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Abstract 

An ionogram image serves as a valuable data for examining the ionospheric bottom side characteristics and vari-
abilities. Spread-F is indicated or identified by plasma irregularity in the ionospheric region. Diffused echo in the iono-
gram images particularly pose challenges for efficient interpretation required in further applications. An automatic 
classification of spread-F is presented in this study. Ionogram images are automatically classified using preprocessing 
techniques to improve the classification performance. In this study, the classification is designed by two machine 
learning algorithms, including support vector machine (SVM) and convolutional neural network (CNN). The CNN 
model with preprocessing technique outperforms the SVM alternative based on 4,692 labelled ionogram images 
from the FMCW-type ionosonde at Chumphon station, Thailand. The model successfully classified clear, frequency 
spread-F (FSF), range spread-F (RSF), strong spread-F (SSF), and unidentified class with an accuracy of 98.0%, 85.1%, 
90.7%, 66.7%, and 99.2%, respectively. The proposed automatic classification models achieved to classify classes 
of ionogram images. In addition, the image filtering and data preprocessing are useful with ionogram images 
for improving the model classification performance.
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Graphical Abstract

Introduction
The ionospheric layer is the upper part of the atmos-
phere that is ionized by solar radiation and forms a 
dense of charged particles changing over time (Bowman 
1960). The ionospheric bottomside characteristics can 
be observed by different ionosonde systems, such as fre-
quency-modulated continuous wave (FMCW) ionosonde 
(Yao et al. 2012) and digital ionosonde (Rao et al. 2022a). 
The FMCW-type ionosonde with pulse compression 
technique used at Chumphon station, Thailand transmits 
continuous pulses of high frequency range of 2–30 MHz 
toward the ionosphere layers. The signals are reflected 
by the ionospheric plasma resulting in the echoes being 
recorded and then the ionosonde displays the recorded 
data on a graph called the ionogram (Nozaki 2009; Tham-
mavongsy et al. 2020). An ionospheric disturbance in the 
F layer appears on the ionogram as spread-F traces often 
characterize the presence of plasma irregularities, typi-
cally observed during night-time when the ionosphere is 
less influenced by solar radiation. In addition, equatorial 
spread-F specifically occurs in the equatorial region. Fur-
thermore, there are several types of spread-F phenom-
enon, each exhibiting distinct characteristics, including 

frequency spread-F (FSF), range spread-F (RSF), mixed 
spread-F (MSF), and strong spread-F (SSF) (Wang et al. 
2008). Figure 1 illustrates the characteristics of ionogram 
images, including a typical ionogram, as shown in Fig. 1a, 
and ionograms with spread-F types. FSF in Fig.  1b rep-
resents a horizontal spread of ionogram traces around 
the F region critical frequency, which can be observed 
in various patterns. RSF in Fig. 1c is a vertical spread of 
ionogram traces over the wide range of frequency. MSF 
in Fig.  1d can be observed as a combination of spread-
ing characteristics between FSF and RSF. SSF in Fig.  1e 
is an intensified version of RSF, where the spreading 
conditions are significantly expanded. In addition, if the 
FMCW-type ionosonde fails to receive a reflected sig-
nal or encounters an error during the process, it plots an 
ionogram with no trace, classified as an unidentified class 
in this study, as shown in Fig. 1f.

The presence of this phenomenon causes the ioniza-
tion density in ionospheric layer to become irregular 
and the plasma depletion in some areas has relatively 
lower density than the surrounding areas, hence, impact-
ing the transmission of radio waves, leading to an 
unclear, poor quality, delays, and errors in recorded data 

Fig. 1 Ionogram sample of a clear class, b FSF class, c RSF class, d SSF class, e MSF class, f unidentified class
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(Thammavongsy et al. 2020). Consequently, it is essential 
to conduct ionospheric observations for various appli-
cations, such as developing an alert system to detect 
irregularities in radio communication systems and global 
positioning systems (GPS).

These observations are crucial for ensuring reliable 
and accurate performance in these systems. Nowadays, 
the ionosondes operators are required to manage the 
processing of ionogram data, involving scaling task and 
categorizing thousands of ionogram images. To solve 
this problem, an application of machine learning is intro-
duced. Machine learning has a powerful ability to man-
age the large amount of data which can be well-applied 
for automatic ionogram image classification tasks. In 
general, machine learning can be classified into three 
types which are supervised learning, unsupervised learn-
ing, and reinforcement learning. The supervised learn-
ing is a learning of the machine by feeding labelled data 
directly. The unsupervised learning is learning by feeding 
raw data or unlabeled for training, and the reinforcement 
learning is learning through decision making to optimize 
the outcome (Janiesch et  al. 2021). According to types 
of machine learning, supervised learning is the most 
suitable to be used with ionogram images due to large 
amounts of available data (Luwanga et al. 2022).

