions of earthquakes that occurred in Period II. b Distribution of focal mechanism solutions
with calculated rake angles from the 3D tectonic stress fields with WBH for Period II. The colors indicate fault types according to the classification

criteria by Frohlich (1992)

Among the 24 earthquakes with M,6.0 or above that
occurred during Period II, [1] is <20° for 20 (~83.3%)
earthquakes and <30° for 22 (~91.7%) earthquakes
(Table 2; Fig. 7b). The rake angles for major inland shal-
low earthquakes such as the 2007 Noto Hanto earthquake
(M,6.7) that occurred on 25th March (A=-5.58°, No. 31
in Fig. 7b and Table 2) and the 2008 Iwate-Miyagi Nairiku
earthquake (M,,6.9) that occurred on 14th June (1 =6.28°,
No. 40 in Fig. 7b and Table 2) are well reproduced by
the 3D tectonic stress field with WBH. Furthermore,
observed rake angles for great interplate earthquakes
that occurred during Period II, such as the M 7.2 earth-
quake that occurred east off Miyagi Prefecture on 9th
March, 2 days before the 2011 Tohoku-oki earthquake
(A=—4.53°, No. 48 in Fig. 7b and Table 2), are also repro-
duced by the method. On the other hand, only two earth-
quakes exhibit |1|>30°. Both earthquakes occurred near
Chichi-jima Island along the Izu-Bonin Trench. One
is the M,6.2 earthquake (No. 37 in Fig. 7b and Table 2)
with 1=41.58°, which occurred on 15th March 2008,
and the other is the M,,7.3 earthquake (No. 46 in Fig. 7b
and Table 2) with A=-38.03°, which occurred on 22nd
December 2010. Similar to the result for Period I, these

earthquakes occurred far offshore, where the observation
stations are sparse.

Period 11l (2011 Tohoku-oki earthquake—December 2020)

During Period III, the calculated rake angles are essen-
tially consistent with the observed rake angles with
[A]<30° (Figs. 7c, 11, 12, 13; Table 3) except for the
source and neighboring regions of the major earthquakes
(i.e., the 2011 Tohoku-oki earthquake). Among the
11,334 earthquakes, |1] is classified as class A for 6490
(~57.3%) earthquakes, whereas 910 (~ 8.0%), 541 (~ 4.8%)
and 3393 (~29.9%) earthquakes are classified as classes
B, C and D, respectively (Fig. 13). For example, the rake
angle of the 2011 Tohoku-oki earthquake could be well
reproduced by the method with A=—-7.01° (No. 54 in
Fig. 7c and Table 3), while |A] is slightly larger (1=8.68")
for the thrust-type (actual) nodal plane. In addition, the
rake angles of crustal earthquakes such as the 2016 Kum-
amoto earthquake (M,7.1) that occurred on 16th April
(A=-0.20°, No. 97 in Fig. 7c and Table 3) and the 2016
Tottori-ken Chubu earthquake (A,,6.2) that occurred on
21st October (A=—6.96°, No. 101 in Fig. 7c and Table 3)
were also consistent with the observed values. The M, 6.2
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Fig. 9 Distribution of A between the observed and calculated rake angles during Period Il

earthquake in the mid-Niigata Prefecture on 12th March
2011, possibly remotely triggered by the 2011 Tohoku-
oki earthquake, exhibits consistent a rake angle with
the observed rake angle (1=3.82°, No. 58 in Fig. 7c and
Table 3), whereas the M, 6.1 earthquake that occurred
west-off Aomori Prefecture on 12th March 2011 (the
same day as the M, 6.2 earthquake in the mid-Niigata
Prefecture) exhibits a large |A| (A=111.44°, No. 60 in
Fig. 7c and Table 3).

