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Abstract 

The difference between observed and modelled precession/nutation reveals unmodelled signals commonly referred 
to as Celestial Pole Offsets (CPO), denoted by dX and dY. CPO are currently observed only by Very Long Baseline 
Interferometry (VLBI), but there is nearly 4 weeks of latency by which the data centers provide the most accurate, final 
CPO series. This latency problem necessitates predicting CPO for high-accuracy, real-time applications that require 
information regarding Earth rotation, such as spacecraft navigation. Even though the International Earth Rotation 
and Reference Systems Service (IERS) provides so-called rapid CPO, they are usually less accurate and therefore, may 
not satisfy the requirements of the mentioned applications. To enhance the quality of CPO predictions, we present 
a new methodology based on Neural Additive Models (NAMs), a class of interpretable machine learning algorithms. 
We formulate the problem based on long short-term memory neural networks and derive simple analytical relations 
for the quantification of prediction uncertainty and feature importance, thereby enhancing the intelligibility of predic-
tions made by machine learning. We then focus on the short-term prediction of CPO with a forecasting horizon of 30 
days. We develop an operational framework that consistently provides CPO predictions. Using the CPO series of Jet 
Propulsion Laboratory as the input to the algorithm, we show that NAMs predictions improve the IERS rapid prod-
ucts on average by 57% for dX and 25% for dY under fully operational conditions. Our predictions are both accurate 
and overcome the latency issue of final CPO series and thus, can be used in real-time applications.
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Graphical Abstract

Introduction
Gravitational effects of the Sun and Moon induce vari-
ations in the Earth rotation axis, commonly known as 
precession and nutation (Gross 2015). In addition, mass 
redistribution within the Earth system also perturbs the 
rotation axis of the Earth. The latter can be modulated 
onto the nutation, generating small oscillatory motions. 
These motions are irregular and depend on various 
parameters, including geodynamics of the Earth. There-
fore, in contrast to the major components of precession 
and nutation that are modelled with rigorous theories 
(e.g. Wahr 1981; Matthews et al. 1991a, b, 2002), the men-
tioned irregular motions are left unmodelled. With the 
advent of Very Long Baseline Interferometry (VLBI; Sov-
ers et al. 1998) researchers were enabled to derive these 
unmodelled signals (Herring et al. 1991), which are com-
monly referred to as Celestial Pole Offsets (CPO). CPO 
represent by definition a two-dimensional motion, the 
components of which are denoted by dX and dY. These 
components vary in time and are dominated by a retro-
grade oscillatory motion referred to as Free Core Nuta-
tion (FCN; Wahr 1988). The primary cause of FCN is the 
misalignment between the rotation axis of the fluid core 
and mantle and it is suggested to be excited by a combi-
nation of atmospheric and oceanic processes (Sasao and 

Wahr 1981). The period of FCN in the celestial frame is 
around 431 days, but by complex demodulation at diur-
nal frequency (Brzeziński 1994) it is translated to the ter-
restrial frame as a retrograde diurnal motion; thus, it is 
sometimes referred to as the “nearly diurnal free wobble” 
(Sasao and Wahr 1981). As such, a simple harmonic func-
tion (based on sine and cosine) can be fitted to the CPO 
time series and subsequently used to predict CPO. This 
has been the basis of various methodologies (e.g. Belda 
et al. 2016, 2017, 2018) that attempt to model and predict 
CPO time series.

