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Abstract 

Given the recent developments in machine-learning technology, its application has rapidly progressed in various 
fields of earthquake seismology, achieving great success. Here, we review the recent advances, focusing on catalog 
development, seismicity analysis, ground-motion prediction, and crustal deformation analysis. First, we explore studies 
on the development of earthquake catalogs, including their elemental processes such as event detection/classifica-
tion, arrival time picking, similar waveform searching, focal mechanism analysis, and paleoseismic record analysis. We 
then introduce studies related to earthquake risk evaluation and seismicity analysis. Additionally, we review studies 
on ground-motion prediction, which are categorized into four groups depending on whether the output is ground-
motion intensity or ground-motion time series and the input is features (individual measurable properties) or time 
series. We discuss the effect of imbalanced ground-motion data on machine-learning models and the approaches 
taken to address the problem. Finally, we summarize the analysis of geodetic data related to crustal deformation, 
focusing on clustering analysis and detection of geodetic signals caused by seismic/aseismic phenomena.
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Introduction
Recently, machine learning (ML) technology, including 
deep learning (DL), has made remarkable progress in 
various scientific fields, including earthquake seismology, 
producing vast research findings. Here, we review the 
applications of ML in several fields of earthquake seis-
mology and discuss the strengths and difficulties of using 
ML. We focus on ML applications in earthquake catalog 
development, seismicity analysis, ground-motion predic-
tion, and geodetic data related to crustal deformation. 
Figure  1 summarizes the topics reviewed in this paper. 
Notably, our focus is on exploring the applications of ML 
in individual fields rather than providing a comprehen-
sive review of ML applications in the entire field of study. 
Excellent review articles have been provided for the read-
er’s reference on the recent applications of ML in solid 
earth geosciences by Bergen et al. (2019), seismology by 
Kong et al. (2019) and Mousavi and Beroza (2022, 2023), 
microseismic monitoring with small signals by Li (2021) 
and Anikiev et al. (2023), and analysis of Global Naviga-
tion Satellite System (GNSS) data by Siemuri et al. (2022).

Application in earthquake catalog development
The technique of detecting seismic waveforms, determin-
ing hypocenters, and cataloging them from seismogram 
records is an area driving the use of ML in seismology. 
This section reviews the recent developments in ML 
applications related to earthquake cataloging, focus-
ing on improving individual tasks in its pipeline, similar 

waveform searching, focal mechanism analysis, and pale-
oseismic record analysis.

Importance of improving earthquake cataloging methods 
and contribution of machine learning techniques
Considering that the earthquake size distribution follows 
a power law, improving event detectability drastically 
increases the number of analyzable events, enhancing 
the spatiotemporal resolution in seismicity analysis. 
Some studies have emphasized the role of small events 
in the earthquake-generation process, highlighting the 
importance of making complete earthquake catalogs. 
For example, Mignan (2014) conducted a meta-analysis 
of 37 foreshock studies and found that interpretation 
of foreshock activity depends on the completeness 
magnitude of the used earthquake catalogs. Trugman 
and Ross (2019) showed that precursory seismicity is 
more ubiquitous than previously understood in southern 
California using a highly complete catalog. Naoi et  al. 
(2015) reported that on-fault seismicity comprises 
only very small (M < –  2) events in a gold mine. The 
technology to produce high-quality seismic catalogs from 
seismic waveforms contributes to achieving a smaller 
completeness magnitude, as well as improving station 
density and seismometer sensitivity.

To detect small seismic events with waveforms buried 
in noise, the template matching technique (Gibbons and 
Ringdal 2006; Shelly et  al. 2007; Peng and Zhao 2009), 
whereby additional events with waveforms similar to 
template waveforms are explored, has frequently been 
used. This technique often reduces the completeness 
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magnitude by approximately 1, resulting in an increase 
in the number of detected events by an order of 
magnitude (Ross et  al. 2019a). Although this approach 
works well, its application is usually limited to short-
period data (e.g., preceding large earthquakes) owing to 
the high computing costs. Parallel computation using 
many Graphics Processing Units (GPUs) enables the 

application of this method to a larger dataset (Ross et al. 
2019a); however, such an environment is not readily 
available, resulting in the rarity of such cases.

The application of ML techniques to efficiently 
develop high-quality earthquake catalogs has rapidly 
progressed since approximately 2018. The application of 
DL to event detection and arrival time reading problems 

Fig. 1  Topics reviewed in this study
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is driving this study area, and its performance has 
continuously improved by adopting new architectures 
and modules inspired by rapid advancements in the ML 
field. ML provides more accurate and noise-resistant 
auto-processing methods than conventional automatic 
processing, resulting in highly complete earthquake 
catalogs. Similar to template matching, the recent 
ML-based method often increases the number of events 
in catalogs by tenfold compared with conventional 
approaches (Tan et  al. 2021; Ma and Chen 2022) with 
a much lower computation cost (Perol et  al. 2018). By 
benefiting from the developments in this field, many 
studies exploring seismicity with high resolution have 
been published (Liu et  al. 2020; Park et  al. 2020; Ross 
et al. 2020; Wang et al. 2020a; Baker et al. 2021; Li et al. 
2021; Jiang et  al. 2022; Gong et  al. 2022a; Chen et  al. 
2022a). This improvement in catalog quality is expected 
to improve earthquake forecasts based on seismicity 
models (Mancini et al. 2022).

The models trained on large data sets in some of these 
studies are publicly available (Ross et  al. 2018b; Zhu 
and Beroza 2019; Mousavi et  al. 2020), making it easy 
to benefit from this development. These models are 
versatile (Cianetti et al. 2021) and can be applied to many 
datasets. Even when the scale of the target earthquakes 
or the observation frequency bands differs significantly 
from the training data, transfer learning and fine-tuning 
(Pan and Yang 2010; Bozinovski 2020), in which an ML 
model trained on one task is recalibrated for a related 
task, helps analyze data (Titos et  al. 2020; Chai et  al. 
2020; Lara et  al. 2021; Lapins et  al. 2021; Kim et  al. 
2023), likely due to the self-similarity of earthquakes. 
These techniques also enable the application of ML to 
project data where a large amount of training data is 
difficult to prepare. The application of ML has also been 
reported in cataloging development problems related 
to acoustic emissions (AEs) in laboratories (Trugman 
et al. 2020; Li et al. 2022c). Many studies have published 
ML-based packages that handle the entire catalog 
development procedure throughout the event detection 
from continuous waveform records, arrival time picking, 
phase associations, and hypocenter locations (Walter 
et al. 2021; Zhu et al. 2022c, a; Retailleau et al. 2022; Shi 
et  al. 2022; Zhang et  al. 2022c; Dokht et  al. 2022). An 
environment to use ML for seismicity analysis is being 
developed as a basic technology in seismology.

Improvement of individual tasks in cataloging pipelines
Developing an earthquake catalog from seismic wave-
form data is typically divided into the following steps: (1) 
event detection from continuous waveform record; (2) 
arrival time reading; (3) phase association; and (4) hypo-
center determination (Fig.  2). This is simple modeling, 

and each process can be skipped or integrated. For exam-
ple, event detection is often skipped, and phase picking 
is performed directly on continuous data. Moreover, to 
improve performance, a denoising phase (Tibi et al. 2022) 
can be added before the detection process, and a qual-
ity control phase (Tamaribuchi et al. 2021) can be added 
after the hypocenter determination.

Application of ML techniques has been attempted in 
most of these processes: their performance significantly 
outperforms conventional methods. Several models 
trained on regional or global datasets are publicly 
available, especially for event detection and arrival 
time picking problems. These performances have 
been systematically compared (Cianetti et  al. 2021; 
Münchmeyer et  al. 2022; García et  al. 2022), and some 
studies opened datasets for benchmarking the model 
performance (Mousavi et  al. 2019a; Magrini et  al. 2020; 
Michelini et  al. 2021; Woollam et  al. 2022). Mai and 
Audet (2022) developed software to generate labeled 
datasets, while Woollam et  al. (2022) developed a 
common application programming interface to access 
various ML models in those tasks.

Event detection/classification and arrival time picking
Certain algorithms, including the ratio between short-
term average (STA) and long-term average (LTA) (Allen 
1978), have been conventionally used to extract transient 
signals from a continuous seismic record. The ML 
technique solves this problem with higher performance, 
and the application can be expanded to extract many 
types of signals.

The event detection task can be treated as a problem of 
classifying cutout seismic waveforms into two (typically 

Fig. 2  Typical pipeline for earthquake catalog development
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earthquakes and noises) or more categories. This issue 
has been addressed by various ML algorithms, including 
support vector machine, decision tree, logistic regression, 
and neural network, including DL (Reynen and Audet 
2017; Meier et  al. 2019; Tang et  al. 2020; Albert and 
Linville 2020; Kim et  al. 2021b; Chakraborty et  al. 
2022; Murti et  al. 2022). The target of such classifiers 
can be expanded to various phenomena by preparing 
appropriate training data. For example, it can be used to 
classify/identify surface waves (Chai et al. 2022), volcanic 
earthquakes (Bueno Rodriguez et  al. 2022; Canário 
et al. 2020; Lara et al. 2021), moonquakes (Civilini et al. 
2021), low-frequency earthquakes (Nakano et  al. 2019; 
Rouet-Leduc et  al. 2020; Thomas et  al. 2021; Takahashi 
et  al. 2021; Chen et  al. 2023), and mining-induced 
earthquakes/bastings (Linville et  al. 2019; Tibi et  al. 
2019; Peng et al. 2021; Wang et al. 2023b). Applications 
in distributed acoustic sensing, which require efficient 
processing of large amounts of data, have also been 
reported (Hernandez et al. 2022). Researchers have used 
simple Convolutional Neural Network (CNN) models 
(Zhang et al. 2020a; Majstorović et al. 2021) and the latest 
architecture/modules, such as Recurrent Neural Network 
(RNN) (Mousavi et al. 2019c), attention (Hou et al. 2023), 
transformer (Mousavi et  al. 2020), multi-feature fusion 
networks (Kim et  al. 2021a), graph-partitioning based 
CNN (Yano et al. 2021), Capsule Neural Network (Saad 
and Chen 2022), Residual Neural Network (ResNet) (Li 
et al. 2022b) and inceptions (Jia et al. 2022), contributing 
to improved performance. Moreover, some studies have 
aimed to enhance the interpretability of DL, often treated 
as black boxes (Kong et al. 2022; Majstorović et al. 2022).