The earthquakes that occurred in the source and neigh-
boring regions of the major earthquakes (i.e., the 2011
Tohoku-oki earthquake) particularly showed large |A|.
One representative example showing large |A| values
is an earthquake sequence in the prefectural boundary
region between Ibaraki and Fukushima, where normal
faulting earthquakes abruptly began to occur following
the 2011 Tohoku-oki earthquake (Fig. 14; e.g., Kato et al.
2011). The largest shock in the sequence was the M, 6.6
Fukushima Hama-Dori earthquake (A=-—116.30°, No. 71
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in Fig. 7c and Table 3), occurred 1 month after the 2011  field is reverse-type with roughly E-W compression.
Tohoku-oki earthquake. The || values for this sequence =~ However, there were few available F-net data in the shal-
are enormously large because the inverted tectonic stress  low crust (centroid depth <30 km) between January 1997
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Fig. 11 a Distribution of F-net focal mechanism solutions of earthquakes that occurred in Period lll. b Distribution of focal mechanism solutions
with calculated rake angles from the 3D tectonic stress fields with WBH for Period ll. The colors indicate fault types according to the classification

criteria by Frohlich (1992)

and January 2007 in the region, and the uncertainty of
inverted stress field was large.

Considering that the uncertainties of focal mechanism
solutions generally range from 20 to 30° (e.g., Ishibe et al.
2014), our results support the applicability of the WBH
method for evaluating the expected rake angles of future
large earthquakes from recent tectonic stress fields. It is
worth discussing the utilization of rake angles expected
from tectonic stress fields with WBH for forecasting
strong ground motions and tsunamis. In addition, our
study also elucidates the necessity of close attention for
applying this method for areas near the occurrences of
large earthquakes, seismically inactive areas where the
amount of available mechanism data to invert the stress
is limited, and/or far offshore areas where the observa-
tion stations are sparsely distributed.

Possible causes of large |A|

The resulting A between the calculated rake angles and
observed rake angles mostly ranged between —30° and
30°, whereas they were large for the source region and
nearby areas of major earthquakes such as the 2011
Tohoku-oki earthquake and regions with large uncertain-
ties where the available focal mechanism data to invert

the stress field of TM2010 are limited. Here, we discuss
four possible causes of generating large |A|.

Incomplete understanding of stress field

One possible explanation for the large |A| is an incom-
plete understanding of the stress field. The distribu-
tion of focal mechanism solutions from January 1997 to
January 2007, which was used for the CMT data inver-
sion, is spatially heterogeneous, and the uncertainties of
the inverted stress field tend to be larger in the regions
with a smaller number of available focal mechanism solu-
tions. As mentioned, there were few available F-net data
in the shallow crust (centroid depth<30 km) between
January 1997 and January 2007 in the prefectural bound-
ary region between Ibaraki and Fukushima (Figs. 14 and
15c). In the region, many earthquakes of normal faulting
types with E-W tension suddenly increased immediately
after the 2011 Tohoku-oki earthquake. Imanishi et al.
(2012) found that microearthquakes of a normal fault-
ing type occurred in the region before the 2011 Tohoku-
oki earthquake and suggested that the stress field in the
shallow crust was originally and locally a normal fault-
ing regime, unlike other regions in the Tohoku district
which are in E-W compression. This also suggests that
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Fig. 12 Distribution of A between the observed and calculated rake angles during Period IlI

coseismic stress changes by the 2011 Tohoku-oki earth-
quake revealed the local stress heterogeneity. The large
|| values in this region are attributed to large uncertain-
ties of stress fields due to the lack of available focal mech-
anism solutions for the CMT data inversion by TM2010.
The recent improvement of the CMT data inversion
method to incorporate preceding inversion results into
the update analysis as direct prior information about
the stress field (Terakawa and Matsu’ura 2023) supports
the results of Imanishi et al. (2012) and concludes that

the proper stress field characterized by normal faulting
appeared after the Tohoku-oki earthquake in the prefec-
tural boundary region between Ibaraki and Fukushima.
The M, 6.0 earthquake that occurred on 5th Novem-
ber 2018 near Kunashiri Island (No. 106 in Fig. 7c and
Table 3) also occurred in a region where the available
mechanism data are very limited (Fig. 15c¢).