In addition to FCN, there are some other, more irregu-
lar parts in CPO which are difficult to model and predict, 
including perhaps the effect of geomagnetic jerks (Shirai 
et al. 2005). Furthermore, VLBI observations of CPO are 
contaminated by high degrees of noise. Therefore, robust 
modelling and prediction of CPO time series has been 
challenging (Belda et al. 2017). The mentioned method-
ologies based on extrapolation of harmonic functions 
may not present the highest accuracy. Other methodolo-
gies such as Kalman filtering that are based on stochas-
tic modelling may be more accurate (Nastula et al. 2020). 
However, even the mentioned methods may not take into 
account the full dynamics of CPO time series including 
the potential nonlinear evolution (e.g. nonstationarity 
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due to possible impacts from the aforementioned geo-
magnetic jerks). To overcome this problem, the use of 
machine learning algorithms is suggested to be beneficial 
(Kiani Shahvandi and Soja 2021, 2022a; Kiani Shahvandi 
et  al. 2022b). In fact, to compare the prediction capa-
bility of different algorithms for the prediction of Earth 
Orientation Parameters (EOPs), the second Earth Ori-
entation Parameters Prediction Comparison Campaign 
(EOPPCC) was organized (Śliwińska et al. 2023). One of 
the primary conclusions of this campaign was that the 
machine learning algorithms present the most accurate 
CPO predictions (Wińska et al. 2023) in operational set-
tings. Motivated by this success, we intend to present a 
new methodology based on machine learning that can 
accurately predict CPO time series under operational 
conditions. These predictions can then be used in appli-
cations that require real-time information regarding 
Earth rotation, including satellite navigation (Kiani Shah-
vandi et al. 2022a).

Even though machine learning algorithms are a power-
ful approach for time series prediction (Lim and Zohren 
2021), they lack the interpretability of traditional, sim-
pler models. One of the most common characteristics of 
the conventional methods is that they are mostly linear 
in nature (such as fitting a line to observational data). 
In contrast, machine learning algorithms are nonlinear, 
which makes their interpretation quite challenging. To 
address this problem, so-called interpretable machine 
learning algorithms have been developed (e.g. Molnar 
2023). We particularly focus on one such algorithm that 
has been proposed recently, called Neural Additive Mod-
els (NAMs; Agarwal et  al. 2021). NAMs are suggested 
to be highly accurate and easy to interpret. The key idea 
behind NAMs is to use a neural network for each input 
feature and then sum up the output of all these neural 
networks (i.e., neural network has one input feature to 
also predict only one feature). This implies that NAMs 
are based on the so-called generalized additive models 
(Hastie and Tibshirani 1986), where for each input fea-
ture the function that relates this feature to the output 
can be nonlinear, but the final output of the algorithm is 
linearly related to the output of each individual model. 
However, the prediction uncertainty (Kiani Shahvandi 
et al. 2023) and feature importance analysis methodolo-
gies (Kiani Shahvandi et  al. 2022a) are not available yet 
for NAMs. The high level of noise in CPO data neces-
sitates the quantification of prediction uncertainty to 
assign a measure of reliability to the predictions (Kiani 
Shahvandi and Soja 2022b). On the other hand, it is 
important to analyze which input features (for example 
dX vs dY) contribute the most to the prediction accuracy. 
We therefore focus on developing the theoretical frame-
works for prediction uncertainty and feature importance 

and subsequently use them to predict CPO time series 
in short-term forecasting horizon, i.e., up to 30 days to 
the future. We focus on this forecasting horizon because 
we intend to fully cover the 4 week latency of final EOP 
series provided by the International Earth Rotation and 
Reference Systems Service (IERS). In short, the goals of 
the present study are as follows:

• Presenting a new methodology based on NAMs for 
the prediction of CPO, as well as analytically formu-
lating the quantification of prediction uncertainty 
and analysis of feature importance

• Analyzing the methodology under operational set-
tings to realistically examine the prediction perfor-
mance

The rest of this paper is organized as follows. In “Meth-
ods” the methodology is developed. In “Data descrip-
tion” the data used in the study are described. “Results 
and discussions” is devoted to presenting the results and 
their interpretation, whilst “Conclusions” to stating the 
conclusions.