The form of the input/output data of such classifiers 
can be designed flexibly. For example, one may design a 
classifier to output a scalar value corresponding to the 
classification result for a cutout waveform (Zhang et  al. 
2020a). Applying this approach to moving windows 
(Ross et  al. 2018b; Dokht et  al. 2019; Zhu et  al. 2019a) 
enables the generation of a time series for the probability 
of a seismic signal. An architecture that outputs vectors 
with the same number of samples as input waveforms 
(Mousavi et  al. 2020) allows for determining each data 
point’s probability. This likely offers advantages when 
target events have widely varying durations or when 
many events occur frequently in a short period. Given 
that DL techniques have been developed for image 
processing, many studies have used two-dimensional 
data with time–frequency representation as input data 
(Dokht et al. 2019; Mousavi et al. 2019c; Lara et al. 2021; 
Saad et  al. 2021). Nevertheless, one-dimensional CNNs 
have also been used frequently owing to their simple 
pre-processing of waveform data and low computational 
cost (Nakano and Sugiyama 2022). In addition to the 

simplest case using a single-channel waveform at a single 
station, multi-channel or multi-station waveforms can 
easily be inputted into a model. When using a single-
channel waveform, a large amount of training data can 
be prepared more easily, and a model independent from 
specific observation settings can be obtained, resulting 
in highly versatile models. When using multi-channel 
or multi-station data as input, models will likely achieve 
high detectability and robustness for local noises (Yang 
et al. 2021a; Yano et al. 2021). Another way to use multi-
station data for event detection is to simultaneously 
estimate hypocenter locations with event detection 
by creating a classifier based on coherence images of 
characteristic functions estimated from waveforms 
(Mosher and Audet 2020). This approach is closely 
related to the topics discussed in the “Earthquake 
location” subsection.

Preparing training data is one of the most important 
tasks in developing a classifier using supervised learning. 
For example, when performing binary classification of 
earthquake and noise, it is necessary to prepare training 
data for both classes. Compared with preparing seismic 
event datasets, for which a vast amount of analysis results 
(including manual processing) has been accumulated, 
preparing noise waveform datasets with a wide variety 
of properties may be more difficult. A potential approach 
to solve this problem is waveform classification using 
unsupervised learning, which can be generalized as a 
clustering problem for seismometer records. Early studies 
in this field attempted clustering based on human-
selected features with sufficiently reduced dimensions 
before inputting into ML models (Chamarczuk et  al. 
2020; Johnson et  al. 2020). Recently, more effective 
clustering has been attempted by automatically extracting 
features directly from unprocessed datasets, such as 
seismic waveforms or their spectrograms (Seydoux 
et  al. 2020; Yin et  al. 2022b). This approach is used for 
various purposes, including the detection/classification 
of earthquakes (Seydoux et  al. 2020; Steinmann et  al. 
2022a), quarry blasts and rockfalls (Hammer et al. 2013), 
volcanic earthquakes/tremors (Esposito et  al. 2008; 
Unglert and Jellinek 2017; Soubestre et  al. 2018; Ren 
et al. 2020; Ida et al. 2022), surface freezing and thawing 
(Steinmann et al. 2022b), reflection wave (Ali et al. 2022), 
and seismic waves radiated in glaciological processes 
(Jenkins et al. 2021).

Incidentally, in the initial process of earthquake catalog 
development, the analyst typically identifies a window 
involving a seismic waveform and then measures arrival 
time in a cutout waveform. However, this event detection 
phase can be skipped, resulting in the arrival time 
measurements being performed directly on the entire 
continuous waveforms (Park et al. 2020; Heck et al. 2022; 
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Retailleau et  al. 2023). The fraction of false detections 
of arrival time measurements and the efficiency of 
the subsequent phase association calculations likely 
determine which of the two approaches is effective.

Automatic arrival-time reading, for which the method 
using the autoregression model and Akaike Information 
Criteria (Takanami and Kitagawa 1988) is famous, 
could not achieve the accuracy of manual processing 
until the advent of methods based on supervised DL, 
i.e., neural phase pickers (Park et  al. 2023), especially 
for S-wave arrival times. Although the specific problem 
of “prediction inconsistency” has been reported (Park 
et  al. 2023), DL-based pickers outperform traditional 
algorithms and achieve picking accuracies similar to 
those of skilled analysts (Mousavi and Beroza 2023), and 
the published models have been used in many studies. 
Similar to event detection/classification problems, state-
of-the-art modules and architectures, such as RNN 
(Zhou et  al. 2019), attention (Liao et  al. 2021, 2022a; Li 
et  al. 2022a), transformer (Mousavi et  al. 2020), and 
edge convolutional module (Feng et  al. 2022b), were 
continuously incorporated into the models to improve 
their performance. In this approach, a model takes 
seismic waveforms as inputs and outputs the arrival 
times as scalar values (Ross et al. 2018a) or a time series 
of probability values with a peak at a picked arrival time 
(Zhu and Beroza 2019; Mousavi et  al. 2020). Xiao et  al. 
(2021) showed that the performance of such a model 
for low SN waveforms can be improved by learning the 
waveform similarities. Although most previous studies 
on arrival time reading problems were conducted on 
body waves, applications have begun to read subsequent 
waves, such as reflected waves, to use structure imaging 
(Ding et al. 2022; Kato 2023).

Similar to the event detection problem, arrival time 
reading models based on DL allow a flexible input/output 
data format. While some studies have used single-station 
waveforms (Ross et  al. 2018a; Zhu and Beroza 2019; 
Woollam et al. 2019; Wang et al. 2019a; Zheng et al. 2020; 
Mousavi et al. 2020; Liao et al. 2021; Tokuda and Nagao 
2023), others have applied multiple station records (Zhu 
et al. 2022c; Li et al. 2022c; Chen and Li 2022; Feng et al. 
2022b; Sun et  al. 2023). As both event detection and 
phase picking use seismic waveform as input data, they 
can be processed simultaneously in a single model using 
multitask learning, which has multiple outputs, including 
event and arrival time probabilities (Liao et  al. 2022a; 
Mousavi et al. 2020).

A common challenge in event detection and arrival 
time reading based on supervised learning is the 
insufficient training data for large events, which 
naturally results from the power-law size distribution 
of earthquakes. When training data are generated from 

past observation data, attention should be paid to the 
performance for unknown events, which have locations, 
sizes, and focal mechanisms not occurring previously. 
Data augmentation can complement this problem, and 
effective augmentation methods were investigated by 
considering the characteristics of seismic data (Zhu et al. 
2020). Zhang et al. (2021b) trained a phase-picking model 
on an augmented dataset based on only ten hydraulically 
induced events, demonstrating that the resultant model 
can create event catalogs from seismic records in 
different stages and projects. Additionally, Generative 
Adversarial Networks (GANs; Goodfellow et  al. 2014) 
were attempted to generate training data (Li et al. 2020b; 
Wang et al. 2021) and perform feature extraction (Li et al. 
2018). Marano et al. (2023) reviewed the use of GANs in 
seismology, including data augmentation.

Phase association
When all arrival time candidates in a specific time 
range are used to determine the hypocenters, the 
location accuracy often reduces significantly due to 
misidentification of the arrival time (false positives). 
This problem can be prevented in the location process 
by removing candidates with large residuals in iterations 
(Waldhauser and Ellsworth 2000; Naoi et  al. 2018). For 
efficient analysis, some studies exclude false positives 
by introducing an additional process called “phase 
association”, during which arrival time candidates are 
associated with a single earthquake. If the association is 
computationally efficient and accurate, the existence of 
many false positives is not problematic in the subsequent 
processing. This allows analysts to prefer “recall” to 
“precision” in the arrival time reading process, possibly 
resulting in a better catalog with a smaller number of 
missed events. Therefore, the performance of the phase 
association process is important in the earthquake 
cataloging process.

A popular association method that works well is 
calculating the theoretical arrival times for a given 
hypocenter and searching for the hypocenter with 
many compatible arrival time candidates using a grid 
search (Draelos et al. 2015). Recently, the REAL package 
(Zhang et  al. 2019) efficiently processed this task and 
has, thus, been frequently used. ML-based methods 
have also been developed to address this issue. For 
example, Yu and Wang (2022) used a neural network to 
solve the grid search problem efficiently. The association 
methods based on RNN (Ross et  al. 2019b), Graph 
Neural Networks (McBrearty and Beroza 2023), Bayesian 
Gaussian mixture models (Zhu et al. 2022b), and Physics-
Informed Neural Networks (PINNs; Ross et  al. 2023) 
have also been proposed. Methods based on binary 
classification of waveform pairs (McBrearty et  al. 2019) 
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and deep metric learning (Dickey et al. 2020) have been 
attempted to directly determine from seismic waveforms 
whether they are generated by the same earthquake.

Without the phase association process, the hypocenters 
can be directly determined by migrating/scanning the 
time series of arrival time probabilities, although the 
computational cost is high. This topic is discussed in the 
next subsection.

Earthquake location
After the arrival times of many stations are obtained 
for an earthquake, the hypocenter of the event can be 
inversely solved with high accuracy and small computing 
cost, as is generally performed in seismology (Geiger 
1912). Some studies have to address this “travel time-
based” location problem using ML techniques, including 
random forest (Saad et  al. 2022; Chen et  al. 2022c) and 
fully connected neural networks (Anikiev et  al. 2022). 
These approaches are possibly effective for earthquake 
early warning (EEW), where hypocenters must be 
roughly estimated using a small number of arrival time 
candidates as early as possible (Saad et al. 2022).

Another approach to hypocenter determination is 
the “waveform-based” location method, which does not 
require phase picking and identifies the hypocenter based 
on migration and stacking of waveforms or characteristic 
functions calculated from waveforms at many stations. 
Although this approach involves high computation 
costs, it contributes to detecting small earthquakes with 
waveforms buried in noise (Li et  al. 2020a). Compared 
with characteristic functions, such as STA/LTA (Grigoli 
et  al. 2013) or kurtosis (Langet et  al. 2014) time series 
used in previous studies, the probability trace estimated 
using a DL phase picker (Liao et  al. 2022b) likely 
significantly reduces the false positive rate. This approach 
is often adopted in open packages that handle the entire 
cataloging process from continuous seismic records to 
hypocenter locations (Zhu et  al. 2022c; Shi et  al. 2022). 
Zhu et  al. (2022c) incorporated this approach into a 
single DL model that takes the seismic waveform as input 
and outputs a hypocenter (end-to-end processing) to 
minimize discarded information during the cataloging 
procedure. Other studies have applied ML techniques 
to determine hypocenters from coherence/migration 
images. Zhang et  al. (2022d) proposed a DL-based 
approach that used diffraction stacking images of seismic 
waveforms and solved a regression problem to determine 
the hypocenter from these images. Wu et  al. (2019) 
proposed a method to determine hypocenters using 
deep reinforcement learning by reconstructing a three-
dimensional energy field constructed from observed 
waveforms.