In data management of ionogram, there was a method 
proposed by Xiao et  al. (2020) using deep learning 
method for ionogram automatic scaling (DIAS) to scale 
a large amount of ionosonde data. DIAS model con-
sists of encoder and decoder networks. The encoder 
network model was evaluated and compared using 
VGG16, ResNet50 and Efficient-b5 as backbones. 
While the decoder network has applied the feature 
pyramid network (FPN) module to enhance the scal-
ing accuracy. The results showed that the DIAS model 
with ResNet50 backbone and FPN module scaled iono-
grams with the precision of 95.79%, while the tradi-
tional method achieved only 88.67%. In 2021, De La 
Jara and Olivares presented a method of using CNN 
to detect ionospheric echo in digital ionograms with 
three different models, evaluated by Intersection over 
Union (IoU) to measure the accuracy between manual 
and automatic trace detector. The first model was fed 
by filtered images. The second model trained by add-
ing manually extracted images after the first model. The 
last model was trained by feeding manually extracted 
data only which achieved the IoU value of 0.174, 0.602, 
and 0.569, respectively. This model also showed that 
extracted data can highly improve the IoU value in 
this work. Xue et  al. (2022) presented an echo extrac-
tion for three types of ionograms (vertical, oblique, and 
backscatter ionograms) using CNN as classification 

and extraction model with residual learning and skip 
connection structure which improved the model per-
formance compared with the traditional method by 
22.18%, 22.56%, and 6.67%, respectively. In the same 
year, Luwanga et  al. proposed a method for spread-F 
detection on digital ionogram image through SVM and 
CNN models with three different based models which 
are VGG16, InceptionV3, and ResNet50. The results 
showed that SVM model achieved the precision score 
of 77.00% and CNN model with ResNet50 achieved the 
precision score of 95.00%. However, the SVM model in 
this research showed poor performance and then was 
abandoned for the further evaluation. Therefore, the 
performance of SVM model on ionogram data remains 
inconclusive. In 2022, the auto-detection method for 
ionospheric irregularity in digital ionogram proposed 
by Rao et al. (2022b) A tool based on fuzzy relation that 
detects the height and frequency points in the denoised 
digital ionogram images to identify them into classes. 
The proposed method was able to detect ionograms 
with an efficiency of 96.71%, 97.83%, 89.71%, 68.32%, 
and 93.39% for sporadic-E, FSF, RSF, MSF, and SSF 
events, respectively. Recently, Wang et  al. (2023) pre-
sented a deep learning model for spread-F detection 
and classification. The digital ionogram over 100,000 
images were used for training, evaluating, and testing 
on various models. The ionogram had been cropped, 
resized and added with the simulated noise into the 
original images. The results indicated that ResNet50 
achieved a test accuracy of 92.36% to detect and classify 
the ionogram into FSF, RSF, MSF, SSF, and no spread-
F. Accordingly, the most used ionogram image in the 
mentioned works are digital ionograms which are dif-
ferent from the used ionogram images in this work as 
recorded by the FMCW system which contains more 
variation of noises. Additional image preprocessing 
methods are introduced to deal with all unwanted noise 
and improve the data quality in the models for classifi-
cation and further applications.

Therefore, the main purpose of this work is to eval-
uate model performance between shallow and deep 
machine learning structures which are SVM and CNN 
models for operating the automatic classification task 
with ionogram data set. To alleviate the manual tasks 
associated with ionogram data for the FMCW-type 
ionosonde. In addition, the preprocessing methods are 
also investigated to improve the model performance 
using different techniques such as image filtering with 
image sharpening, image thresholding, median blur, 
gamma correction, fast non-local means, and bilateral 
filters. These techniques are utilized in training, valida-
tion, and testing processes for both models.
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Experiment setup
This section provides information on the experimental 
design, including data set preparation, image preproc-
essing methods, model details, and evaluation process to 
determine the most effective approach for improving the 
model performance.

Data set preparation
The ionogram data set used in this study are obtained 
from the FMCW ionosonde at Chumphon station, Thai-
land under the administration of the Southeast Asia 
Low-latitude Ionospheric Network (SEALION) Project 
(Maruyama et al. 2007). The data collection period in this 
study spans from March to May and August to October 
in 2014–2016 and 2018–2020, respectively. The data was 
collected during specific periods to consider seasonal 
changes in the phenomena. The data set of 4693 iono-
gram images were manually classified by expert inspec-
tor into clear class, ionogram with no spread-F, (1320 
images), FSF class (760 images), RSF class (1620 images), 
SSF class (126 images), and unidentified class (866 
images). The sample of each ionogram classes are shown 
in Fig. 1.

For the spread-F occurrence, RSF events frequently 
occur near the Chumphon station, (Rungraengwajiake 
et  al. 2013), resulting in the RSF class having the high-
est number of samples in spread-F classes. Conversely, 
SSF events rarely occur in the equatorial region, result-
ing in the lowest number of samples. Subsequently, the 
data set is divided into three subsets which are training 
set, validation set, and test set. The data set is split into 
three sets, including 70% of training set, 15% of valida-
tion set and 15% of test set, (Razzano and Cuoco 2018). 
From the total image, the training set is 3,285 images, 
the validation, and test set are 704 images. When split-
ting the data set, it is important to ensure that there are 
sufficient samples for training while also avoid having 
too few samples for validation and testing. It is noticed 
that the data classes in this work are severely imbalanced, 
particularly within the SSF class, there is a risk of having 
an insufficient number of samples available for evaluating 
the model during validating and testing.

Image preprocessing methods
The manipulation of the data set is considered before 
analyzing or using in other processes of machine learning 
tasks including image preprocessing and image filtering 
with the purpose to filter out noise and enhance the fea-
tures in ionograms. Image filtering technique can be used 
to reduce noise, distortion and improve the overall infor-
mation of the ionogram images (De La Jara and Olivares 
2021). With proper image preprocessing, it can directly 

improve the performance and efficiency of the models in 
terms of computer vision (Xiao et al. 2020). In this work, 
there are seven preprocessing techniques to be evaluated 
which are described below.