Methods
Let us assume here that two features x1 and x2 describe 
a time series y. If the relationship between x1 , x2 and y is 
through a function denoted by f, then NAMs present y as 
equivalent to the linear summation of f (x1) and f (x1) as 
follows

This simple idea enables interpretation of the role of x1 
and x2 on the prediction of y through the analysis of fea-
ture importance (Kiani Shahvandi et al. 2022a). Since the 
output of the model is linear, we define the importance 
of features x1 and x2 based on the absolute value of linear 
correlation coefficients of x1 and x2 with y. Considering 
that this correlation coefficient is based on the variance 
of f (x1) and f (x2) , we need to estimate the prediction 
uncertainty (Kiani Shahvandi and Soja 2022b; Kiani Shah-
vandi et al. 2023). To quantify the prediction uncertainty, 
we follow the deep ensemble approach (Lakshminaray-
anan et al. 2016) described in Equation (2), where several 
models with different initial parameters are fitted simul-
taneously to the same data. The size of this ensemble is 
denoted here by M and the individual ensemble member 
by the index j, where j = 1, ...,M . We use M = 10 as sug-
gested by Kiani Shahvandi et al. (2023), because it proved 
to be quite robust in presenting the most accurate predic-
tions whilst keeping the computational time reasonable 
(i.e., low computational complexity).

(1)y = f (x1)+ f (x2).
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It is important to note that here we use Long Short-
Term Memory (LSTM; Hochreiter and Schmidhuber 
1997) neural networks for the function f. This choice is 
motivated by the efficiency of LSTM in accurately cap-
turing the temporal dependency in the time series and 
presenting highly accurate predictions as shown by Lara-
Benitez et al. (2021). For each of the ensemble members, 
we define two LSTM neural networks µj(x1) = LSTMµx1

 
and µj(x2) = LSTMµx2

 that represent the function f in 
relation (1). These are shown in Equations (2a)–(2b). 
The uncertainties in the prediction are also defined 
based on two LSTM neural networks, denoted by 
σ 2
j (x1) = LSTMσx1

 and σ 2
j (x2) = LSTMσx2

 in Equation 
(2c)–(2d). The difference between these neural networks 
and µj(x1) , µj(x2) is twofold: (1) each of these neural net-
works has its own specific, learnable parameters, denoted 
by Wµx1

 , Wµx2
 , Wσx1

 , and Wσx2
 ; (2) a softplus activation 

function (Zheng et  al. 2015) is applied to σ 2
j (x1) and 

σ 2
j (x2) , ensuring that the value of uncertainty is positive. 

A numerical stabilizer ǫ = 10−8 is added to the output 
of the mentioned softplus function (Kiani Shahvandi 
et al. 2023) to avoid division by zero in the second term 
of the loss function in Equation (2g). According to Equa-
tion (1), the output of NAMs is defined as the linear sum-
mation given in Equation (2e). The uncertainty assigned 
to NAMs is defined according to the linear propagation 
of uncertainty as in Equation (2f ) based on covariance 
(denoted by cov). The loss function is defined accord-
ing to Equation (2g) and subsequently minimized by the 
Adam optimizer (Kingma and Ba 2015) with respect to 
the learnable parameters Wµx1

 , Wµx2
 , Wσx1

 , and Wσx2
 . The 

learning rate and the number of training epochs for opti-
mization are 5× 10−4 and 500, respectively, proven to be 
effective in other studies as well (Gou et al. 2023). Aver-
aging over the individual ensemble members, we derive 
the NAMs output and its uncertainty, given in Equation 
(2h)–(2i). 

(2a)µj(x1) = LSTMµx1
(Wµx1

,j , x1)

(2b)µj(x2) = LSTMµx2
(Wµx2

,j , x2)

After having the estimates of uncertainty in the predic-
tions, i.e., σ 2

j (x1) and σ 2
j (x2) in Equation (2c)–(2d), it can 

be simply shown (see Appendix A) that the importance of 
features x1 and x2 (denoted by FIx1 and FIx2 respectively) 
is derived using Equation (3). Note that for each ensem-
ble member a distinct feature importance can be derived, 
Equation (3a). Computing the mean and standard devia-
tion of these individual values, we derive the ensemble 
FIx1 and FIx2 together with their uncertainties, Equation 
(3b). It is important to note that FIx1 and FIx2 vary in time 
and also for different forecasting horizons. The sum over 
forecasting horizons and its average over all the predic-
tions gives a representative value of feature importance. 
We therefore present the results for both cases, i.e., the 
overall feature importance and its temporal variability. 