As described above, in the hypocenter determination 
problem, the optimal hypocenter is generally searched 
using arrival times or related information (e.g., 
characteristic function) extracted from the waveforms 
at multiple stations. However, the later phases of the 
seismic waveform contain additional information on 
Green’s function between the hypocenter and station. If 
such information could be used effectively, hypocenters 
can be determined based even on single-station data. As 
a simple and conventional approach, a hypocenter can 
be roughly determined by estimating the direction of the 
ray path that can be estimated from the P-wave-particle 
motion and hypocentral distance that can be estimated 
from the arrival time difference between different phases 
(e.g., P and S phases) (Frohlich and Pulliam 1999). ML 
approaches are expected to improve the performance 
using information discarded in the conventional method. 
Gutierrez et al. (2019) estimated the azimuth direction of 
incident seismic waves using support vector machines. 
Mousavi and Beroza (2020) and Ristea and Radoi (2022) 
estimated hypocenter locations or related parameters 
using DL from a single station waveform. Perol et  al. 
(2018) proposed ConvNetQuake, which roughly 
determines hypocenters from a single station waveform 
by solving the classification task for the divided analysis 
regions using DL; this method has been improved in 
subsequent studies (Lomax et al. 2019; Tous et al. 2020; 
Bai and Tahmasebi 2021).

As a natural consequence of the above discussion, the 
ideal way to determine the hypocenter is to use as much 
information as possible from the full seismic waveforms 
at multiple stations. To achieve this, Kriegerowski et  al. 
(2019), Zhang et  al. (2020b), Shen and Shen (2021), 
and Münchmeyer et  al. (2021) developed DL models to 
determine source parameters from seismic waveforms 
at multiple channels using the waveforms of the past 
events as training data. The introduction of a graph-
based approach improved the performance of these tasks 
(van den Ende and Ampuero 2020; Zhang et  al. 2022e). 
Piras et al. (2022) used a Bayesian approach to estimate 
a hypocenter from the observed spectra of seismic 
waveforms. They used a neural network to map spectral-
based features from the hypocenter for the posterior 
distribution sampling; this is prohibitively expensive 
using conventional methods, especially under a three-
dimensional heterogeneous density–velocity model. 
Although these methods work well, observation data are 
generally incomplete, limiting the effectiveness for events 
with hypocenter locations and focal mechanisms not 
included in the training data. To overcome this challenge, 
some studies have attempted training based on synthetic 
waveforms (Wang et  al. 2022c; Sugiyama et  al. 2021; 
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Wamriew et al. 2022; Vinard et al. 2022), including data 
generated with semi-supervised GAN (Feng et al. 2022a).

To address the hypocenter determination problem, 
attempts have been made to use PINNs, which 
incorporate theoretical constraints, including physical 
laws in loss functions (Smith et al. 2021; Izzatullah et al. 
2022). This additional constraint is advantageous when 
analyzing unknown data (not included in the training 
data). PINNs are trained to solve supervised learning 
tasks while satisfying any physical law described by 
partial differential equations (PDEs) by embedding the 
PDEs into the loss function of a neural network using 
automatic differentiation (Raissi et al. 2019; Karniadakis 
et al. 2021). PINNs can represent continuous solutions of 
PDE without discretization and can be applied to various 
types of forward and inverse problems (e.g., seismic 
tomography) (Chen et  al. 2022b; Agata et  al. 2023); 
consequently, they have received significant attention in 
science, including geophysics.

Quality control
For the hypocenters obtained using the pipelines 
described above, the solution quality is generally 
controlled by thresholds for some parameters, including 
the arrival time residuals in the inversion, to ensure that 
the false positive rate is sufficiently small. Ideally, this 
strategy can separate correct and incorrect solutions; 
however, it usually results in many false positives 
and false negatives. The tradeoff between the false 
positive rate and the number of solutions is possibly 
an obstacle to developing a high-quality catalog. 
Nonlinear classification using ML can potentially solve 
this problem. For example, Tamaribuchi et  al. (2021, 
2023) used ensemble learning to exclude false positives 
from hypocenters obtained by automatic processing 
routinely operated by the Japan Meteorological Agency. 
Tamaribuchi et  al. (2023) also used the CNN model by 
Ross et  al. (2018b) to screen automatic phase-picking 
results. Beaucé et al. (2019) and Herrmann et al. (2019) 
used ML to remove false positives from energy-based 
seismic detection results and event candidates detected 
by matched filter analysis, respectively.

Similar waveform searching
As mentioned previously, cross-correlation-
based techniques such as template matching and 
autocorrelation methods, which explore similar 
waveforms in continuous seismic records, increase 
the number of available events (Gibbons and Ringdal 
2006; Shelly et  al. 2007; Peng and Zhao 2009; Kato 
et  al. 2012; Chamberlain et  al. 2018). These methods 
effectively extract small signals buried in noise and are 
vital in the analysis of seismic activity. However, these 

methods require cross-correlation calculation among 
all combinations of the analyzed event waveforms, 
resulting in high computational costs. For example, the 
computational cost of autocorrelation analysis, in which 
brute-force calculations are performed on continuous 
waveform records, is O(N2), limiting the analyzable 
period. Even for the template-matching problem, 
large-scale dataset requires the parallel computation of 
many GPUs (Ross et al. 2019a). Furthermore, template 
matching using synthetic or empirical synthetic 
waveforms (Chamberlain and Townend 2018; Ide 2021) 
potentially contributes to better catalog development. 
Hence, an efficient similar waveform search is an 
important technique in catalog development.

The ML technique potentially reduces the 
computational cost in similar waveform searches. For 
example, Skoumal et al. (2016) proposed the Repeating 
Signal Detector method, which detects seismic signals 
through unsupervised learning and enables template 
matching without template preparation before applying 
the method or brute force calculation. Ganter et  al. 
(2018) proposed a similar waveform search based 
on ML to generate templates satisfying the alternate 
null hypothesis, which incorporates the possibility 
of false positives. Kumar et  al. (2022) suggested that 
using the dynamic time warping technique instead of 
cross-correlations possibly improves the performance 
of similar waveform searching, including template 
matching analysis and unsupervised waveform 
clustering.

As an efficient similarity search technique, approximate 
nearest neighbor searches have been used in the field 
of image and speech recognition and have several 
applications in seismology (Yoon et  al. 2015; Tibi et  al. 
2017). For example, Yoon et al. (2015) applied the Locally 
Sensitive Hashing (LSH) technique based on random 
substitution to seismic waveforms and developed a 
method called FAST that can efficiently search for similar 
waveforms by hashing the binary fingerprint generated 
from the waveform spectrogram. Using this method, 
Yoon et  al. (2015) performed a brute-force calculation 
for a single channel, six months of waveform records. 
Scotto di Uccio et  al. (2022) reported that a similar 
waveform search using FAST potentially complements 
events not detected using DL-based methods, although 
they achieved the best performance using a template-
matching technique based on a template catalog 
developed using a DL-based method. The FAST 
algorithm has been used for induced earthquakes due 
to hydraulic fracturing and wastewater injection (Yoon 
et al. 2017), induced earthquakes in gas fields (Scala et al. 
2022), swarms (Festa et al. 2021), foreshocks (Yoon et al. 
2019b), and volcano seismicity (Garza-Girón et al. 2023).
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The LSH-based method is far more scalable than 
waveform correlation methods. Additionally, the FAST 
performance has been enhanced by avoiding false 
positives using multiple channel/station results (Bergen 
and Beroza 2018), improving fingerprint (Bergen et  al. 
2016; Bergen and Beroza 2019) and hash table treatment 
through careful tunings, such as partitioning (Rong et al. 
2018). Consequently, Yoon et  al. (2019a) successfully 
applied this method for 11 stations, 27 channels, and 
6–11  years of continuously recorded seismic data. 
However, the computational cost to process large-scale 
data remains high, limiting the size of the analyzable 
dataset. The DL-based method, which is beginning to 
be used in the field of image and audio recognition, is 
a potential solution to reduce the computational cost. 
Naoi and Hirano (2024) developed a method to convert 
a seismic waveform into a 64-bit binary code and applied 
it to 16-channel, 30-min 10 MS/s continuous AE records 
(the number of data points in each channel corresponds 
to 5.8-year continuous waveform records of 100  Hz 
sampling typically adopted in seismic observation) 
obtained from laboratory experiments. They showed 
that the hashing-based template matching and 
autocorrelation problems of these datasets can be solved 
in a realistic computation time.

In summary, besides improving processing pipelines 
in earthquake cataloging, ML enables efficient similar 
waveform searches that provide additional information, 
making it feasible to apply these methods to large-scale 
data, for which the computational cost has been an 
obstacle.

Focal mechanism analysis
Focal mechanism analysis requires polarities of P-wave 
first motions, and moment tensor analysis requires 
amplitude information or waveform inversion. The 
necessity of manual processing and the insufficient 
accuracy of techniques that automatically obtain these 
data have impeded the analysis of many small events.

The task of polarity reading for the P-wave first 
motions can most simply be treated as a binary 
classification problem (Ross et  al. 2018a) that can be 
readily solved with DL. Similar to the arrival time reading 
problem, this approach exhibits high performance 
and markedly increases available focal mechanism 
solutions. For example, Uchide (2020), Cheng et  al. 
(2023), and Tanaka et  al. (2021) used DL to read first 
motion polarities of seismic waveforms or AE data in 
Japan, southern California, and laboratory hydraulic 
fracturing experiments, respectively, obtaining tens 
to hundreds of thousands of focal mechanisms. Naoi 
et  al. (2022) automatically read the timing of the initial 
maximum amplitude using DL; the obtained amplitudes 

were used to solve moment tensors for laboratory AEs. 
In these analyses, waveforms from a single station were 
typically used as input data to a DL network; additionally, 
multi-station approaches have been explored (Tian et al. 
2020). Although it is not as active as the problem of 
arrival time reading, the generalizability of these models 
has also been studied (Hara et  al. 2019). Furthermore, 
unsupervised clustering using DL can identify waveforms 
with different initial polarities without training data 
(Mousavi et  al. 2019b). The increased number of 
available focal mechanisms improves spatiotemporal 
resolution for mechanism-based analyses, such as stress 
tensor inversion (Uchide et  al. 2022; Qin et  al. 2022b). 
ML is also helpful in interpreting such a large number 
of solutions. Kubo et  al. (2023) applied nonlinear 
graph-based dimensionality reduction to a large-
scale dataset of moment tensor solutions, objectively 
obtaining a comprehensive image of the spatiotemporal 
characteristics of seismicity.

P-wave first motion polarities should show the same 
pattern for events with similar hypocenters and focal 
mechanisms. Using this property, Skoumal et al. (2023b) 
improved the number and accuracy of focal mechanism 
solutions employing ML to complement P-wave first 
motion data at stations not used in the mechanism 
analysis due to the insufficient signal-to-noise ratio. The 
polarity of such stations can also be complemented using 
the waveform correlation technique (Shelly et  al. 2016). 
By combining these methods, Skoumal et  al. (2023a) 
successfully estimated many focal mechanisms for events 
in the southeastern San Francisco Bay Area.