1) Image cropping: a technique to specifically crop the 
image to obtain only the necessary part of the iono-
gram. By cropping the F layer region from the full 
ionogram image, the image contains only the impor-
tant information.

2) Image thresholding: a thresholding technique to 
separate the region in an image by determining the 
threshold value.

3) Image sharpening: a filter that passes a specific kernel 
matrix through image pixels, resulting the sharpened 

image. The kernel matrix is defined as 
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.

4) Median blur: a technique for image denoising by 
replacing the value of each pixel with the median 
value of the neighboring pixels within a defined win-
dow.

5) Gamma correction filter: a technique for adjusting 
the overall brightness and contrast of the image by 
determining the gamma value. By increasing gamma 
value, the pixel intensity in image will become 
brighter while decreasing gamma value resulting 
darker output.

6) Fast non-local means filter (fast-NLmeans): a denois-
ing technique with ability to preserve the structure of 
the image and denoise by comparing the similarity 
between nearby image area and calculate the average 
normal value (without noise) of each area.

7) Bilateral filter: a filter for noise reduction while pre-
serving important image structure by consider-
ing both spatial proximity and intensity similarity 
between pixels.

From the presented preprocessing methods, the image 
cropping is used as a preliminary process for both SVM 
and CNN models to crop out the unwanted data from the 
full size ionogram images. While other preprocessing will 
be applied and evaluated on the ionogram images sepa-
rately to compare the classification performance.

Model details
This study presents the application of SVM and CNN 
models to evaluate the classification performance on 
this ionogram data set. Typically, the SVM has a sim-
ple architecture to determine the hyperplane and clas-
sify the data into classes using the kernel trick. While 
the CNN has a more complex architecture with multi-
ple convolutional layers and neurons to analyze various 
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features from the input data. It should be noted that 
this experiment is conducted on different types of ML 
model to provide the performance comparison between 
two different model structures on classifying this iono-
gram data set and examine the impacts of the proposed 
preprocessing methods on both models. Therefore, the 
best way to evaluate the improvement of the proposed 
method must be examined for both SVM and CNN 
algorithms on the specific data set then compare the 
results. The structure of the image classification meth-
odology of each model is shown in Fig. 2.

Parameters for model evaluation
The metrics for model evaluation in this study are uti-
lized as follows,

1. Precision represents the accuracy of positive predic-
tions by calculating the ratio of true positives (iono-
gram with spread-F) with the sum of true positives 
and false positives as shown in following formular

2. Recall represents the performance to identify all pos-
itive instances by calculating true positive with the 
sum of true positives and false negatives as shown in 
following formular

Precision =
True Positive

True Positive+ False Positive

3. F1-score calculates the balanced measurement of the 
model performance between the ratio of precision 
and recall as shown in following formular

4. Support represents the number of tested samples for 
each ionogram class.

5. Accuracy represents the overall model performance 
by calculating the ratio between correct prediction 
and total number of tested samples as shown in fol-
lowing formular.

SVM model for image classification
SVM is a supervised machine learning algorithm used for 
data classification and regression. The algorithm deter-
mines the best hyperplane that can divide the data into sep-
arated categories by maximizing the margin width, which is 
the gap between the closest data points and the hyperplane. 
The SVM can handle low- and high-dimensional data and 
can be used for managing both linear and non-linear data 
using different kernel functions to transform the input data 
into a higher-dimensional space for data separation (Brere-
ton and Lloyd 2010; Raghavendra and Deka 2014). A lin-
ear kernel creates a linear boundary in the original feature 
space, while polynomial and Radial Basis Function (RBF) 
kernels use nonlinear transformations to achieve nonlinear 
boundaries in higher-dimensional spaces. Thus, these men-
tioned kernel tricks were evaluated to find out the most 
suitable kernel for this ionogram data set.

Table 1 defines the parameters for tuning the SVM clas-
sification model in this work. All input data are cropped 
into three-dimensional tensor, and a depth of one chan-
nel in grayscale images. The three main variables in SVM 

Recall =
True Positive

True Positive+ False Negative

F1 score = 2×
Precision× Recall

Precision+ Recall

Accuracy =
True Positive+ True Negative

Total number of predictions

Fig. 2 Flowchart of ionogram classification of a SVM model, b CNN 
model

Table 1 SVM model architecture for ionogram image 
classification task

Parameter Value

SVM parameters C parame-
ter = 0.01/0.1/1/10
Gamma 
value = scale/auto
Kernel trick = Lin-
ear/Polynomial/
RBF

Input size 224 by 224 pixels
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are C parameter, gamma value, and kernel function. C 
parameter is the regularization variable that adjusts the 
cost of misclassifying in training sample. Gamma value is 
used to determine a shape of the decision boundary, and 
kernel function is a mathematical function to transforms 
data into a higher-dimensional space for data separation. 
As previously stated, the way to obtain the optimized 
parameter is to utilize a hyperparameter tuning process. 
Hyperparameter tuning is used to determine the optimal 
values for the model to improve performance on a spe-
cific data which typically done through a combination of 
parameters and variables, then sort out the best param-
eters to optimize the SVM model. Another preprocess-
ing method for SVM classification model in this work is 
K-means clustering for data pre-separation. This cluster-
ing technique is a method of grouping samples based on 
their characteristics, aiming to place similar samples into 
the same group and distinguish them from other groups. 
The objective is to group the similar image based on their 
intensities together into clusters while maximizing differ-
ences between groups and minimizing variations within 
groups (Pham et al. 2005). In this step, K-means cluster-
ing is tested to separate the ionogram into three different 
size of clusters which are 2, 3, and 4. Then, each cluster 
will be applied with image filtering to examine how image 
filter affects the training and evaluation of SVM model.