 It should be mentioned that NAMs require dX and 
dY to be predicted separately to retain the idea of 

(2c)

σ 2
j (x1) = log

(

1+ exp
(

LSTMσx1
(Wσx1 ,j

, x1)
)

)

+ ε

(2d)

σ 2
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(

LSTMσx2
(Wσx2 ,j

, x2)
)

)
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(2f )σ 2
j = σ 2
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)
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1

2
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interpretability. This implies that even though the input 
features to the algorithm are both dX and dY, the output 
is either dX or dY. Thus, two separate NAMs are defined 
for dX and dY. Note also that since we defined NAMs in 
terms of LSTM, we need to define the length of input and 
output sequence (Gou et al. 2023). These are the number 
of previous values of the time series used as the input and 
the forecasting horizon, respectively. An advantage of 
NAMs is that the input and output sequence lengths are 
equal, implying that in our case they are both equivalent 
to 30. The number of hidden neurons used in LSTM is 
10, taken from Gou et al. (2023). This proved to be quite 
efficient in our setting, as it provided the highest predic-
tion accuracy compared to models with fewer or more 
neurons. The method is implemented using the Tensor-
Flow library (Abadi et al. 2015).

To evaluate the prediction performance, we use the 
Mean Absolute Error (MAE) criterion, employed exten-
sively in EOP studies (Kiani Shahvandi and Soja 2022a; 
Kiani Shahvandi et al. 2022a, b, 2023). MAE is defined as 
in Equation (4)

where k is the forecasting horizon, N = 731 is the num-
ber of predictions made, µ(k ,i) is the NAMs prediction at 
ith prediction day for kth forecasting horizon, and F (k ,i) 
(shown also in Equation (2g)) are the values that we 
evaluate µ(k ,i) on at ith prediction day for kth forecast-
ing horizon. These evaluation values are typically chosen 
to be the IERS EOP series, which include the CPO time 
series. Further details about this series are given in “Data 
description”.

Data description
The input data to our algorithm are the CPO time series. 
However, it should be mentioned various institutions/
services such as Jet Propulsion Laboratory (JPL) and 
IERS provide unique CPO solutions, leaving us with 
several possible choices. Our previous studies under 
operational settings (Soja et  al. 2023) have shown that 
for the prediction of CPO it is beneficial to use the JPL 
solution (Chin et  al. 2009; Ratcliff and Gross 2022) as 
the input since it results in the highest prediction per-
formance. We therefore use JPL CPO data, namely the 
EOP2 series, to train our algorithm. The JPL EOP2 series 
is an inter-technique solution, where the observations of 
various space-geodetic techniques are combined to gen-
erate the EOP series using a Kalman filtering approach 
(Ratcliff and Gross 2022). The CPO in JPL EOP2 series 
start from January 1, 1998, placing a lower bound on the 
available training data. The evaluations are commonly 

(4)MAEk =
1

N

N
∑

i=1

∣

∣µ(k ,i)
− F (k ,i)

∣

∣, k = 1, ..., 30,

done against the official products of IERS (Kiani Shah-
vandi et al. 2022a; Gou et al. 2023; Kiani Shahvandi et al. 
2023) and therefore, we follow this approach here as well. 
We use the IERS 20 C04 series, which is the most recent 
EOP series provided by IERS and consistent with the lat-
est realization of the International Terrestrial Reference 
Frame (ITRF2020; Altamimi et  al. 2023). This is further 
justified considering that IERS 20 C04 is proven to be a 
more consistent EOP series (Kiani Shahvandi et al. 2023) 
than its predecessor IERS 14 C04 (Bizouard et al. 2019), 
implying that the rapid data provided by IERS agree bet-
ter with IERS 20 C04 compared to IERS 14 C04. It should 
be mentioned that JPL and IERS 20 C04 CPO data are 
based on versions 2 and 3 of the International Celestial 
Reference Frame (ICRF2 and ICRF3, respectively; Fey 
et al. 2015; Charlot et al. 2020). However, our proposed 
algorithm can model any potential systematic effect 
stemming from the difference in the ICRF versions.