Regarding ML applications in focal mechanism 
analysis, in addition to improving the polarity reading 
and amplitude estimation, some studies have attempted 
to rapidly estimate the focal mechanisms for EEW (Kuang 
et  al. 2021; Steinberg et  al. 2021; Monterrubio-Velasco 
et al. 2022). Physics-Guided Neural Networks, which use 
ML for inverse analysis of the constrained solution space 
of the focal mechanisms, have been investigated (Zhang 
et al. 2021a). Future applications are expected to include 
other physics-constrained neural networks, such as 
PINNs and Physics-Encoded Neural Networks (Faroughi 
et al. 2022).

Paleoseismic record analysis
ML-based techniques for processing digitized waveform 
data have been rapidly developed. However, such digital 
records are available only for the last quarter of the period 
since the beginning of seismometer observations (Wang 
et al. 2019b). Past seismic activity should be investigated 
using analog records to assess the history of long-period 
seismic cycles. Although there are few examples, some 
important attempts have been reported. Furumura et al. 
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(2023) applied a CNN network to digitize analog, strong‐
motion seismographs recorded on smoked paper. Wang 
et  al. (2019b, 2022d) performed event detection, arrival 
time reading, magnitude estimation, and hypocenter 
determination on continuous Develocorder film images 
obtained from the Rangely seismic control experiment by 
the United States Geological Survey, generating a seismic 
event catalog. Kaneko et  al. (2021, 2023) also identified 
past low-frequency earthquake records among analog 
records using DL.

Current achievements and future prospects
As described in this section, ML is utilized in nearly 
every step of the earthquake catalog development 
pipeline. In particular, conventional automatic processing 
methods have not reached the accuracy of manual 
processing for regarding event detection, arrival time 
reading, and P-wave first-motion polarity reading. This 
has impeded the efficient processing of large amounts 
of data. DL models have demonstrated outstanding 
performance and have greatly improved the accuracy of 
automatic processing. Although the limited training data 
for large earthquakes and events in the regions or with 
focal mechanism types that have not previously occurred 
are likely to pose inherent challenges in these tasks, the 
outstanding performance of the DL approach has led to 
progress in related research. Some trained models are 
publicly available and have been applied to a wide array 
of data, either as-is or after optimization through transfer 
learning or retraining. The required computational cost 
is sufficiently small in the prediction process, facilitating 
the easy use of these models and greatly advancing 
seismicity analysis. Their performance will likely continue 
to improve via architecture modification and model 
development considering consistency across multiple 
station records.

Regarding the phase association and location, the 
adoption of ML technology is in its initial stages. The 
benefits and need for ML in these areas may remain 
unclear and warrant further research. Although 
applications to quality control problems also remain 
in the early stages of exploration, the ML technique 
is likely to be highly suitable for this task. DL has also 
been utilized for similar content search problems in 
other research fields and is expected to contribute to 
efficient similar waveform searching in seismology. 
The application to paleoseismic records is also in its 
infancy; however, ML technology, which has achieved 
great success in the image recognition problem, is likely 
to be well suited to address the related tasks efficiently. 
Effectively using ML in this domain could boost efforts to 
preserve paper records.

As described above, ML improves (or is expected to 
improve) the performance of individual tasks of the 
catalog development pipeline. However, in catalog 
development, it is not only necessary to enhance 
individual processes but also to optimize the overall 
performance. The catalog development pipeline, which 
includes similar waveform search processes, offers 
numerous options, making its optimization complex. 
Optimizations using an end-to-end approach, as Zhu 
et  al. (2022c) suggested, are a potential approach to 
address this issue.

The ML model demonstrates generalizability and 
provides good results when analyzing seismic records 
from regions that differ from the training data. However, 
for widely used public datasets, sharing retrained models 
with more relevant data is beneficial. Preparing/sharing 
such models as a research infrastructure will enhance 
the related study. Datasets for retraining should ideally 
be publicly accessible and easily applicable for future 
model development. For example, the Seisbench toolbox 
(Woollam et  al. 2022) provides a dedicated software 
environment for this purpose. To encourage such efforts, 
a clear policy on the secondary distribution of public data 
is essential.

Application to earthquake risk evaluation 
and seismicity analysis
In addition to contributing to earthquake catalog 
development, ML has been applied to seismicity analysis, 
including risk evaluation. Here, we summarize the 
related topics, including the applications in laboratory 
and induced earthquakes. Notably, we have not provided 
a comprehensive review of studies related to earthquake 
forecasting using ML (e.g., Ridzwan and Yusoff 2023). 
Mignan and Broccardo (2020) provided an excellent 
review of the current achievements in earthquake 
prediction using artificial neural networks.

Rupture forecasting of laboratory earthquakes
Frictional experiments in the laboratory are relatively 
successful targets in predicting the occurrence of 
macroscopic failures. In fracture or slip experiments in 
a laboratory, significant precursors are often observed, 
such as increased AE activity, decreased b-values, and 
changes in fractal dimensions (e.g., Lei and Satoh 2007; 
McLaskey and Kilgore 2013).

In slip experiments, it is possible to generate many 
seismic cycles, providing rich training data for ML 
to predict the timing and magnitude of macroscopic 
failures. This topic was triggered by Rouet-Leduc et  al. 
(2017), who analyzed continuous AE records obtained 
during double-direct shear experiments. Thereafter, 
the passive and active AE records obtained in this 
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type of experiment have been actively studied. In a 
pioneering study, Rouet-Leduc et  al. (2017) developed 
a random forest model that could predict the timing of 
macroscopic slip from AE waveform data continuously 
recorded during the experiment. They showed that the 
time to macroscopic slip could be predicted well not 
only from the data immediately before the macroscopic 
failure, but also throughout the entire period of seismic 
cycles, including their early stage. Their prediction was 
based only on window data at a particular time without 
data from the entire cycle. This suggests that the AE 
waveforms contain information on the preparation 
process for future macroscopic failure throughout the 
seismic cycle. Rouet-Leduc et al. (2018b) applied a similar 
method to the field data and successfully reproduced 
surface displacements from continuous seismic data in 
the Cascadia subduction zone, indicating that tremors in 
this region occurred nearly at all times.

The issue raised by Rouet-Leduc et  al. (2017) was 
treated in a Kaggle competition to improve prediction 
algorithms (Johnson et  al. 2021), resulting in several 
published methods (Brykov et  al. 2020; Laurenti et  al. 
2022). Related to this problem, Bolton et  al. (2019) 
examined whether the unsupervised clustering technique 
could identify precursors for similar experimental 
data, while Jasperson et  al. (2021) further improved 
the prediction accuracy by combining unsupervised 
clustering and attention networks. Rouet-Leduc et  al. 
(2018a) solved a similar issue using a gradient-boosted 
tree and showed that the shear stress on the fault plane 
(i.e., the frictional state) could be reproduced from 
continuous AE recordings. They found that the variance 
in the waveform amplitude, a function of the average 
energy per unit of time, is the parameter that primarily 
contributes to the prediction. Hulbert et  al. (2019) also 
found that the event duration, that is, the slip mode (slow 
or fast event), could be predicted in the experimental 
system where slow events possibly occur. Bolton et  al. 
(2020) showed that fault slip velocity and frictional 
contact area per unit fault volume govern the variance of 
AE waveform amplitudes.

Lubbers et al. (2018) reported that similar predictions 
are possible using AE catalogs comprising magnitude 
and time without using continuously recorded 
waveform data. Their prediction performance improved 
when using a more complete catalog (i.e., a catalog with 
a low completeness magnitude), possibly corresponding 
to the fact that the completeness of the earthquake 
catalog is important in detecting foreshock activities 
preceding large earthquakes (Mignan 2014; Trugman 
and Ross 2019). Shokouhi et al. (2021) and Shreedharan 
et  al. (2021) confirmed that temporal changes in 
shear stress and time to macroscopic failure could be 

predicted using an active source, that is, transmission 
test data. This is not surprising given that many 
previous studies have indicated that fault transmission 
waves can be used to monitor fault conditions (Kendall 
and Tabor 1971; Nagata et al. 2008). To address a similar 
prediction problem based on active source data, Borate 
et al. (2023) successfully improved model performance 
using a PINN model incorporating physical constraints 
related to transmission waves, particularly when the 
training data size was small.

Inspired by the double direct shear experiment, ML 
predictions have also been attempted in an analog 
experiment simulating a subduction zone (Rosenau 
et  al. 2017). In these studies, issues of predicting 
the time to macroscopic slip (Corbi et  al. 2019), 
determining whether slip will occur immediately after 
the analyzed data window (Corbi et  al. 2020), and 
predicting future surface velocity fields (Mastella et al. 
2022), were addressed based on surface deformation 
data, by assuming the future application to the actual 
GNSS data.

As described above, ML models trained on data during 
many cycles of laboratory experiments have successfully 
predicted macroscopic ruptures and estimated the 
conditions of fault planes and medium. The application 
to double direct shear experiments data, pioneered by 
Rouet-Leduc et  al. (2017), has driven this field. Future 
efforts to apply a similar approach to various laboratory 
experiments might identify important signals previously 
overlooked.

In laboratory data analysis, ML techniques reveal the 
physics of fault deformation in various ways besides the 
prediction issue. For example, Trugman et  al. (2020) 
used ML to create an AE event catalog in a double 
direct shear experiment to image the spatiotemporal 
evolution of microslips in the synthetic fault gouge 
during the stick–slip cycle. Ma et  al. (2022) simulated 
the stick–slip behavior of a sheared granular system 
using a discrete element method. They investigated 
the relationship between macroscopic stress changes 
and microslips between particles using the gradient 
boosting method (XGBoost) and performed feature 
importance analysis, revealing that the local spatial 
autocorrelation of microslips is the most important 
parameter. Chaipornkaew et  al. (2022) established an 
ML-based method to evaluate kinematic efficiency (ratio 
of fault slip to regional deformation), an indicator of off-
fault deformation. They conducted an analog experiment 
in which the temporal evolution of a strike-slip fault 
could be tracked and trained a CNN model based on 
the obtained fault maps. By applying the resultant model 
to actual fault maps, they obtained kinematic efficiency 
estimates that overlap with the geologic estimation, 
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indicating that models trained on the experimental data 
can quantify natural off-fault deformations.