CNN model for image classification
CNN is a type of neural networks commonly used in 
deep learning for image recognition and classification 
tasks using a series of convolutional layers to extract the 
features from the input image which need the pooling 
layers to reduce their dimensionality and resulting the 
extracted features of the input data. After, the model is 
trained by feeding the network with labelled input image 
and adjusting the network weights to minimize the dif-
ference between the predicted output (Chollet 2022). The 
last is classification process in fully connected (FC) layer 
consisting of neurons that applies the trained weight and 
connected to every neuron from the previous layer and 
apply activation functions to the sum of weighted values 
into the final output of image classification (Yamashita 
et al. 2018).

In this work, a VGG16 pretrained model is used as a 
base model for feature extraction, as defined in Table 2. 
Originally, the VGG16 model was developed by the 
Visual Geometry Group at the University of Oxford. 
The "16" in VGG16 refers to the number of layers in 
the network and has been trained on a large data set of 
images for computer vision and image classification tasks 
(Simonyan and Zisserman 2014). As determined in SVM 
model, a primary setup such as, the input image size, the 

number of samples and image cropping for VGG16 are 
the same.

On the other hand, CNN model will be applied with 
ImageDataGenerator as data augmentation besides 
applying on SVM model due to the process can be done 
only on CNN model. ImageDataGenerator is a utility 
function in Keras library works by generating batches 
of image with real-time augmentation during the train-
ing process of CNN model. It applies data transformation 
(image filtering) during the training process. ImageDa-
taGenerator can add the additional training samples 
in CNN model. The primary objective of the optimized 
model is to minimize training loss by adjusting the basis 
model parameters. This involves an optimizer, which 
determines how the model parameters are updated. 
Learning rate is a hyperparameter controlling the step 
size during learning process. Batch size represents the 
number of training samples processed in each iteration. 
Epoch indicates the number of training processes, allow-
ing the model to learn and refine its performance. The 
number of dense layers defines the model capacity and 
complexity. The dropout is a model regularization tech-
nique by randomly dropping the neuron units during 
the training process to prevent the overfitting problem. 
Lastly, the model performance is evaluated by classifying 
unlabeled ionogram images.

Results and discussions
This section provides the experiment result on preproc-
essing methods on ionogram image and both classifica-
tion models, also the parameter determination for both 
SVM and CNN models. Following this, the performance 
of both models for ionogram image classification is also 
evaluated.

Image preprocessing method
For both SVM and CNN models, the input images are 
cropped according to the F layer region of the ionosphere. 

Table 2 VGG16 model architecture for ionogram image 
classification task

Parameter Value

Base model (pretrained) VGG16

Optimizer Adam, Adagard, SGD

Learning rate 0.01, 0.001, 0.0001, 
0.00001, 0.000001

Number of dense layers 4, 5, 6, 7, 8, 9 layers

Input size 224 by 224 pixels

Batch size 32

Epoch (maximum) 100
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As shown in Fig. 3, the original ionogram image size of 
738 by 500 pixels is cropped into image shape of 224 by 
224 pixels with 1 greyscale channel to select the useful 
part of ionogram data. Furthermore, utilizing a down 
scaling with the input data can result in a faster training 
process.

SVM model performance
In this work, the parameters of SVM model are first 
tuned using hyperparameter tuning technique. Hyperpa-
rameter tuning refers to finding the optimal values that 
maximized model performance by evaluating each com-
bination of C parameter, gamma value, and kernel trick 
on the test data set, as shown in Table 3.

From Table 3, the tuned hyperparameters consist of C 
parameter equals to 0.1, Gamma value as auto and ker-
nel trick as polynomial. The next step is to apply these 
parameters to the SVM model and utilize the clustering 
technique to group up the data set with similar image 
intensity. K-mean clustering technique has been applied 
to separate ionogram images, as shown in Table 4.

Table 4 shows examples of ionogram images from dif-
ferent clustering size. The size of clusters determines the 
number of groups to be separated as indicated by the 
number of subclusters within 2, 3, and 4 clustering. If the 
cluster size is not aligned with the characteristics of the 
data set, it can lead to suboptimal separation. Thus, the 
clusters are varied and partitioned to examine the ben-
efits of the clustering technique across various cluster 
sizes.

The specification of the number of clusters is required 
before grouping into subclusters. Thus, the number 
of clusters varies, ranging from 2, 3, to 4 clusters. To 
determine the proper clustering size, all three cluster-
ing sizes must be evaluated. The experiment is then 
applied with 6 different image filters on each cluster to 
examine the impact of image filters on different cluster-
ing sizes.

Following this, a proposed image filtering technique is 
introduced to improve the training and learning process 
of the SVM model. The purpose of image filtering is to 
transform and extract the information from the original 
data, enhancing its utility and features for the model. 
Figure 4 shows an ionogram image with each of applied 
image filter, in Fig.  4b, sharpening filter sharpens the 
overall components in the image making it more notice-
able. In Fig. 4c, thresholding filter results in a significant 
separation between low and high image intensity. In 
Fig. 4d, median filter slightly blurs out grain noise in the 
ionogram image. In Fig.  4e, gamma correction empha-
sizes the overall image intensity similar to the threshold-
ing filter. In Fig. 4f, fast-NLmeans filter denoises the area 
with low intensity and remained the ionogram trace. In 
Fig. 4g, bilateral filter fades the background noise, while 
the ionogram trace still remained.