A heterogeneity of the local tectonic stress regime and
seismic activation in such regions also generates large
|]. These regions have typically been highlighted by the
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stress increase imparted by major earthquakes (e.g., Toda
et al. 2011; Terakawa et al. 2013; Terakawa and Matsu’ura
2023). In the Tohoku district, seismicity rates in most
areas where the seismic activity drastically increased

following the 2011 Tohoku-oki earthquake had been
low for the preseismic period. The hypocenter distribu-
tions for both the periods are complementary each other
(Fig. 16).
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The numbers in the figures are the IDs in Tables 1, 2, 3

Coseismic stress change

Another possible explanation for large |1| is coseis-
mic stress changes, especially in the source and nearby
regions of major earthquakes. Occurrences of earth-
quakes perturb the stress field and cause changes in

seismicity (e.g., Stein et al. 1992; King et al. 1994; Toda
et al. 1998; Ishibe et al. 2011b). Temporal changes in A
(Fig. 17) showed that earthquakes with large || explo-
sively increased after the occurrences of major earth-
quakes (e.g., the 2011 Tohoku-oki earthquake) and then
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gradually decayed with time. The |1| values can be large
even for regions where seismicity was originally high
and the stress field was reliably inverted by abundant
focal mechanism data in and near the source region of
the 2011 Tohoku-oki earthquake (Figs. 12 and 13). For
example, the M, 6.5 earthquake (No. 86 in Fig. 7c and
Table 3) that occurred on 12th July 2014 east off Fuku-
shima Prefecture exhibits a large |1| (A=130.77°), while
the number of focal mechanism data to invert the stress
field is relatively large (Fig. 15c). Terakawa and Matsu’'ura
(2023) pointed out that the stress orientation change in
a region off Fukushima and Ibaraki, the southern margin
of the main rupture area of the megathrust event, seems
to be real. The concentration of focal mechanism solu-
tions with large |1| during Period III coincides well with
the above region. However, coseismic stress changes in
inland regions and coastal regions of the Sea of Japan of
the Tohoku district are too small to alter the stress orien-
tation (Terakawa et al. 2013).

The |A| values can also be larger due to transient stress
changes, for example, accompanied by slow slip events.
The |1| value exceeds 30° for the M, 6.0 earthquake which
occurred on 9th October 1997 (No. 3 in Fig. 7a and

Table 1), approximately 6 years before the 2003 Tokachi-
oki earthquake (No. 13 in Fig. 7a and Table 1). Based on
an analysis of GPS data and seismicity, it was suggested
that the deeper half of the plate interface within the rup-
ture area of the 2003 Tokachi-oki earthquake was uncou-
pled and that a slow slip event occurred in several years
prior to the mainshock (e.g., Baba and Hori 2006; Ogata
2005). The large |A| value might be related to transient
stress changes imparted by a slow slip event (e.g., Kat-
sumata 2011).

Local deviatoric stress changes caused by the pore-fluid
pressure increase

Another possible explanation for the large |A| is the local
deviatoric stress changes caused by the pore-fluid pres-
sure increase, enforced by the intrusion of high-pressure
fluid into a fault zone (Matsu'ura and Terakawa 2021).
One representative example is the concentration of large
[A] in the source region of the 2011 Tohoku-oki earth-
quake (Fig. 7c). These events have focal mechanisms of
normal faulting with E-W tension, which are largely
deviated from the stress pattern in TM2010. Terakawa
and Matsu’ura (2023) concluded that strong shaking by
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Fig. 17 Occurrence times of earthquakes vs. A

the 2011 Tohoku-oki earthquake resulted in a wide dam-
age zone around the main rupture fault and that the rapid
intrusion of high-pressure fluid through the suddenly
developed fluid-path network triggered clustered events
with abnormal focal mechanisms at shallower depths.
Matsu’ura and Terakawa (2021) mathematically indicated
that the fault orientations of aftershocks are not neces-
sarily consistent with the surrounding deviatoric stress
field when the enforced pore-fluid pressure changes,
driven by the intrusion of high-pressure fluid into an
accidentally chosen preexisting fault from deep reser-
voirs, are dominant. However, the activity of these events
rapidly decreased within a year (Terakawa and Matsu’ura