Risk evaluation of induced earthquakes
ML is actively used to analyze human-induced seismicity 
caused by resource extraction, water injection, hydraulic 
fracturing, and geothermal development. In these 
cases, many microearthquakes that occur within a short 
period should be analyzed. ML-based techniques help to 
develop the microearthquake catalogs (Park et  al. 2020; 
Wang et  al. 2020a; Wong et  al. 2021; Zhou et  al. 2021; 
Glasgow et  al. 2021; Zhang et  al. 2022a; Kemna et  al. 
2022), and focal mechanism catalogs (Qin et al. 2022b) to 
investigate induced seismicity.

Another application of ML in studying human-induced 
earthquakes is its use in searching parameters that 
strongly affect the resultant seismicity. For example, 
Pawley et al. (2018), Wozniakowska and Eaton (2020), and 
Hicks et al. (2021) investigated the geological parameters, 
operational parameters, and tectonic properties that 
govern the activation potential of seismicity induced by 
hydraulic fracturing and water injection, using supervised 
learning based on logistic regression. Wang et al. (2022a) 
and Kemna et al. (2022) used a tree-based ML approach 
to identify critical factors (including operational 
parameters of hydraulic fracturing) controlling induced 
earthquakes. Larson et  al. (2021) used classification/
regression trees and neural networks for a similar 
problem. Szafranski and Duan (2022) trained ML models 
of random forest, bagging, and k-neighbors regression 
algorithms using numerical simulation results and used 
the resultant model for Bayesian inversion analysis to 
estimate subsurface conditions.

In addition to the important feature analysis, attempts 
have been made to construct ML-based models for 
estimating seismic potential or predicting event rates. 
For example, Qin et  al. (2022a) used a random forest 
model, Jakubowski and Tajduś (2014) used boosted 
regression trees and neural networks, and Limbeck et al. 
(2021) used random forest and support vector machine 
to construct models for predicting the rate of induced 
earthquakes. Picozzi and Iaccarino (2021) designed an 
RNN model to detect precursors of M ~ 4 earthquakes 
in a geothermal field. Nustes Andrade and van der 
Baan (2021) developed a CNN model for the real-time 
prediction of microearthquake activities induced by 
hydraulic fracturing.

Other applications in seismicity analysis
Approaches based on unsupervised clustering have a long 
history in seismicity analysis, and many examples have 
been reported. While DBSCAN (Ester et  al. 1996) and 
k-means (MacQueen 1967) are popular techniques, other 

algorithms, such as HDBSCAN (Campello et  al. 2013), 
OPTICS (Ankerst et al. 1999), Gaussian mixture models 
(McKean et al. 2019), and self-organizing maps (Ida and 
Ishida 2022) have also been used for various purposes. 
For example, clustering based on source parameters, 
such as occurrence times, hypocenters, and focal 
mechanisms, has been performed (Ansari et  al. 2009; 
Cesca et al. 2013; Schoenball and Ellsworth 2017; Cesca 
2020; Lurka 2021; Piegari et  al. 2022). These techniques 
are also used in fault and fracture imaging based on 
hypocenter distribution (Ouillon et al. 2008; Ouillon and 
Sornette 2011; Wang et  al. 2013; Custódio et  al. 2016; 
McKean et  al. 2019; Petersen et  al. 2020; Kamer et  al. 
2020; Brunsvik et  al. 2021; Gong et  al. 2022b), tectonic 
tremor analysis (Wech 2021), seismic hazard analysis 
(Weatherill and Burton 2009; Ansari et  al. 2015), and 
detection of the preparatory process of large earthquakes 
(Rundle and Donnellan 2020; Rundle et al. 2022). Other 
examples include preparatory steps for b-value analysis 
(Mao et al. 2022), identifying active seismic periods (Ida 
and Ishida 2022), and identifying aftershock sequences 
(Chu and Beroza 2022).

ML is also used to separate background seismicity 
from that triggered by other earthquakes, traditionally 
performed using the Epidemic-Type Aftershock Sequence 
(ETAS) model (Ogata 1988) or the nearest neighbor 
analysis (Baiesi and Paczuski 2004; Zaliapin et al. 2008). 
Aden-Antoniów et  al. (2022) used an ML-based model 
trained on the synthetic seismicity generated using the 
ETAS model for this task. They employed the random 
forest model to classify activities overlapping in the 
spatiotemporal distance space. Trampert et  al. (2022) 
assumed the interevent-time distribution of induced 
earthquakes around gas reservoirs as a mixture of Omori, 
gamma, and exponential distributions. By applying 
gradient boosting regression, they concluded that the 
proportion of the Omori distribution (i.e., the fraction 
triggered by other earthquakes) was small. Muir and 
Ross (2023) used a deep Gaussian process instead of the 
simple background seismic activity rate function in the 
ETAS model to improve the seismicity model.

In seismicity analyses, ML can be used as a tool to 
reveal nonlinear relationships that cannot be simply 
modeled by existing theories. For example, DeVries et al. 
(2018) and Karimzadeh et al. (2019) used ML to predict 
the spatial pattern of aftershocks, although Mignan and 
Broccardo (2019) pointed out that the model proposed 
by DeVries et  al. (2018) is unlikely to achieve better 
performance than the conventional approaches. Dascher-
Cousineau et al. (2023) developed a DL-based seismicity 
model based on neural temporal point processes, called 
the Recurrent Earthquake foreCAST (RECAST) model, 
as an alternative to ETAS and demonstrated its utility 
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and advantages. Arvanitakis and Avlonitis (2016) and 
Arvanitakis et  al. (2018, 2019) employed supervised 
learning to identify asperities on plate boundaries from 
seismicity statistics, such as their density, recurrence 
intervals, and b-values.

Application in ground‑motion prediction
The prediction of ground motions due to earthquakes 
is a major research topic in seismology and earthquake 
engineering; its objective is to predict the intensity 
or time series of ground motions caused by a given 
earthquake at a target location. Ground-motion 
prediction techniques are used for seismic hazard 
assessment, early warning of strong motions, and damage 
estimation after an earthquake. Recently, ML has been 
applied to this prediction and for creating supporting 
information. Hereafter, we review ML applications in 
(1) predicting ground-motion intensity from “features”, 
which are individual measurable properties, such as 
distance from an earthquake and earthquake magnitude; 
(2) predicting time series of ground motions from 
features; (3) predicting ground-motion intensity from 
time series input; (4) predicting ground-motion time 
series from time series input; (5) other related studies. 
The relationship among 1–4 is visualized in the matrix 
component of Fig. 1.

Prediction of ground‑motion intensity from features
Empirical equations called ground motion prediction 
equations (GMPEs) have been used to predict the 
intensity of ground motions (i.e., seismic intensity and 
peak ground acceleration) at a target location caused by 
a given earthquake. GMPEs have been constructed by 
regressing past ground-motion records, considering the 
geophysical model between an earthquake and ground 
motions. Since this is a supervised ML problem, ML 
regression techniques have been applied. The applications 
were underway before the third Artificial Intelligence 
(AI) boom began in the late 2010s (Kerh and Ting 2005; 
Ahmad et  al. 2008). Recently, many studies have been 
conducted using various ML methods: neural networks 
(Derras et  al. 2012, 2014; Dhanya and Raghukanth 
2018; Wang et al. 2020b; Khosravikia and Clayton 2021; 
Okazaki et al. 2021c, b; Ji et al. 2021), tree-based models 
such as random forest and XGBoost (Trugman and 
Shearer 2018; Kubo et al. 2020; Khosravikia and Clayton 
2021; Oana et  al. 2022), support vector regression 
(Tezcan and Cheng 2012; Khosravikia and Clayton 2021; 
Hu et  al. 2022), Gaussian process regression (Hermkes 
et al. 2014; Alimoradi and Beck 2015; Lavrentiadis et al. 
2023), and Bayesian network (Kuehn et  al. 2011). The 
prediction targets of ground-motion intensity include 
peak ground acceleration (PGA), peak ground velocity, 

response spectra, and seismic intensity. While early 
ML models predicted a single indicator, more recent 
multi-output models can predict several indicators 
simultaneously (Dhanya and Raghukanth 2018; Oana 
et al. 2022; Hu et al. 2022).

An advantage of ML models over conventional 
GMPEs is that nonparametric ML methods can learn 
the functions of ground-motion models directly from 
data without assuming regression equations, resulting 
in a more accurate and useful predictor within the range 
of training data. Some studies have reported that ML 
prediction models have higher accuracy than the existing 
GMPEs (Khosravikia and Clayton 2021; Oana et  al. 
2022; Seo et  al. 2022). Khosravikia and Clayton (2021) 
reported that when sufficient data are available, the ML 
prediction models provide more accurate estimates than 
the conventional linear regression-based method.

Another advantage of the ML model is that new data or 
features (explanatory variables) not used in conventional 
GMPEs can be incorporated. Conventional GMPEs used 
earthquake magnitude, distance from an earthquake (e.g., 
hypocentral distance, shortest distance from the fault, 
and Joyner–Boore distance), depth of an earthquake, and 
site information below the predicted point, such as Vs30 
(average S-wave velocity up to a 30  m depth). The ML 
prediction model designed by Oana et al. (2022) adopted 
additional features, such as the earthquake’s location, 
the prediction point’s location, and back azimuth 
information. Their ML model with the additional features 
had a lower logarithmic standard deviation value than 
the previous GMPEs. Esteghamati et al. (2022) designed 
an ML predictor with information on horizontal-to-
vertical spectral ratios (HVSR) as explanatory variables. 
Although a simple proxy, such as Vs30, has often been 
used in previous studies as site information, the use of 
more detailed information, such as HVSR, is expected 
to improve the accuracy of ground-motion prediction. 
Moreover, a ground-motion prediction model that 
directly accounts for the site amplification at the target 
station can be made by learning ground-motion data 
labeled for each observation station. Okazaki et  al. 
(2021c) proposed an ML model that uses a one-hot 
representation of site ID, which achieved accurate 
prediction considering site-specific ground-motion 
amplification and avoided overfitting at sites with few 
records.

Furthermore, ML leads to a more flexible prediction. 
Although previous studies made predictions at individual 
points, Lilienkamp et  al. (2022) achieved “areal” 
prediction by treating the explanatory and predictive 
variables as map-shaped data. Rekoske et  al. (2023) 
presented a reduced-order modeling approach based on 
interpolated proper orthogonal decomposition to predict 
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the spatial distribution of peak ground velocity. Sreenath 
and Raghukanth (2023) constructed a ground-motion 
model based on the Bayesian Neural Network (BNN) 
(Jospin et al. 2022), in which the Bayesian framework is 
incorporated into neural networks. Their approach could 
enable the evaluation of uncertainties in the prediction of 
earthquake motion because BNN facilitates probabilistic 
prediction.