Then, the SVM model is evaluated for ionogram image 
classification utilizing the clustering technique with 2, 3, 
and 4 clusters, and subsequently tested each scenario by 
applying each image filters to every possible subcluster 
aiming to thoroughly examine the outcomes, as listed in 
Tables 5, 6, 7.

From Table 5, each image filter is utilized with all clus-
ters separately. Meanwhile, when referring to “All clus-
ters”, it means that the filter is applied on every sample 
during each evaluation. The results of applying the dif-
ferent image filters showed that the image sharpening fil-
ter achieved the highest classification accuracy of 86.5% 
when applied on the 1st cluster. While thresholding filter 
on all clusters and fast-NLmeans filter on the 1st cluster, 
both accuracies achieved 86.4%. Utilizing clustering tech-
nique leads to improved model performance compared 
to not using it. However, the achieved highest accuracy 
from 2 clustering is insignificant. Hence, testing more 
clustering size is evaluated.

Since, there are multiple subclusters, a comprehen-
sive evaluation is conducted, considering all possible 
cluster separation scenarios. This allows for a detailed 
examination of the image filter impact on these sub-
clusters, as illustrated in Table  6. The results showed 
that applying image sharpening filter on the 1st and 2nd 
clusters achieved the accuracy of 87.0% followed by fast-
NLmeans filter on the same clusters achieved the accu-
racy of 86.5%. In this regard, enhancing the image quality 

Fig. 3 Ionogram image with a original size, b cropped size

Table 3 Hyperparameter tuning: the highest accuracy results of 
each kernel trick on SVM model

* C parameter = [0.01, 0.1, 1, 10]
** Gamma value = [auto, scale]

Kernel trick C parameter* Gamma value** Accuracy (%)

Linear 1 Scale 86.1

Polynomial 0.1 Auto 86.2

RBF 0.01 Scale 64.1
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Table 4 Results of applying clustering technique to ionogram by descending the mean value of image intensity

Number of clusters Clustering size

2 clusters 3 clusters 4 clusters

1st cluster

2nd cluster

3rd cluster

4th cluster

on high image intensity ionogram can improve the SVM 
model accuracy with 3 clustering efficiently.

Table 7 shows the model classification accuracy on all 
possible cluster separations utilizing the image sharp-
ening filter can increase the model accuracy to be 86.8% 
when applied on the 1st and 3rd clusters and on only 
the 3rd cluster. Distinctly, applying median blur filter 
on the 4th cluster which contains low image intensity 
ionograms can also improve the accuracy to 86.8% as 
same as image sharpening filter.

After applied image filters and evaluated on 2, 3, and 
4 clustering sizes, the SVM model with 3 clustering and 
image sharpening filter applied on the 1st and 2nd clus-
ter successfully classified with the highest accuracy of 
87.0%, as shown in Table 8.

From Table  8, FSF and SSF classes achieved lower 
accuracies among the others because FSF phenom-
enon can be observed in various characteristics. 
Therefore, the model needs more of FSF samples with 
higher diversity of data set for the learning and train-
ing process, while SSF phenomenon significantly rare 
to be observed causing the data set is lack of an effec-
tive quantity of SSF samples. Moreover, image sharp-
ening filter on 2 and 4 clustering sizes also achieving 
the improved accuracy means that SVM model perfor-
mance had improved by utilizing a filter to emphasize 
the overall image features.

CNN model performance
Since CNN model generally has more parameters and 
more complex structure comparing to SVM model, 

each parameter can be adjusted or calibrated to obtain 
the best setup for each task. In this work, VGG16 pre-
trained model is selected to be used as a base model 
for the CNN classification model. VGG16 has been 
well performed in various classification competitions 
and has been used to detect the spread-F occurrence 
on the digital ionogram image (Luwanga et  al. 2022). 
Thus, VGG16 is a reliable pretrained model with suit-
able size of model structure to be evaluated in this 
work.

Table 9 shows the obtained results of using VGG16 to 
classify the ionogram data. The results indicate that the 
model can classify ionogram images with the accuracy 
of 89.3%. The SSF class achieved quite low accuracy due 
to insufficient training and validation data.

CNN model parameter tuning
Parameter tuning is used to observe the impact of dif-
ferent parameter settings on the model such as adjust-
ing the model optimizer, learning rate and varying the 
size of fully connected layer. Tuning can help the model 
to gain more efficiency for capturing and extracting 
image features improving the model learning effec-
tiveness, reduce overfitting, and enhance computa-
tional efficiency (Kandel and Castelli 2020). The model 
structure was first modified by adjusting the optimizer 
and learning rate to observe the impacts of each con-
figuration and find the most suitable parameter setup. 
The optimizers were evaluated using Adam, Adagard, 
and Stochastic Gradient Descent (SGD), while the 
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learning rate was evaluated across the range of 0.01, 
0.001, 0.0001, 0.00001, and 0.000001 (Isa et al. 2022), as 
shown in Table 10.