2023), indicating that they are not the indicators of tec-
tonic stress fields. Therefore, large |A| values which come
from these events do not undermine the applicability
of the method estimating realistic rake angles for reli-
able prediction of strong ground motions and tsunamis
caused by future large earthquakes.

Uncertainties of moment tensor solutions

Uncertainties of moment tensor solutions can also be a
factor generating large ||, and they are basically larger
for offshore regions than for inland regions due to the
sparse distribution of seismograph observation stations.
Variance reductions (VR), which indicate the fit between



Ishibe et al. Earth, Planets and Space (2024) 76:26

Page 30 of 39

L v v v v b v by e by g |
7

L v v b v by e by e by |
7

1 (a) Period | - 4 (b) Period Il -

o /" Okhotsk plate -
45" — ; ; (OH) — 45
40° - 40°
35° — 35°
30° — — 30°

. N -
] < . L
i *&aﬁ Philippine Sea plate i
25° — » ¢ (PHS) - 25°
I T T T T I T T T T I T T T T I T T T T I T T T T I I T T T T I T T T T I T T T T I T T T T I T T T T I
I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 /I 1 1 I 1 1 1 1 I 125° 130o 135o 140o 1450 150°
45° - -180  -90 0 90 180
r Misfit angle (degree)
40° - 60 70 80 90 100
r Averaged Variance Reduction (%)
35° -
30° —
25° —
I T T T T I T T T T I T T T T I T T T T I T T T T I
125° 130° 135° 140° 145° 150°

Fig. 18 Comparison of A for large (M,, > 6.0) earthquakes with the distribution of averaged variance reductions (VR) for 1.0°x 1.0° spacing
in longitudes and latitudes where the number of available mechanism data is > 10 during a Period |, b Period II, and ¢ Period Il

observed and synthetic waveforms, are comparatively
low for the focal mechanism solutions of earthquakes
that occurred in the offshore region (Fig. 18 and Addi-
tional file 26: Fig. S26, e.g., along the Izu-Bonin and
Ryukyu Trenches). Relatively large |A| values in these

regions (e.g., the M, 6.5 earthquake that occurred on
19th January 2005 in the far southeastern off Boso Pen-
insula near the triple junction among the Pacific, Philip-
pine, and Okhotsk plates (No. 25 in Fig. 7a and Table 1))
are possibly due to the large uncertainties of centroid
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location and/or moment tensor solutions. For the M, 6.2
earthquake that occurred on 15th March 2008 near Chi-
chi-jima Island along the Izu-Bonin Trench (Period II),
which showed a large |A| (41.58° No. 37 in Fig. 7b and
Table 2), the centroid depth of 5 km is significantly shal-
lower than the hypocentral depth (66 km) determined by
the JMA. Relatively large misfit angles are possibly due
to both the large estimation errors of the stress field due
to the relatively low quality of mechanism solutions and
the large uncertainties of CMT solutions themselves that
were used for validation. Recently, a large-scale seafloor
observation network for earthquakes and tsunamis con-
sisting of 150 observatories (S-net) was established in
the Japan Trench area by NIED (Aoi et al. 2020). Further-
more, another seafloor observation network called N-net
is now under construction in the Nankai Trough subduc-
tion zone by NIED. These networks will contribute to a
better understanding of the stress field, reduce |A| and
uncertainties in the hypocentral location and improve
early tsunami warning capabilities.