To mitigate the negative effect of the black-box nature 
of AI models, eXplainable AI (XAI) techniques have 
recently been developed to help humans understand the 
reasons behind decisions or predictions made using AI 
models. The applications of the XAI techniques are useful 
in understanding the behavior of an ML-based ground-
motion prediction model. Mohammadi et  al. (2023) 
applied Shapley additive explanation (SHAP), which was 
developed based on the game theory to explain individual 
predictions of ML models (Lundberg and Lee 2017), to 
explore the importance of each explainable variable in 
the XGBoost prediction model.

Prediction of ground‑motion time series from features
Numerical simulations have often been used to obtain 
seismic waveforms at a target location due to a given 
earthquake. With the development of observation 
networks, the accumulation of ground-motion records, 
advancements in the subsurface structure, refinement 
of numerical simulation techniques for ground 
motions, and increased machine power, numerical 
simulations of three-dimensional seismic wavefield 
have been conducted by assuming a subsurface velocity 
structure model that reflects the real three-dimensional 
heterogeneity (Moczo et al. 2014; Igel 2017).

Recently, researchers have explored a data-
driven approach using generative ML models for 
obtaining seismic waveforms based on past ground-
motion records. Generative ML models are a class 
of statistical models that attempt to capture the 
underlying probability distribution of data and can 
be trained to generate data instances (Bengio et  al. 
2013; Jebara 2012). One of the major generative 
models is GAN (Goodfellow et  al. 2014), in which 
two networks are trained sequentially: a generator 
network to produce pseudo data and a discriminator 
network to distinguish between the truth or falsity 
of data. The well-trained generator can be used as 
a generative ML model. Mirza and Osindero (2014) 
proposed a conditional GAN (CGAN) that controls 
the generation process by considering additional 
features. Combining CGAN and Wasserstein GAN 
(Arjovsky et  al. 2017) with the training of a massive 
set of strong motion recordings in the time domain, 
Florez et  al. (2022) developed a generative model that 

synthesizes realistic three-component accelerograms 
conditioned on magnitude, distance, and Vs30. Their 
generative model captures the most relevant statistical 
features of the acceleration spectra and waveform 
envelopes. The output seismograms display clear P‐ and 
S‐wave arrivals with the appropriate energy content 
and relative onset timing. Moreover, Esfahani et  al. 
(2023) developed a generative model for simulating 
ground-motion recordings, which combines a CGAN 
to predict the amplitude part of the time–frequency 
representation of ground-motion records and a phase-
retrieval method. Matsumoto et al. (2023) constructed 
a ground motion generation model using GANs 
and evaluated its performance. They demonstrated 
through numerical experiments that their proposed 
model is probabilistic, approximates the probabilistic 
distribution of the dataset of observed records, and 
generates realistic ground-motion time histories with 
various characteristics in the time and frequency 
domains. As a new-generation model, diffusion models 
(Ho et  al. 2020; Rombach et  al. 2021) have recently 
attracted attention and will be used for ground-
motion prediction. The data-generation process with 
a generative ML model involves randomness, and the 
generated data instances differ slightly even if they are 
generated under a common condition. How to use the 
generated instances with randomness remains unclear. 
Moreover, strategies to evaluate the validity of the 
generated instances are needed.

Another possible ML approach for obtaining ground-
motion time series is PINNs, which can consider 
physical laws. Several studies have applied PINNs to 
the forward simulation of seismic waveforms, including 
in the simulation of acoustic wavefield described by 
a frequency-domain wave equation (Alkhalifah et  al. 
2020; Song et  al. 2021a, b; Huang et  al. 2021; Huang 
and Alkhalifah 2022; Song and Wang 2022a), the 
reconstruction inversion of acoustic wavefields (Song 
and Alkhalifah 2022), and the simulation of two-
dimensional (2D) SH wave propagation (Ding et  al. 
2023a, b). Furthermore, Rasht-Behesht et  al. (2022) 
proposed an approach to solve wave propagation and full 
waveform inversion based on PINNs. Moreover, neural 
operators, which learn mapping between function spaces 
via supervised training to solve PDEs (Kovachki et  al. 
2021), have attracted attention in recent years and have 
been applied to the construction of a surrogate model 
for wave propagation simulation (Yang et  al. 2021b, 
2023; Song and Wang 2022b; Zhang et  al. 2023; Zou 
et  al. 2023; Lehmann et  al. 2024). Although PINNs and 
neural operators remain in methodological development 
and have limited applications, further development in 
ground-motion prediction is expected.
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Prediction of ground‑motion intensity from time series
Onsite prediction of the final ground-motion intensity at 
a target site using the first few seconds of its observations 
is a major topic of EEW (Nakamura 1988; Wu and 
Kanamori 2005; Spallarossa et al. 2018). Recently, this has 
been approached using ML techniques, such as random 
forest (Hu et al. 2023), CNN (Jozinović et al. 2020; Zhang 
et al. 2022b), support vector machine (Song et al. 2022), 
Graph Neural Network (Bloemheuvel et  al. 2022), and 
LSTM (Wang et  al. 2022b, 2023a). Additionally, ML 
has been applied to discriminate in real-time whether 
a signal stems from an actual earthquake based on the 
initial part of ground motions (Li et al. 2018; Meier et al. 
2019; Liu et al. 2022). Although these studies adopted a 
single-station approach where inputs and outputs were 
closed at one station, Münchmeyer et al. (2020) proposed 
a multiple-station approach that predicts final PGA 
values at multiple target stations using initial raw records 
at multiple input stations.

Prediction of ground‑motion time series from time series
Recently, predicting future or present ground motions 
directly from currently observed ground motions, 
skipping source estimation, has been actively studied 
in the research field of EEW (Kodera et  al. 2018; 
Hoshiba 2021), and ML has been applied. Otake et  al. 
(2020) proposed a DL model to predict the present 
seismic intensity at the target station based only on 
the observation records at the surrounding stations, 
demonstrating that its prediction performance is better 
than adopting the maximum or weighted average of 
the input data. Additionally, Fornasari et  al. (2022) 
developed an ensemble ML model combining CNN 
and Voronoi tessellation, which could reconstruct the 
ground-shaking field in real time based on the point-
cloud spatial distribution of current ground-shaking data 
recorded at each observation station. Datta et al. (2022) 
designed a deep spatiotemporal RNN to predict future 
intensity time series at multiple stations directly from 
their current ground-motion observations. Tamhidi et al. 
(2022) proposed an approach where ground-motion 
time series at target sites are constructed from a set of 
observed motions using a Gaussian process regression, 
which treats the real and imaginary parts of the Fourier 
spectrum as random Gaussian variables. Furumura 
and Oishi (2023) developed a DL approach for early 
prediction of long-period ground motions at a target 
point far from the earthquake source based on waveform 
observations near the source. This approach could 
effectively forecast long-period ground motions of large 
earthquakes regarding amplitude, waveform envelope 
shape, spectral characteristics, and duration.

Due to computational constraints and insufficient 
knowledge of the underground structure at short 
wavelengths, physics-based simulation (PBS) ground 
motions are reliable only in the long-period range 
(typically, approximately 1  s). ML has been applied to 
convert long-period to short-period PBS waveforms 
and obtain broadband ground-motion waveforms. In 
the approach proposed by Paolucci et  al. (2018), the 
short-period response spectra were estimated using an 
ML model from the long-period ones simulated by PBS. 
Then, the short-period components of the original PBS 
waveforms were enriched using a stochastic simulation 
to match the estimated response spectra. Sharma et  al. 
(2022) upgraded the estimation of the short-period 
response spectra proposed by Paolucci et al. (2018) in a 
way that not only response spectra of long-period PBS 
waveforms but also additional features, such as source, 
path, and site parameters, were used as explainable 
variables. Furthermore, Okazaki et al. (2021a) explored an 
approach that generates consistent broadband waveforms 
using past observation records. Long-period Fourier 
amplitude spectra and acceleration envelopes were 
transformed to short-period ones using a neural network 
and an embedded space obtained by the nonlinear 
dimensionality reduction of t-SNE (Van der Maaten 
and Hinton 2008), respectively; they were combined to 
produce a broadband waveform. The notable features 
of their study include (1) using the Wasserstein distance 
in the dimensionality reduction of envelopes to capture 
their global properties and (2) simultaneously embedding 
pairs of long- and short-period envelopes into a common 
space to obtain the relationship from a limited amount of 
ground-motion data.

The denoising of seismic waveform records is related 
to the issue discussed in this section. Several studies have 
been conducted to extract the target signal from originals 
containing waves from various sources or separate 
signals and noise (Zhu et al. 2019b; Tibi et al. 2021, 2022; 
Dalai et al. 2021; Novoselov et al. 2022; Yin et al. 2022a; 
Xu et al. 2022; Wang and Zhang 2023). These efforts will 
lead to the effective use of observation data unanalyzed 
due to a low signal-to-noise ratio.

Studies related to ground‑motion prediction
ML has been applied to estimate site amplification 
characteristics, of which frequency dependency varies 
among sites. Roten and Olsen (2021) developed a 
DL model to estimate the relative site amplification 
characteristics between borehole and surface 
seismograms from discretized S-wave velocity profiles. 
Pan et  al. (2022) used a DL model to estimate S-wave 
site amplification characteristics from the information 
on microtremor HVSR. Zhu et  al. (2023b) proposed an 
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ML model to obtain site amplification factors from site 
proxies and suggested that the ML model performs 
better than the conventional approach. Zhu et al. (2023a) 
trained a supervised DL model to recognize and separate 
seismic site response from single-station seismograms. 
Pilz et  al. (2020) proposed a data-driven identification 
method based on information from various sites to 
identify a reference site.

Furthermore, ML techniques have been applied to 
seismic hazard assessment. Numerical simulations of 
ground motions based on many earthquake scenarios 
should be conducted and sampled to quantify variations 
in seismic hazard assessment. Imai et al. (2021) proposed 
a method to generate many scenario earthquake 
shaking maps from existing shaking maps using modal 
decomposition of proper orthogonal decomposition and 
an empirical copula.

The quality assessment and selection of ground-
motion records are necessary to improve the ground-
motion prediction model. Dupuis et  al. (2023) applied 
a supervised DL-based model to this issue. Their model 
can estimate the quality and minimum usable frequency 
for each record component. It can handle one-, two-, or 
three-component records, providing flexibility to assess 
record quality based on various requirements.

Tsunamis are another phenomenon caused by 
earthquakes besides ground shaking. Several studies have 
applied ML to tsunami prediction (Fauzi and Mizutani 
2020; Makinoshima et  al. 2021; Liu et  al. 2021; Kamiya 
et al. 2022; Rim et al. 2022).