Table  10 shows that Adam optimizer with a learning 
rate of 0.00001 achieved the highest accuracy of 89.3%, 
while Adagard and SGD achieved 86.8% and 88.8%, 

Fig. 4 Samples of ionogram image with a no image filter, b image sharpening filter, c image thresholding filter, d median blur filter, e gamma 
correction filter, f fast-NLmeans filter, g bilateral filter

Table 5 SVM model classification accuracy with image filters and clustering size of 2

Applied clusters Model accuracy of each cluster with image filtering (%)

Image sharpening Image thresholding Median blur Gamma 
correction

Fast-NLmeans Bilateral

1st cluster 86.5 85.9 85.8 85.9 86.4 85.9

2nd cluster 85.7 85.4 85.8 85.4 86.1 86.4

All clusters 86.1 86.4 83.9 85.8 85.8 85.8

Table 6 SVM model classification accuracy with image filters and clustering size of 3

Applied clusters Model accuracy of each cluster(s) with image filtering (%)

Image sharpening Image thresholding Median blur Gamma 
correction

Fast-NLmeans Bilateral

1st cluster 86.5 86.1 85.4 86.1 86.1 85.8

2nd cluster 86.2 85.8 85.1 86.2 86.5 85.8

3rd cluster 85.5 85.7 85.5 85.8 85.8 85.8

1st and 2nd cluster 87.0 85.8 84.7 85.8 86.5 85.9

1st and 3rd cluster 85.4 85.5 85.9 85.2 85.8 85.4

2nd and 3rd cluster 85.5 86.2 84.2 86.1 86.2 86.1

All clusters 86.1 86.4 83.9 85.8 85.8 85.8
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respectively. Therefore, a further experiment was con-
ducted using the Adam optimizer with a learning rate of 
0.00001, as it was the most suitable setup for the CNN 
model.

Fully connected layer modification
The modification can be done by varying the size of the 
fully connected layer from the shallower to deeper struc-
ture. The shallower model structure requires more nodes, 
number of neurons and layers in fully connected layer 
to process data features as to obtain the similar perfor-
mance. Compared to the deeper architecture, it requires 
a smaller number of neurons while costing more compu-
tational units (Basha et  al. 2020). Thus, the experiment 
was conducted to test on the different configurations 
of fully connected layer on CNN model with VGG16 to 
observe its impact on the model performance.

The model was designed to vary the configuration from 
4 to 9 fully connected layers by the bottom layer of the 

model corresponding to the classification for five classes 
of ionogram data, as shown in Table 11.

After adjusting and tuning model structures, the results 
showed that the deeper model architectures achieved 
higher accuracy score (Zhong et  al. 2019) while slightly 
decrease upon the shallower architectures. From the 
experiment results, with each training iteration of the 
CNN model, the results demonstrate the variability with 
different accuracy scores. This means that more experi-
ments with these configurations are needed as these 
modifications improved the CNN model to acquire a 
higher accuracy for ionogram classification task as in 
comparison to the original architecture.

Data augmentation
This method provides various properties to configure the 
data augmentation process. This augmentation method 
makes the model to be trained with more diversity of 
ionogram data with the ability to determine the possibil-
ity of applying the filter. This function could be evaluated 

Table 7 Results of applying image filters with clustering size of 4 on SVM model

Applied clusters Model accuracy of each cluster(s) with image filtering (%)

Image 
sharpening

Image 
thresholding

Median blur Gamma 
correction

Fast-NLmeans Bilateral

1st cluster 86.2 85.7 86.1 85.1 85.8 86.1

2nd cluster 85.7 85.8 85.5 86.1 85.9 85.8

3rd cluster 86.8 85.9 84.7 86.4 86.4 86.4

4th cluster 85.9 85.4 86.8 86.1 85.2 85.8

1st and 2nd cluster 84.9 85.7 85.1 85.7 86.4 86.2

1stand 3rd cluster 86.8 86.1 84.5 85.4 86.4 86.5

1st and 4th cluster 86.2 85.7 85.9 86.1 86.5 85.5

1st, 2nd and 3rd cluster 86.2 85.9 83.4 84.8 86.1 86.5

1st, 2nd and 4th cluster 85.4 85.8 86.1 85.8 86.2 86.5

1st, 3rd and 4th cluster 86.5 86.2 84.4 86.4 86.5 85.8

2nd and 3rd cluster 85.5 86.2 84.5 85.9 85.8 86.5

2nd and 4th cluster 85.9 85.4 85.5 85.8 86.1 86.2

2nd, 3rd and 4th cluster 86.4 85.8 86.1 85.9 85.9 86.1

3rd and 4th cluster 86.2 85.9 85.5 86.4 85.8 85.8

All clusters 86.1 86.4 83.9 85.8 85.8 85.8

Table 8 Results of SVM model with 3 clustering and image 
sharpening filter

Type/Class Precision (%) Recall (%) F1-score Support

Clear 92.8 98.0 95.3 198

FSF 71.9 71.9 71.9 114

RSF 83.3 84.4 93.9 243

SSF 81.2 68.4 74.3 19

Unidentified 99.2 90.8 94.8 130

Table 9 CNN model performance with original VGG16 structure

Type/Class Precision (%) Recall (%) F1-score Support

Clear 96.0 97.5 96.7 198

FSF 78.4 70.2 74.1 114

RSF 83.5 91.8 87.5 243

SSF 100 36.8 53.8 19

Unidentified 99.2 96.9 98.1 130
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across the possibility range of 20%, 40%, 60%, 80%, and 
100%. The experiment with ImageDataGenerator was 
conducted through the CNN model with 4 to 9 layers as 
the fully connected layer optimization process to observe 
its impact of each image filter precisely as the outcomes 
of ImageDataGenerator listed in Table 12.