Application to fault zones in the Kyushu District

In the Kyushu district, southwest Japan, 16 FZs are
evaluated as major Quaternary active FZs by the HERP.
In addition, 17 faults are evaluated as short faults in the
Regional Evaluation of Active Faults in the Kyushu Dis-
trict (1st edition) (HERP 2013). We analyze 16 FZs and
two short faults whose fault models are developed by
J-SHIS. In the northern part of the Kyushu district,
left-lateral faults striking roughly N'W-SE directions
predominate, and they are distributed at intervals of
approximately 10-20 km (Fig. 19a). Conjugated right-
lateral faults striking roughly NE-SW directions are also
distributed in some parts of the district. In the central
and southern parts, right-lateral faults and normal faults
reflecting their N-S extension field are mixed.

The fault types inferred from the 3D tectonic stress
field by TM2010 with WBH generally reproduce the
above regional characteristics well, with left-lateral
fault types predominating in the northern part and
right-lateral and normal fault types predominating in
the central and southern parts (Fig. 19 and Table 4).
Among 32 fault segments (FSs), fault types predicted by
the method coincide with the HERP evaluation for 25
FSs (~78.1%). For example, left-lateral faults distributed
in the northern part of the Kyushu district (i.e., Nishiy-
ama FZ, Umi F, Hinata-toge-Okasagi-toge FZ and Kego
FZ) are well reproduced by the method. The Izumi F is
classified as a right-lateral fault by the method in the
present study, while the HERP evaluated as a normal
fault, including a right-lateral component. However,
the calculated rake angle is —135.65° and is near the
classification boundary between the right-lateral and
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normal faults. The northeastern and southeastern parts
of the Koshiki FZ (Koshiki segment) have been evalu-
ated as a north-uplifting normal fault with left-lateral
displacement and a northwest-uplifting normal fault,
respectively (HERP 2013), while they are estimated to
be mainly strike-slip faults from the method. The Ichiki
segment, Koshiki-Kaikyo central segment, and Fukiage-
hama seiho-oki segment of the Ichiki FZ are evaluated
as “normal fault with right-lateral component’, “normal
fault whose strike-slip component is unknown’, and
“normal fault whose strike-slip component is unknown’,
respectively (HERP 2013). The fault types inferred from
the method in the present study are mainly strike-slip
faults.

The 2016 Kumamoto earthquake sequence ruptured
the Takano-Shirahata segment of the Hinagu FZ and
the Futagawa segment of the Futagawa FZ. The largest
foreshock occurred on 14th April 2016 (M,,6.1), with an
F-net rake angle of —164°, and this event was evaluated
as the rupture of the northern segment (Takano-Shira-
hata segment) of the Hinagu FZ, a right-lateral fault strik-
ing NE-SW. The mainshock on 16th April 2016 (M,,7.1)
ruptured the Futagawa FZ with an F-net rake angle of
—142°. A is 29.65° for the largest foreshock and —0.20° for
the mainshock. The geomorphologically and geologically
evaluated fault types and the observed and calculated
rake angles are consistent with each other for both FZs.
The fault types for the Futagawa segment of the Futa-
gawa FZ and Takano-Shirahata segment for the Hinagu
FZ are evaluated as right-lateral faults. The rake angles
calculated from the 3D tectonic stress field with WBH
were —168.267° for the Futagawa segment of the Futa-
gawa FZ and 179.84° for the Takano-Shirahata segment
of the Hinagu FZ, and they were also classified as right-
lateral faults. These results are consistent with a previ-
ous study (Matsumoto et al. 2018) that indicated that the
prestate of stress on the fault controls the slip direction of
complicated coseismic fault slip for the 2016 Kumamoto
earthquake.