Approach to imbalanced ground‑motion data
One significant problem with applying ML in ground-
motion prediction is the imbalance in observation data 
of ground motions. Observation data in the geophysical 
field are often imbalanced. In the case of ground-motion 
data, few records of strong shaking, near source faults, 
and large-magnitude earthquakes are available. Figure  3 
shows the distribution of the ground-motion dataset 
used by Kubo et  al. (2020): ground-motion records in 
the range of 1–20 cm/s/s account for much of the data-
set, whereas there are few records of strong motions over 
1,000 cm/s/s. Moreover, the spatial distribution of earth-
quakes and their focal mechanisms are strongly biased. 
Most observations of ground motions have been made 
on land. Learning such biased data may have undesirable 
effects on the ML prediction model. For example, Kubo 
et  al. (2020) showed that ML training with unbalanced 
ground-motion data leads to biased prediction.

One approach to solving this issue is augmentation 
with simulated data. Withers et al. (2020) used a database 
of synthetic ground motions extracted from the Southern 
California CyberShake study to build an ML prediction 

model of ground-motion intensities in Southern 
California. This model had behavior and performance 
similar to empirically based models. Raghucharan et  al. 
(2021) appended the simulated data from the validated 
seismological model to the observation data so that 
the trained dataset for their ML model covered a wide 
range of magnitude and distance, filling the data gap 
region. Lehmann et  al. (2023) prepared a synthetic 
database based on many PBSs considering various 
source mechanisms or finite faults for constructing an 
ML model to simulate low-frequency ground-motion 
parameters for arbitrary focal mechanisms or finite 
fault sources. ML training with simulated data alone has 
been done in research fields where observation data are 
fundamentally scarce, such as in the cases of tsunamis 
(Makinoshima et  al. 2021) and gravity waves (Licciardi 
et al. 2022). The emulation of ground motions using ML 
surrogate models, such as generative ML models, PINNs, 
and neural operators, is expected to be used for data 
augmentation.

Another approach to address this issue is incorporating 
geophysical findings into the ML model. Several studies 
have incorporated conventional GMPEs into the ML 
model. GMPEs are stable for extrapolation or low data 
density because conventional GMPEs are based on the 
geophysical background of ground motions. Khosravikia 
and Clayton (2021) reported that the approach of 
conventional GMPEs is better than ML-based models 
when training data are limited. Kubo et  al. (2020) 

Fig. 3  Distribution of ground-motion dataset used by Kubo 
et al. (2020) with the heat map showing the relationship 
between epicentral distance and PGA with their histograms (Fig. 5 
of Kubo et al. (2020)). They used 186,310 ground-motion records 
in Japan, which were recorded from 1997 to 2015 by K-NET 
and KiK-net of National Research Institute for Earth Science 
and Disaster Resilience. The heat-map color denotes the number 
of ground-motion records
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proposed a hybrid approach of ML and conventional 
GMPE for predicting ground-motion intensity. In this 
approach, an ML model was trained with the residuals 
between observations and predictions using GMPE, 
and the sum of the predictions using GMPE and the 
ML model was used as the prediction of the hybrid 
model. They demonstrated that this hybrid approach 
reduces the underestimation of strong motions found 
in the prediction model using only ML and performs 
better than the individual approaches. Oana et al. (2022) 
included the predicted value of GMPE in the explainable 
variable of the ML prediction model.

Direct incorporation of geophysical knowledge into 
an ML model has been conducted. Previous studies 
on ground motions clarified the relationship between 
ground motions and related factors. Generally, ground 
motions increase with magnitude and decrease with 
distance, and they tend to decrease with Vs30 and 
increase with the thickness of sediment layers. To follow 
these relationships in an ML prediction model, Okazaki 
et  al. (2021b) proposed a neural network model with 
a monotonic dependence on the input variables. They 
demonstrated that this approach reduces overfitting for 
training data and improves generalized performance.

Transfer learning (Pan and Yang 2010; Bozinovski 
2020) can be used to address ground-motion prediction 
problems. Here, an existing ML model trained with 
ground-motion records in areas with large amounts 
of data is used as an initial model to develop an ML 
model in areas with few records. Jozinović et  al. (2022) 
introduced transfer learning to develop an ML model of 
onsite EEW for a small dataset; their approach improved 
the prediction performance regarding outliers, bias, and 
variability of the residuals between predicted and actual 
values.

Current achievements and future prospects
As described in this section, many studies have applied 
ML to earthquake ground-motion prediction, resulting 
in significant progress, including reporting predictions 
that are more accurate than existing models and realizing 
predictions that were previously difficult to predict. 
However, ML-based ground motion prediction is not 
widely used in practical applications such as earthquake 
hazard assessment and earthquake early warning. The 
black-box nature of ML is likely one factor limiting its 
use. Further research is needed to evaluate the limits of 
applicability of ML predictions and their uncertainty, 
versatility, and reproducibility.

While the ground-motion prediction model will con-
tinue to become more sophisticated, it is also essential to 
update the ground-motion data. To achieve this, it is cru-
cial to maintain and upgrade strong-motion observation 

networks and to steadily increase observation records. 
Furthermore, the usability, accessibility, and transpar-
ency of the observation records must be continuously 
improved to encourage the further use of ground-motion 
data. One such effort is the construction and publication 
of a “flat file”, a data set that integrates information on 
ground-motion intensity measurements, seismic source 
information, and site information, such as the NGA-
WEST2 database (Ancheta et al. 2014) and the New Zea-
land strong motion database (Van Houtte et  al. 2017). 
As mentioned in the previous subsection, extending the 
dataset based on PBSs is also important. The simulations 
can create records for huge earthquakes or those near 
faults, for which there are few observation records. This 
will help compensate for the imbalance in the observa-
tion-based ground-motion dataset. Such efforts are use-
ful in applying ML because the imbalance in training data 
directly leads to the reduction of the prediction perfor-
mance of ML models. Data emulation with ML surrogate 
models, such as generative ML models, PINNs, and neu-
ral operators, will also be used.

Several studies have raised issues regarding the effect 
of ergodic assumption in ground-motion prediction 
models on their prediction results (Anderson and Brune 
1999; Abrahamson et  al. 2019; Lavrentiadis et  al. 2023). 
The ergodic assumption is that the median and aleatory 
variability of a ground-motion prediction model are 
applicable to any location within the broad tectonic 
category. Although most ground-motion prediction 
models are based on this assumption, the ergodic 
ground-motion prediction models may not work well 
for a specific site/source location because of significant 
systematic differences in ground motion depending on 
the location of the site and source. Therefore, a growing 
need exists for developing non-ergodic ground-motion 
prediction models that explicitly model the location-
specific effects, which can lead to a reduction in aleatory 
variability. The application of ML will prove essential 
in the construction of site-specific or location-specific 
ground-motion prediction models because the situation 
is more conducive to the flexibility of ML, which can 
handle various explanatory variables.

Bergen et al. (2019) indicated that ML use in solid earth 
geoscience can be broadly divided into three categories: 
automation, modeling (simulation and inversion), and 
discovery. For example, phase picking is an example 
of automation, while ground motion prediction falls 
under modeling. The current use of ML in seismology is 
primarily focused on the automation category. Applying 
ML to modeling or discovery may be more difficult; 
however, we look forward to further research in this area.
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Application to geodetic data
This section summarizes the application of ML to 
geodetic data. We primarily focus on topics related to 
crustal deformation caused by tectonic motion.

Clustering analysis
GNSS observations record seismic and aseismic signals 
as well as the long-term secular motion of the Earth’s 
surface. These long-term secular velocity fields contain 
information regarding rigid block motion, internal 
deformation, and strain accumulation processes 
due to plate motions, such as subduction, opening, 
and collision. Data-driven approaches based on 
clustering algorithms have been developed to identify 
regional differences in these velocity fields. Clustering 
approaches can objectively determine block boundaries 
without prior information, such as fault location, 
geological information, or underlying deformation 
processes. These algorithms can be broadly divided into 
hard and soft clustering. Hard clustering algorithms 
determine the cluster to which each observation 
belongs, and soft clustering allows each station to 
belong to multiple clusters. In other words, the soft 
clustering approach provides information on the 
uncertainty of each cluster at each station.

Two approaches of hard clustering algorithms have 
been applied to GNSS velocity fields. The first approach 
is hierarchical clustering, which initiates the clustering 
procedure with each cluster comprising a single data 
point. Then, two clusters are sequentially combined 
based on the similarity in their data. Consequently, 
all data can be categorized into a hierarchical tree 
or a dendrogram. When focusing on a small number 
of clusters (i.e., higher levels in the dendrogram), 
each boundary represents a large-scale difference in 
GNSS velocities, whereas many clusters with lower-
level clustering correspond to small-scale boundaries. 
The advantage of this approach is that the clustering 
result is uniquely determined, and there is no need to 
define the number of clusters. Once two stations are 
connected in the same cluster at a lower level, these 
two stations will never be categorized into different 
clusters at a higher level.

The second approach is the partitioning-optimization 
approach, in which the number of clusters is first 
determined, followed by clustering using a measure of 
similarity between observations. The clustering results 
depend on the initial clusters, which must be determined 
beforehand. The robustness of these initial clusters can 
be examined by conducting clustering with different sets 
of initial clusters. However, achieving a global minimum 
solution is not guaranteed.

Simpson et  al. (2012) proposed a hierarchical 
agglomerative clustering approach using the similarity 
of velocity vectors as a metric for clustering. They 
applied it to the GNSS data in the San Francisco Bay 
Region, California, where the tectonic setting is simple 
and dominated by a strike-slip motion. Additionally, 
they proposed the k-means method as a partitioning-
optimization clustering approach and compared 
it with hierarchical agglomerative clustering. Both 
methods yielded substantially different clustering 
results depending on the number of clusters; however, 
the geographical clustering maps were roughly similar. 
This approach assumes a flat earth and is, thus, suitable 
for velocity fields that can be approximated using 
the translational motion of blocks, such as in the San 
Francisco Bay Region. In other words, this approach is 
useful when the Euler pole is located at a great distance. 
Following this study, Savage and Simpson (2013a) 
generalized the k-means approach proposed by Simpson 
et  al. (2012) to be applicable to a spherical earth. For 
this purpose, they proposed the Euler-Vector clustering 
algorithm to minimize the residuals between the 
observed velocity and calculated velocity obtained using 
the Euler-Vector in the cluster to which each station 
belongs. Starting from the initial grouping obtained using 
the k-means clustering, the Euler-Vector clustering was 
applied to the Mojave Block, southeastern California 
(Savage and Simpson 2013a) and the California–Nevada 
region (Savage and Simpson 2013b), yielding a clustering 
result similar to the k-means clustering. The velocity 
fields targeted by these previous studies are oriented in 
roughly similar directions with different amplitudes, 
indicating that the Euler poles are at distant locations.