Table  12 shows that the model with 7, 8, and 9 fully 
connected layers achieved the same accuracy of 92.0% on 
fast-NLmeans, bilateral, and median blur filter, respec-
tively with 20% of filter utilization. Then, the models 
are applied with generalization technique to assess the 
improvement using dropout technique.

Model regularization technique
After training and testing CNN model with ImageDa-
taGenerator, the model regularization technique called 
dropout technique is utilized. Dropout is mainly used 
to improve generalization and prevent overfitting of the 
model. During training process, dropout will randomly 
select a subset of neurons of each layer and temporar-
ily drop the operation of those neurons by setting their 
outputs to zero with a probability of P as the remaining 
neurons are kept with a probability Q. Dropout helps 
CNN model to learn more robust and generalizable 
representations (Mhaskar and Poggio 2016; Khan et al. 
2019). The next experiment is to evaluate the impact 
of dropout technique on the chosen model by testing 
across the value of 10 to 90% with step size of 10% on 
the selected CNN model with ImageDataGenerator, as 
shown in Table 13.

After evaluating the model with the dropout tech-
nique from Table 13, the results showed that the 7-layer 
model with 30% of dropout achieved the highest accu-
racy score at 92.9% along with 98.0 of F1-score for 
clear ionogram, 85.1 for FSF, 90.7 for RSF, 66.7 for SSF, 
and 99.2 for unidentified class, as shown in Table  14. 
Followed by the 8-layer model with 10% of dropout 
achieved the accuracy of 92.2%. However, the drop-
out technique with 9-layer model fails to improve the 
model accuracy resulting in a lower accuracy score of 

91.8% which is lower than the 9-layer model without 
dropout technique.

After the dropout test, the dropout technique improved 
the performance on the 7- and 8-layer models in this 
work. On the other hand, the 9-layer model achieved a 
lower accuracy. This means that the model requires no 
model regularization as it might lead to significant infor-
mation loss during training process and hindering learn-
ing resulting in lower model accuracy and performance.

As the tuned CNN model has been augmented with 
fast-NLmeans filter for feature extraction and dropout 
technique for model regularization, the model perfor-
mance efficiently improved as it can achieve the high-
est accuracy score of 92.9% to classify ionogram images. 
Nonetheless, the model struggled with effectively clas-
sifying SSF class. Because it rarely observed at the sta-
tion causing the extremely low number of samples for 
training and validation, severely impacting the model 
performance. Subsequently, FSF class also achieves low 
accuracy, possibly caused by the same reason as SSF 
class.

SVM and CNN model performances comparison
After tuning and applying the data preprocessing meth-
ods into SVM and CNN model, the CNN model per-
formed better than the SVM model with the model 
accuracy of 92.9% and 87.0%, respectively, as shown in 
Table  15. Both achieved high accuracies on classifying 
clear class and unidentified class because not only these 
classes have the most simple characteristic and pattern 
but also have a high number of samples making both 
models learned and performed very well. CNN model 
exhibited higher performance for both clear and uniden-
tified class than SVM model.

Based on the results, the complexity of each spread-
F characteristic presents a significant challenge for 
obtaining the precise classification. The CNN model 

Table 10 Evaluation results of model optimizer and learning 
rate on CNN model

Learning rate Accuracy of different optimizers (%)

Adam Adagard SGD

0.01 34.5 76.6 28.1

0.001 34.5 34.5 28.1

0.0001 88.8 86.8 88.5

0.00001 89.3 81.2 88.8

0.000001 81.1 69.3 86.6

Table 11 Evaluation results of different sizes of fully connected 
layer on CNN model

Size of fully connected layer Model 
accuracy 
(%)

2 layers (128 neurons) 86.4

3 layers (256 neurons) 86.4

4 layers (512 neurons) 88.1

5 layers (1024 neurons) 87.9

6 layers (2048 neurons) 88.9

7 layers (4096 neurons) 89.6

8 layers (8192 neurons) 89.8

9 layers (16,384 neurons) 90.6
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can classify FSF class better than SVM model by 13.2%. 
As mentioned, FSF class has many varieties of charac-
teristics which is why it has a lower accuracy compared 
to other spreading pattern. Conversely, the SVM model 
classified RSF and SSF class better than CNN model by 
3.2% and 7.6%. In the case of RSF class, the CNN might 
has suffered from overfitting to noisy data leading to false 
classification. For SSF class, it basically contains a lot of 
noises making both models cannot learn the patterns and 
features enough. While SSF class has the fewest training 
samples among others resulting in low accuracy. How-
ever, the CNN model managed to classify all ionogram 
with better accuracy than SVM model.

The SVM and CNN classification model in this work can 
classify five types of ionogram images, while the SVM and 
CNN with VGG16 models by Luwanga et  al. (2022) can 

Table 12 Results of the CNN model with ImageDataGenerator with filters on different size of fully connected layer

FC layer Filter applied 
rate (%)

Model accuracy with different image filters (%)