The calculated rake angles depend on both the regional
stress field and fault geometry, and the robustness of
converted fault types may differ from each fault. Fur-
thermore, mismatch between the fault types estimated
from the method and geomorphologically and geologi-
cally evaluated fault types may be due to uncertainties in
the geometry of the targeted faults. In particular, the dip
angles are sometimes poorly constrained and are conven-
tionally set to some representative values for forecasting
strong ground motions and tsunamis. The comparison
(mismatch) of fault types obtained from geomorphology
and geology with those from the method in this study
would provide a valuable opportunity for the reexamina-
tion of fault types and fault geometries.
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Concluding remarks and future development

The method of estimating realistic rake angles from a 3D
tectonic stress field according to WBH was validated by
comparison to focal mechanism data. The calculated rake
angles accurately reproduced the observed rake angles;
A, the misfit angles between the observed and calculated
rake angles, mostly ranged between —30° and 30°. Dur-
ing Period I (January 1997 to January 2007), the absolute
misfit angles, |A|, were <30° for approximately 94.4% (for
all M) and 86.2% (for M,,>6.0) of earthquakes. |1| val-
ues were <30° for approximately 75.1% (for all M) and
91.7% (for M, >6.0) of earthquakes in Period II (Febru-
ary 2007 to the occurrence time of the 2011 Tohoku-oki
earthquake). After the occurrence of the 2011 Tohoku-
oki earthquake (Period III), large [1| values were typi-
cally observed in the source and neighboring regions of
the 2011 Tohoku-oki earthquake, whereas the calculated
rake angles were mostly consistent with the observed
rake angles as similar to periods I and II. Considering that
the uncertainties of focal mechanism solutions generally
range from 20 to 30° (e.g., Ishibe et al. 2014), our study
supports the applicability of the WBH method for evalu-
ating the expected rake angles of future large earthquakes
from seismologically estimated tectonic stress fields.
The |A| values were large for the focal mechanism solu-
tions of earthquakes in the source and nearby the occur-
rences of large earthquakes such as the 2011 Tohoku-oki
earthquake (e.g., Fig. 12), the seismically inactive areas
where the number of available mechanism data to invert
the stress is limited (e.g., prefectural boundary region
between Ibaraki and Fukushima, Fig. 14), and/or far oft-
shore areas where the observation stations are sparsely
distributed. Our study also elucidates the necessity of
paying close attention to apply the method to the above
areas.

We suggested four possible causes for generating a
large |1|. The coseismic (and postseismic) stress changes
imparted by major earthquakes such as the 2011 Tohoku-
oki earthquake can change the stress pattern and gen-
erate a large |1|. One representative example is the off
Fukushima and Ibaraki region, the southern margin of
the main rupture area of the 2011 Tohoku-oki earth-
quake (Terakawa and Matsu’'ura 2023). The incomplete
understanding of the tectonic stress field because of a
lack of available data for short-term periods is also a pos-
sible factor for generating a large |1|. The distribution of
focal mechanism solutions of earthquakes used for the
CMT data inversion is spatially heterogeneous, and avail-
able mechanism data are very limited in several regions,
such as the prefectural boundary region between Ibaraki
and Fukushima. The local heterogeneity of the stress field
that deviates from the regional stress field and the activa-
tion of seismicity in such regions would generate a large
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|A]. Local deviatoric stress changes caused by the pore-
fluid pressure increase enforced by the intrusion of high-
pressure fluid into a fault zone (Matsu’'ura and Terakawa
2021) and the presence of large uncertainties in focal
mechanism solutions for earthquakes (e.g., comparatively
low VR along the Izu—Bonin Trench and Ryukyu Trench)
are other possible factors generating a large |A|.