Using the mentioned data, we have created an opera-
tional framework where the predictions of CPO are 
generated daily since May 20, 2021. We analyze the pre-
dictions in the range May 20, 2021 to May 20, 2023, i.e., 
2 years (731 days) in total. The choice of this prediction 
interval is restricted by the fact that JPL EOP2 series are 
updated daily (i.e., overwritten) and only since May 20, 
2021 have we archived these files. At each prediction 
epoch, we retrain our algorithm from January 1, 1998 
up to the prediction day to take advantage of the most 
recently available CPO data. An alternative approach is 
to train the model only once and then predict in time. 
Even though this approach is slightly faster, it results in 
less accurate predictions (as much as 20%), because the 
recent variations may not be captured by the algorithm.

In Fig. 1 we have shown the JPL EOP2 and IERS 20 C04 
series in the range January 1, 1998 to May 20, 2023, in 
the unit of microarcseconds (µas). The mean and stand-
ard deviation of differences between JPL and IERS 20 
C04 series are approximately 24 µas and 97 µas for dX, 
and -12 µas and 100 µas for dY, respectively. However, as 
mentioned before, our algorithm can cover these differ-
ences to a certain extent because in the training the JPL 
series is mapped to the IERS 20 C04 series. In Fig. 2 we 
have summarized the steps in applying the methodology 
designed in this paper.

Results and discussion
In Fig.  3a we have shown the prediction accuracy of 
NAMs for both dX and dY. The dX predictions are more 
accurate than those of dY: the average accuracy of dX 
across all days is 65 µas, whilst 93 µas for dY. The MAE 
values for dX do not show any particular trend, whereas 
the values for dY show an increasing trend after day 10 
and then reaching a plateau at around day 20 onward. 
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Fig. 1 a JPL EOP2 series from January 1, 1998 to May 20, 2023, used for training NAMs. The shaded blue vertical area shows the evaluation period, 
where the predictions made in this interval are compared with the corresponding values in IERS 20 C04 time series shown in b. The units are µas

Fig. 2 The steps to apply the designed methodology in this paper. First, the JPL CPO series are inserted to the NAMs algorithm. Then, 
the methodology predicts the next values of the time series ( µ ) and assigns a prediction uncertainty ( σ ) to each value. The importance of features 
are also analyzed
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This has been observed in other studies as well (Belda 
et al. 2018; Nastula et al. 2020) and implies that the long-
term predictions of CPO are not accurate and CPO com-
ponents are predictable mainly in short-term horizons. 
This can be due to the nature of the CPO, where both 
the amplitude and period of FCN are variable in time 
(Cui et al. 2018), making it exceedingly difficult to predict 
these irregular variations long ahead.

We also show in Fig. 3b the improvement (e.g. Kiani 
Shahvandi et al. 2023) of our results with respect to the 
predictions provided by IERS (i.e., the rapid data). The 
improvements for dX are much larger than those of dY 
across all forecasting horizons. The average improve-
ments for dX and dY are 57% and 25%, respectively.

To analyze the NAMs predictions more thoroughly, 
we present the prediction errors for all the 30 forecast-
ing horizons and the 2-year-long evaluation interval, 
Fig.  4. These errors are computed by subtracting the 
NAMs predictions from the corresponding final IERS 20 
C04 values. Apart from certain structures especially in 
dX, the errors seem to be random especially in dY: the 
strips that are visible are the errors in the input data at a 

certain epoch that persist almost for a month through-
out the predictions. This is due to the fact that the input 
sequence length is 30 and if there is an error in the input 
series it usually persists until the anomalous value is 
outside of the input sequence (which has the length 30). 
Excluding these values, we can observe that most of these 
difference values are small. By extension, this implies that 
we have been able to adequately capture the main fea-
tures of CPO time series.