Savage and Wells (2015) applied a similar clustering 
approach across a broad area in the Pacific Northwest, 
USA, from 38°N to 49°N, including California, Nevada, 
Oregon, and Washington. The velocity field in this target 
area is approximated by a single Euler Pole, indicating 
that the velocity field is rotating clockwise and the Euler 
Pole is close to the target area. Although this velocity field 
incorporates information on strain accumulation due to 
plate subduction in Cascadia and internal deformation 
(or includes noise for clustering), they identified blocks 
that align with geologically determined boundaries. 
Subsequent studies applied this hard clustering method 
to the GNSS velocity fields in the southern San Andreas 
Fault (Thatcher et  al. 2016), southwest Japan (Savage 
2018), Taiwan (Takahashi et  al. 2019), Turkey (Özdemir 
and Karslıoğlu 2019), and New Zealand (Takahashi and 
Hashimoto 2022), and discussed regional characteristics 
of block boundaries.

As illustrated above, GNSS velocity is a powerful tool 
for objectively identifying crustal structures. However, 
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the observed velocities are often contaminated by 
various types of noise, such as atmospheric and 
ionospheric delays, the local motion of observation 
sites, and orbit errors. Takahashi et al. (2019) proposed 
a method of assessing stability based on information 
entropy to evaluate the robustness of the clustering 
results obtained using such a noisy dataset. Numerous 
synthetic datasets were prepared to calculate the 
information entropy by adding noise and conducting 
clustering for each dataset. Then, for each pair of 
stations, the information entropy was defined so that it 
is minimized when the two vectors are classified into 
the same or different clusters. That is, when these two 
data points are randomly classified, the information 
entropy reaches its maximum. By summing the 
information entropy for all pairs at each station, the 
entropy or robustness of the clustering result at each 
station was obtained (see Fig.  8 in Takahashi et  al. 
(2019) and Fig. 6 in Takahashi and Hashimoto (2022)).

In most previous studies, clustering analysis was 
performed based on velocity fields; however, Yáñez-
Cuadra et al. (2023) employed strain rate invariants and 
rotation rate fields, derived from velocity fields. Applying 
the hierarchical agglomerative clustering algorithm 
to the GNSS data in the Chilean subduction zone 
revealed a correlation between clustering results and 
the segmentation of the seismogenic zone and regional 
geological structures.

Unlike hard clustering, the soft clustering approach 
provides a probability of the cluster to which each station 
belongs. This approach directly identifies stations or 
regions with ambiguous crustal structure boundaries 
without additional evaluation of the clustering result. 
Özdemir and Karslıoğlu (2019) compared three hard 
clustering methods including k-means, hierarchical 
agglomerative clustering, and Gaussian mixture model 
with a soft clustering version of Gaussian mixture model 
fits. All the hard clustering algorithms successfully 
clustered GPS velocities in Turkey into the Eurasian 
and Arabian blocks, separated by the Anatolian strike-
slip faults. However, additional clustering results within 
the Anatolian block varied depending on the chosen 
clustering algorithms. This ambiguity is clearly illustrated 
by the soft clustering method. Mitsui and Watanabe 
(2020) developed a different soft clustering approach 
using the fuzzy c-means method. They discussed the 
tectonics in the Izu Peninsula, a collisional zone with a 
complex deformation field in Japan.

Granat et al. (2021) developed an open-source code for 
clustering GNSS velocities using methods available in 
the scikit-learn package in Python. The clustering results 
can be easily displayed via Google Earth or Google Maps 
using this code.

Detection of geodetic signals due to seismic/aseismic 
phenomena
ML techniques are powerful tools for extracting 
spatiotemporal signals of interest. A primary focus in 
recent geodetic studies is the detection of transient 
signals, such as slow slip events (SSEs). Accurately 
detecting such transient signals contributes to our 
understanding of slow earthquake activities while 
providing an accurate estimation of interseismic 
velocities that reflect the state of interplate coupling. 
Signals due to SSEs are often so weak that they can be 
buried in noise; therefore, methods that can effectively 
detect these small signals are required.

Several approaches have been proposed to detect 
SSEs: 1) extraction solely from geodetic data (Nishimura 
et  al. 2013; Crowell et  al. 2016; Yano and Kano 2022); 
2) extraction using templates (Riel et  al. 2014; Rousset 
et  al. 2017; Okada et  al. 2022); and 3) using other slow 
earthquake phenomena as a reference (Frank et al. 2015; 
Bartlow 2020). Additionally, ML-based approaches 
have been suggested. Most proposed methods adopted 
a supervised approach to detection or classification 
problems.

He et al. (2020) combined RNNs and CNNs to detect 
SSEs, applying the Ocean Bottom Pressure (OBP) data 
obtained in New Zealand. The input for their model is a 
time series, and the output is a label indicating whether 
SSEs occur in the middle of the time series. They 
demonstrated that the proposed method performed 
better than the matched filter approach. Because 
seafloor geodetic data, such as OBP, are typically noisier 
than onland GNSS data, successful extraction of SSE 
signals will improve the understanding of slip behavior, 
especially in the shallower parts of subduction zones.

Rouet-Leduc et  al. (2021) applied a deep autoencoder 
to a time series of Interferometric Synthetic Aperture 
Radar (InSAR) images to automatically detect 
millimeter-scale crustal deformation without fault 
location information. Their method was designed to 
mitigate noise in the InSAR time series, leveraging the 
characteristic that atmospheric errors do not correlate 
over a day and tectonic signals result in permanent 
deformation. They detected crustal deformation caused 
by a slow earthquake in the Anatolian Fault, Turkey, 
which was larger than previously considered. Xue and 
Freymueller (2023) proposed an RNN-based approach to 
obtain a time series of the probability of transient signals 
being included in the GNSS time series using a single 
station. Their model sequentially refers to each data only 
once; thereby, efficiently obtaining output probabilities 
compared with common methods using sliding windows. 
After training their model using synthetic data, they 
applied it to detect the SSEs in Cascadia between 2005 
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and 2016. Their detection results were consistent with 
the previously identified characteristics of SSEs such 
as timings, durations, and areas. Furthermore, they 
demonstrated that the proposed method is robust despite 
gaps in the time series. Based on GNSS data, Costantino 
et al. (2023) developed DL methods for estimating seismic 
and aseismic source characteristics. By, respectively, 
training spatial, temporal, and spatiotemporal synthetic 
datasets in DL models, the spatiotemporal data with the 
transformer displayed the best performance in estimating 
source parameters of earthquakes along the Japan Trench 
in northeast Japan. They highlighted the potential of 
geodetic data to improve a low detection limit using an 
ML approach. The spatial pattern of crustal deformation 
is useful for the real-time detection of large earthquake 
signals because of its usage of unsaturated displacement 
waveforms. Lin et  al. (2021) proposed the GNSS-based 
EEW algorithm, M-LARGE, and demonstrated that the 
proposed method outperformed other GNSS-based 
non-DL methods.

Modeling and prediction of crustal deformation
AI techniques have been introduced to model crustal 
deformation. DeVries et al. (2017) proposed a viscoelastic 
modeling method using a neural network trained on 
theoretical modeling results. By introducing neural 
networks, the calculation can be drastically accelerated 
compared with the forward calculation. Okazaki et  al. 
(2022) proposed a PINN approach to model crustal 
static deformation due to an earthquake. By using a 
polar coordinate system, the displacement discontinuity 
on a fault can be accurately modeled as a boundary 
condition. Fukushima et al. (2023) used a PINN approach 
for earthquake cycle simulation that calculates the 
temporal evolution of slip velocities of SSEs using a 
spring-slider system. They additionally proposed an 
alternative inversion approach based on PINNs for 
frictional parameter estimation. Due to its flexibility, 
PINNs can readily incorporate complex models such 
as heterogeneous underground structures and three-
dimensional plate geometries. Therefore, PINNs will be a 
powerful tool for geodetic inversion. Another application 
that integrates geodetic data and ML techniques is 
the prediction of time series. Fukushima et  al. (2023) 
proposed a PINN-based scheme for predicting the short-
term evolution of slip velocities along the subducting 
plate interface.

ML has been adopted to predict postseismic deforma-
tion. Time series of postseismic deformation are often 
modeled as a superposition of logarithmic and exponen-
tial functions (Tobita 2016). Yamaga and Mitsui (2019) 
applied an RNN to this problem and predicted future 
time series following the 2011 Tohoku-oki earthquake. 

Their RNN inputs a 1-year GNSS time series and fore-
casts displacement on the day following the input time 
series. After training the RNN model using GNSS sta-
tions in northeast Japan, they conducted predictions of 
GNSS time series that were not used in training. Com-
pared with the traditional method of fitting logarithmic 
and exponential functions, the RNN model had better 
predictive abilities with smaller residuals between the 
predicted and observed displacements. They showed that 
the residual time series of the RNN outputs represented 
the dominant mechanisms depending on the elapsed 
time from the mainshock, that is, the afterslip decay and, 
consequently, the domination of viscoelasticity.

Current achievements and future prospects
As described in this section, ML techniques have been 
introduced to geodetic data analysis such as clustering, 
detection of events, and modeling. Nonetheless, fewer 
application examples have been reported compared 
with seismic data analysis as reviewed in this paper. 
Clustering analysis is one of the well-studied topics. The 
previous studies have demonstrated that the proposed 
algorithms are widely applicable to crustal deformation 
in various tectonic regions. The resulting clusters provide 
boundaries of crustal structures with their uncertainties 
from regional to global scales, contributing to our 
understanding of the tectonics in the target areas. In 
contrast, in recent years, the detection of tectonic signals, 
modeling, and prediction of crustal deformation are 
emerging topics of ML application to geodetic data. As 
new ML-based approaches are continuously proposed, 
they would detect a greater number of hidden events, 
discover new aseismic phenomena, or be utilized as a 
tool that can easily incorporate complex geometries 
or spatial heterogeneity of underground structures for 
geodetic modeling. These achievements will eventually 
contribute to further understanding of the physical 
processes associated with the whole earthquake cycle.

Conclusions
In this paper, we reviewed ML applications in several 
fields of earthquake seismology, especially in the 
development of earthquake catalog, seismicity analysis, 
ground motion prediction, and application to geodetic 
data. ML technologies have significantly advanced these 
fields; however, unique challenges persist. For example, 
the imbalance in natural datasets is problematic 
in many cases, possibly causing misevaluation or 
misinterpretation. Effective approaches to address this 
problem include data augmentation, simultaneous use 
of domain knowledge, and transfer learning. Although 
challenges arise from the black-box nature of DL, the 
latest techniques, such as PINNs, neural operators, 
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BNN, and XAI, can address them. The efficiency, 
accuracy, and flexibility of ML are the driving forces 
behind the establishment of its usage for various tasks 
in earthquake seismology. There remain many problems 
where ML can effectively solve, and its application 
will further expand and advance our knowledge of 
earthquake seismology.
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