In the present study, we also confirmed that the fault
types obtained from the 3D tectonic stress field with
WBH coincided well with the geomorphologically and
geologically estimated fault types for FZs in Kyushu dis-
trict, southwest Japan. In the Futagawa and Hinagu FZs,
large earthquakes called the 2016 Kumamoto earthquake
sequence occurred in April 2016. The rake angles calcu-
lated from the WBH method were consistent with both
geomorphologically and geologically estimated fault
types and observed rake angles. These results suggest that
the rake angles for faults with known geometry can be
accurately derived from the 3D tectonic stress field with
WBH, whereas there are limitations for applying this
method to a region where the stress has been perturbed
due to recent large earthquakes (e.g., the 2011 Tohoku-
oki earthquake) and/or a region where the uncertainty of
stress orientations is large, for example, due to a limited
number of available focal mechanisms and sparse distri-
bution of observation stations. A comprehensive study
for Quaternary active faults in Japan by comparing cal-
culated rake angles from tectonic stress fields according
to WBH with geomorphologically and geologically evalu-
ated fault types would be helpful for further understand-
ing the temporal stability of tectonic stress fields from
seismological data for ~10 years and the availability of
the tectonic stress field with WBH to constrain the fault
slip directions for future large earthquakes.

Why the tectonic stress field obtained from the
CMT data inversion is consistent with the WBH? The
moment tensor of a seismic event is mathematically
equivalent to the volume integral of coseismic static
stress changes over the whole region surrounding the
source (Matsu'ura et al. 2019). Based on this relation-
ship, in the CMT data inversion method, they repre-
sent the CMT data of a seismic event by the weighted
volume integral of the stress field (Terakawa and
Matsu’ura 2008, 2023). This formulation is attributed to
the idea that seismic events release a part of the stress
field, or that seismic events whose moment tensors are
consistent with the stress tensor are the most likely.
Meanwhile, based on the volume integral representa-
tion of the moment tensor, Matsu’ura et al. (2019) fur-
ther elucidated that seismic slip in the direction of the
resolved shear stress maximizes the efficiency of elastic
strain energy release under realistic stress conditions.
Therefore, WBH assumes that seismic slip occurs (in
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the direction of the resolved shear stress) at preexisting
faults to release elastic strain energies most effectively.
A seismic event can release elastic strain energies most
effectively when its moment tensor is consistent with
the stress tensor (Matsu’ura and Terakawa 2021). Thus,
the formulation of the CMT data inversion method
as above is supported by the same assumption as the
WBH. In other words, the most likely seismic slip is a
physical process that releases elastic strain energy most
effectively. It is very interesting that the results of the
present study substantiate these physical backgrounds
of the CMT data inversion and WBH.

The current method for predicting strong ground
motion (“Recipe”) by HERP (HERP 2020) is based on
the characterized source model consisting of several
asperities with large slip amounts and background
regions with smaller slip amounts (e.g., Irikura and
Miyake 2011). The Recipe recommends setting rake
angles as 90° for reverse faults, —90° for normal faults,
0° for left-lateral faults, and 180° for right-lateral faults
for active faults for which the rake angle is not speci-
fied by the subcommittee of the long-term evaluation.
However, the effect of rake angle on tsunami forecast-
ing is not negligible (Satake et al. 2022), and it is worth
discussing utilizing rake angles expected from the
tectonic stress field with WBH for forecasting strong
ground motions and tsunamis. There are several issues
in evaluating strong ground motions and/or tsunamis
that contribute to disaster prevention and mitigation.
Seismicity is spatially and temporally heterogeneous,
and the uncertainty of the estimated 3D tectonic stress
field depends on the seismicity. Evaluating the uncer-
tainties of the rake angles arising from the uncertainties
of the stress field is therefore an important issue (e.g.,
Terakawa 2017). Information on fault geometry (fault
location, strike, and dip angle) is also essential to cal-
culate rake angles expected from tectonic stress fields
with WBH, and the improvement of fault imaging tech-
niques and data accumulation through additional sur-
veys are also important issues to improve the reliability
of strong ground motion and/or tsunami predictions.