In Fig. 5 we visualize the NAMs predictions, together 
with the final IERS 20 C04 and rapid data for an arbitrary 
date (November 20, 2022), to gain a better understand-
ing of the NAMs performance. From this figure it can 
be understood that the predictions made by NAMs fol-
low the final values more accurately compared to rapid 
data, especially in dX. One important observation is that 
the rapid dX data seem to contain a bias with respect to 
the final data and that this bias persists throughout most 
of the predictions (Kiani Shahvandi et  al. 2024). This is 
in fact a major source of error of rapid data provided by 
IERS. The average bias for dX component over all the 
731 predictions range between 116 µas and 123 µas for 

Fig. 3 a Prediction accuracy of NAMs in terms of µas for the dX and dY components separately. b Improvements achieved with respect to the rapid 
data provided by IERS



Page 8 of 15Kiani Shahvandi et al. Earth, Planets and Space           (2024) 76:18 

the first and last prediction horizons. The correspond-
ing values for dY component are -36 µas and -51 µas. 
With NAMs, we have been able to adequately capture 
this bias and thus, significantly improve the prediction 
performance.

We show the overall feature importance analysis in 
Fig. 6. This figure shows the importance of both dX and 
dY on their own prediction, as well as the mutual influ-
ence of dX for the prediction of dY and vice versa. The 
uncertainties of these values are also shown. From this 
figure it can be understood that dX predictions are influ-
enced by previous values of dX by 73%±15% and previ-
ous values of dY by 27%±9%. Similarly dY predictions 
are influenced by previous values of dX by 18%±9% and 
previous values of dY by 82%±17%. As expected, for the 
prediction of dX (dY) the most important features are 
dX (dY), whilst a certain contribution comes from dY 
(dX). This has also been observed in the case of polar 
motion (Kiani Shahvandi et al. 2022a). As mentioned in 

“Methods”, it is also possible to track the variation of fea-
ture importance in time and for different prediction hori-
zons. In Fig. 7 we have shown these variations. It can be 
understood that the pattern of importance of dX for the 
prediction of dY and vice versa are similar to each other 
(although the importance of dX for the prediction of dY 
is smaller in amplitude), and that is also reflected in the 
overall feature importance shown in Fig. 6. Furthermore, 
it is noteworthy that the importance of dX for the pre-
diction of dX itself ( FIdX,dX ) exhibits rapid variations for 
different forecasting horizons over the prediction inter-
val. In contrast, the importance of dY for the prediction 
of dY itself ( FIdY,dY ) is comparatively stable. This can be 
explained by the fact that the IERS 20 C04 observations 
of dX in the prediction interval show a more anomalous 
behaviour compared to those of dY (that is dX shows a 
strong upward trend in this interval, whereas although 
seen also in dY, it is less severe).

Fig. 4 Prediction errors defined as the difference between NAMs prediction and final CPO values in IERS 20 C04 series. The upper and lower panels 
are for dX and dY, respectively. The unit is µas
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Fig. 5 NAMs predictions, rapid, and final IERS 20 C04 data, for November 20, 2022. dX values are shown in a, whilst dY in b. The shaded envelopes 
show the uncertainties

Fig. 6 Overall feature importance for the NAMs predictions, together with the uncertainty assigned to the values (in the form of error bars 
at the level of one standard deviation) computed using Equation (3). FIp,q, p, q = dX, dY represent the importance of feature p for the prediction 
of feature q. The bars display the uncertainties in the values of feature importance
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Fig. 7 Temporal variations of feature importance for the NAMs predictions. FIp,q, p, q = dX, dY represent the importance of feature p 
for the prediction of feature q
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It should be mentioned that some other institutions 
also provide predictions of CPO, including SYstèmes de 
Référence Temps-Espace (SYRTE). To compare the pre-
diction accuracy of NAMs with that of predictions pro-
vided by SYRTE, we first compute the MAE of SYRTE 
predictions with respect to final IERS 20 C04 and sub-
sequently compute the improvement of our predic-
tions with respect to those of SYRTE. In other words, 
we compare the MAE of NAMs with respect to IERS 20 
C04 with the MAE of SYRTE with respect to IERS 20 
C04. We show these improvements in Fig.  8. Here, we 
observe that we can generally improve the dY compo-
nent more compared to the dX component (in contrast 
to comparison with respect to IERS 20 C04 in Fig. 3). The 
average improvements for dX and dY are 15% and 30%, 
respectively.