Abbreviations

3D Three-dimensional

CMT Centroid moment tensor

ERC Earthquake Research Committee

FZ(s) Fault zone(s)

FS(s) Fault segment(s)

HERP Headquarters for Earthquake Research Promotion

JUNEC FM?  Japan University Network Earthquake Catalog of First-Motion
Focal Mechanisms

TM2010 Terakawa and Matsu'ura (2010)

WBH Wallace-Bott hypothesis

A Misfit angle between the observed and calculated rake angles

Al Absolute misfit angle between the observed and calculated

rake angles
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Additional file 1: Figure S1. Distribution of focal mechanism solutions
from the Japan University Network Earthquake Catalog First-Motion Focal
Mechanism (JUNEC FM? Ishibe et al. 2014). The color of the focal sphere
shows the fault type according to the criteria by Frohlich (1992).

Additional file 2: Figure S2. Distribution of focal mechanism solutions
with calculated rake angles for JUNEC FM?.

Additional file 3: Figure S3. Misfit angles between the observed and
calculated rake angles for JUNEC FM?.

Additional file 4: Figure S4. Occurrence times of earthquakes vs. A for
JUNEC FM?,

Additional file 5: Figure S5. Close-up figure of (a) F-net focal mechanism
solutions (left) and focal mechanism solutions with calculated rake angles
(right) in the Hokkaido district during period I. The colors of the focal
sphere indicate the fault types according to the classification criteria by
Frohlich (1992). (b) Distribution of A.

Additional file 6: Figure S6. Those in the Hokkaido district during period
Il. The symbols are the same as in Fig. S5.

Additional file 7: Figure S7. Those in the Hokkaido district during period
II. The symbols are the same as in Fig. S5.

Additional file 8: Figure S8. Those in the Tohoku district during period .
The symbols are the same as in Fig. S5.

Additional file 9: Figure S9. Those in the Tohoku district during period II.
The symbols are the same as in Fig. S5.

Additional file 10: Figure S10. Those in the Tohoku district during period
II. The symbols are the same as in Fig. S5.

Additional file 11: Figure S11. Those in the Kanto and Chubu districts
during period |. The symbols are the same as in Fig. S5.

Additional file 12: Figure S12. Those in the Kanto and Chubu districts
during period II. The symbols are the same as in Fig. S5.

Additional file 13: Figure S13. Those in the Kanto and Chubu districts
during period lll. The symbols are the same as in Fig. S5.

Additional file 14: Figure S14.Those in the Chugoku and Shikoku dis-
tricts during period I. The symbols are the same as in Fig. S5.

Additional file 15: Figure S15. Those in the Chugoku and Shikoku dis-
tricts during period Il. The symbols are the same as in Fig. S5.

Additional file 16: Figure S16. Those in the Chugoku and Shikoku dis-
tricts during period Ill. The symbols are the same as in Fig. S5.

Additional file 17: Figure S17. Those in the Kyushu district during period
I. The symbols are the same as in Fig. S5.

Additional file 18: Figure S18. Those in the Kyushu district during period
Il. The symbols are the same as in Fig. S5.

Additional file 19: Figure S19. Those in the Kyushu district during period
lIl. The symbols are the same as in Fig. S5.

Additional file 20: Figure S20. Those in the Ryukyu Trench region during
period I. The symbols are the same as in Fig. S5.

Additional file 21: Figure S21. Those in the Ryukyu Trench region during
period Il. The symbols are the same as in Fig. S5.

Additional file 22: Figure S22. Those in the Ryukyu Trench region during
period lll. The symbols are the same as in Fig. S5.

Additional file 23: Figure S23. Those in the Izu-Bonin Trench region dur-
ing period I. The symbols are the same in Fig. S5.

Additional file 24: Figure S24. Those in the Izu-Bonin Trench region dur-
ing period Il. The symbols are the same as in Fig. S5.

Additional file 25: Figure S25. Those in the Izu-Bonin Trench region dur-
ing period Ill. The symbols are the same as in Fig. S5.
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Additional file 26: Figure S26. Distribution of variance reductions (VR)
for the F-net mechanism solutions for (a) period I, (b) period II, and (c)
period III.
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