Finally, it is also possible to add other features to our 
prediction algorithm. In specific, it is suggested that the 
so-called ansatz models might improve the prediction 
performance (Caro et al. 2022). For this purpose, we need 
to extend the methodology to more than two features, 
which is presented in Appendix B. A reasonable anstaz 
can be the harmonic model suggested by IERS (Petit and 
Luzum 2010). This is based on the fact that CPO time 
series is dominated by FCN and fitting a harmonic func-
tion with FCN frequency captures the major variations of 
CPO. Our analyses (Appendix B) show that even though 
this approach is slightly beneficial for the prediction of 
dY component, it degrades the prediction performance 
of dX. Therefore, overall we suggest to rather use only the 
two features dX and dY.

Conclusions
We have focused on the short-term prediction of CPO, 
which is an important problem for various applications in 
space geodesy, such as satellite navigation. For this pur-
pose, we have used NAMs, which belong to the category 
of interpretable neural networks. We have developed 
mathematical formulas for the estimation of prediction 
uncertainty and analysis of feature importance, improv-
ing the intelligibility of machine learning predictions. We 
have applied our algorithm to the JPL EOP2 series and 
evaluated the predictions against the IERS 20 C04 series. 
By comparing the NAMs prediction accuracy with the 
rapid data provided by IERS we significantly improve the 
CPO prediction accuracy, by 57% and 25% for dX and dY 
components, respectively. In addition, our predictions 
are more accurate than those provided by SYRTE by as 
much as 15% and 30% for dX and dY, respectively.

Since prediction of CPO is an important task, the 
EOP prediction community organized the second EOP-
PCC (Śliwińska et al. 2023), in which the prediction per-
formance of various methods was analyzed. Since we 
achieved the highest prediction performance amongst 
all the methods for the prediction of CPO (Wińska et al. 
2023), we were motivated to improve our methodology 
and also provide the CPO prediction on a regular basis 
in an operational setting. Using NAMs, we have achieved 
this goal. Therefore, we encourage other researchers 
in the field to use interpretable machine learning as a 
method for highly accurate and interpretable prediction 
of EOPs. A suitable research direction is to include the 
geophysical data and constraints into the algorithm, as 
suggested by Kiani Shahvandi et al. (2024).

Fig. 8 Improvement of NAMs predictions with respect to the predictions provided by SYRTE. Both NAMs and SYRTE predictions are evaluated 
against the IERS 20 C04
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Appendix A. Derivation of the relation of feature 
importance
The proof of Eq. 3 is given below. The importance in NAMs 
is defined as the absolute value of correlation coefficient ρ 
between y and f (x1) , f (x2) . Based on relation 1, the corre-
lation coefficient is defined as in Equation (A.1a). Compu-
tation of cov

(

y, f (xk)
)

k = 1, 2 and σy based on Equation 
(A.1b)–(A.1c) results in Equation (A.1e), which is equiva-
lent to Equation (3b). Note that the value of σf (xk ) is simi-
lar to σj(xk) taken from Equation (2c)–(2d). Also, the final 
result presented in Equation (3b) is based on the ensemble 
mean and standard deviation of individual FIj,xk . 

Since we defined the feature importance in terms of 
the absolute value of correlation coefficient, we have 
0 ≤ FIj,xk ≤ 1.

Appendix B. Extension of methodology to more 
than two features
Here we extend the methodology presented in the main 
text to an arbitrary number of features. Assuming s features 
x1,..., xs (where xi ∈ R

n, i = 1, ..., s and n is the length of 
input and output sequences), then the equivalent definition 
of NAMs in Equation (1) is given as in Equation (B.1).

The extension of Equation (2) can be simply given as the 
following relations in Equation (B.2). 

(A.1a)ρy,f (xk ) =
cov

(

y, f (xk)
)

σyσf (xk )
, k = 1, 2

(A.1b)

cov(y, f (xk)) = cov(f (x1)+ f (x2), f (xk))

= σ 2
j (xk)+ cov

(

µj(x1),µj(x2)

)

(A.1c)

σy =
√

cov(f (x1)+ f (x2), f (x1)+ f (x2))

=

√

σ 2
j (x1)+ σ 2

j (x2)+ 2cov(µj(x1),µj(x2))

(A.1d)σf (xk ) = σj(xk)

(A.1e)FIj,xk =

∣

∣

∣

∣

ρy,f (xk )

∣

∣

∣

∣

=

∣

∣

∣

∣

σ 2
j (xk)+ cov

(

µj(x1),µj(x2)

)

σj(xk)

√

σ 2
j (x1)+ σ 2

j (x2)+ 2cov

(

µj(x1),µj(x2)

)

∣

∣

∣

∣

(B.1)y =

s
∑

k=1

f (xk)

To test whether adding other features would help in 
improving the prediction performance, we perform the 
same analysis in the main text but with the difference 

that in addition to dX and dY as the input features, 
we also add the following two features: cos(σf t) and 
sin(σf t) where σf = 0.014578 is the approximate value 
of frequency of FCN and t is time. This is based on the 
model recommended in IERS conventions (Petit and 
Luzum 2010) for the variations of CPO.

Using the mentioned four features, we train our 
model and compare the predictions with the obser-
vations. The MAE of these predictions is shown in 
Fig.  9. Comparing these results with those in Fig.  3, 
we observe that whilst the addition of the two features 
cos(σf t) and sin(σf t) has slightly improved the predic-
tion performance of dY, that of dX has been signifi-
cantly reduced. We conclude that the addition of more 
features does not necessarily improve the prediction 
performance of NAMs. One fundamental reason is that 
the higher the number of input features, the larger the 
number of model parameters and therefore, the more 
difficult to properly train the model. In fact, this is one 

(B.2a)
µj(xk) = LSTMµxk

(Wµxk
,j , xk), k = 1, ..., s

(B.2b)
σ 2
j (xk) = log(1+ exp(LSTMσxk

(Wσxk
,j , xk)))+ ε

(B.2c)µj =

s
∑

k=1

µj(xk)

(B.2d)

σ 2
j =

s
∑

k=1

σ 2
j (xk)+ 2

s
∑

p=1

s
∑

q>p

cov

(

µj(xp),µj(xq)

)

(B.2e)ℓj =
1

2
log σ 2

j +
1

2

(F − µj)
2

σ 2
j

→ minimize

(B.2f )µ =
1

M

M
∑

j=1

µj

(B.2g)σ 2
= −µ2

+
1

M

M
∑

j=1

[

σ 2
j + µ2

j

]



Page 13 of 15Kiani Shahvandi et al. Earth, Planets and Space           (2024) 76:18  

of the disadvantages of NAMs. Finally, it should be 
mentioned that even by trying to adapt the value of σf  
we still could not improve the prediction performance. 
Another possibility is to use the temporal variation of 
phase and amplitude of FCN as the input features (c.f. 
Belda et al. 2016, 2017). Using these as additional fea-
tures, we can improve the prediction accuracy of both 
dX and dY, maximum by as much as 8%. However, 
these improvements are small and the computational 
cost of adding additional features outweighs the benefit 
of improving the prediction accuracy.

Finally, we show the architecture of NAMs for s num-
ber of input features, with input sequence length n, and 
number of hidden neurons H. A short description of 
mathematical formulas of LSTM is given in Gou et  al. 
(2023). Based on these formulas, we can present Table 1, 
where the models and the number of parameters of 
them are represented. It can be understood that for two 
features and the model architecture used in this study 
( n = 30 , H = 10 ), NAMs have 7880 parameters. The 

similar number for four features is 15760. Even though 
machine learning algorithms can be highly parameter-
ized, the large number of parameters used in NAMs 
imply that for a proper training, large number of data 
samples are required. We therefore expect that over time, 
the prediction accuracy of NAMs would increase, since 
the length of CPO time series increases and we would 
have more data for training.
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Model Number of parameters

µj(xk) 4H2
+ 5nH + 4H + n

σ 2
j (xk) 4H2

+ 5nH + 4H + n

µj s(4H2
+ 5nH + 4H + n)

σ 2
j s(4H2

+ 5nH + 4H + n)
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