Image 
sharpening

Image 
thresholding

Median blur Gamma 
correction

Fast-NLmeans Bilateral

4 layers 20 90.5 89.5 89.3 88.2 88.1 89.2

40 90.1 90.1 89.3 88.7 86.8 89.2

60 89.1 91.8 88.6 88.5 89.8 89.6

80 90.2 89.2 90.3 88.2 88.5 89.1

100 88.6 88.4 86.4 90.2 88.8 89.5

5 layers 20 90.8 90.8 90.2 88.6 88.2 89.8

40 89.5 90.8 90.1 89.6 89.5 89.2

60 88.4 89.2 89.9 91.3 91.1 89.8

80 91.6 90.9 89.9 90.8 88.4 90.9

100 90.3 89.2 90.3 89.9 89.9 88.6

6 layers 20 91.9 88.9 90.2 88.5 89.2 89.1

40 89.3 90.8 90.2 90.8 88.4 88.4

60 90.6 90.2 90.1 89.5 88.9 90.1

80 90.6 89.9 89.2 89.9 90.8 90.3

100 89.9 91.8 90.5 91.1 90.3 87.9

7 layers 20 90.5 90.2 88.2 89.6 92.0 91.1

40 91.8 91.3 89.5 90.1 90.6 90.6

60 90.9 91.6 90.3 87.8 89.5 89.3

80 90.6 91.1 90.6 89.6 88.8 90.9

100 90.6 91.9 89.8 90.2 88.2 88.5

8 layers 20 90.2 90.2 90.9 89.1 90.6 92.0

40 91.3 89.2 88.8 88.1 91.1 92.0

60 90.6 89.9 88.6 91.5 88.9 90.5

80 90.5 90.9 91.2 81.8 89.8 90.9

100 90.8 91.1 88.2 90.1 90.3 88.6

9 layers 20 89.6 91.3 92.0 90.5 91.1 89.9

40 91.6 91.1 90.5 90.8 91.1 91.3

60 91.1 89.8 91.2 89.6 90.6 89.3

80 88.8 90.6 89.5 88.9 91.2 90.8

100 87.5 88.5 90.6 90.6 89.1 90.9

Table 13 Performance of CNN model with dropout on the 
selected models

Dropout 
rate (%)

Model accuracy (%)

7-layer with fast-
NLmeans filter

8-layer with 
bilateral filter

9-layer with 
median blur filter

10 91.2 92.2 90.3

20 90.6 91.1 91.1

30 92.9 87.1 88.5

40 91.2 60.7 78.7

50 34.5 34.5 60.1

60 34.5 34.5 34.5

70 34.5 34.5 34.5

80 34.5 34.5 34.5

90 34.5 34.5 34.5
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classify two types of digital ionogram which are ionogram 
with and without spread-F. In addition, the digital iono-
gram images recorded by the FMCW-type ionosonde at 
Cumphon station have lower data resolution and require 
the manual interpretation introducing the human error in 
some cases. Then, it is more complicated to compare the 
data and results between the FMCW-type and digital ion-
osondes. Moreover, if the alternative ionogram types are 
employed beyond those used in this research, it becomes 
imperative to train new models with specific data to those 
ionograms. The other kinds of ionogram images might 
have similar characteristics by the trace and spread-F pat-
terns. However, the background noise and other compo-
nents of plotting characteristic in the ionogram images 
might be differed due to the different places of record 
station and the used of different ionosonde type. None-
theless, utilizing the obtained weights from this research 
which trained for ionogram classification, can potentially 
enhance the learning efficiency and classification accuracy 
of the model on other kinds of ionogram images.

Conclusions
In this work, SVM and CNN models were evaluated as an 
automatic ionogram image classification model to classify 
the total of 4,963 ionogram images into five classes: clear 
(1,320 images), FSF (760 images), RSF (1,620 images), SSF 
(126 images), and unidentified class (866 images). With 
the use of image filtering which are image sharpening, 
image thresholding, median blur, gamma correction, fast-
NLmeans, and bilateral filters for the feature extraction. In 
SVM model, it was firstly tuned using hyperparameter tun-
ing to determine the appropriate parameter for the model 

then K-means clustering technique was utilized before 
proceeding image filters. As the result showed that this 
method improved the classification performance. In CNN 
model, the model optimizer, learning rate, and the size of 
dense layer were tuned before utilizing ImageDataGenera-
tor as the data augmentation technique which improved 
the classification performance satisfactorily. From the anal-
ysis, the performances of CNN and SVM are satisfactory in 
classifying ionogram images. The CNN model achieved the 
classification accuracy of 92.9% which outperformed SVM 
model with accuracy of 87.0%. However, SVM outperforms 
CNN in classifying RSF and SSF classes, especially in SSF 
class, due to the limited data set of SSF samples for CNN 
model. This is because finding a hyperplane with a maxi-
mum margin prioritizes the characteristics of the data over 
the quantity of samples, enabling SVM to generalize effec-
tively, especially with limited data sets. On the other hand, 
CNN outperforms in classifying clear, FSF, and unidentified 
classes benefiting from its more complex algorithm and 
larger sample sizes for each class compared to the SSF class. 
Despite the models and preprocessing technique, data set 
quantity remains crucial for model performance. Obtain-
ing an ideal data set is challenging due to due to varying 
spread-F occurrence probabilities, increasing samples will 
certainly improve the classification performance. From this 
research, the classification models can be utilized for the 
FMCW-type ionosondes in the SEALION Project (Maruy-
ama et  al. 2007) or other stations employing the same 
system. In cases where ionograms obtained from other 
ionosonde types, the obtained weights from this work can 
be used and applied for further study. In summary, the 
ionogram image classification model using SVM and CNN 
model can classify ionogram images within the given data 
set admirably. While SVM model performs well in certain 
scenarios and CNN model exhibited a stronger overall per-
formance. In addition, these models will be useful to the 
automatic scaling of spread-F for the detection and clas-
sification of Equatorial Plasma Bubbles (EPB), particularly 
during the approaching solar maximum. This has practical 
implications in the field of ionospheric science and applica-
tions, enhancing the ability to understand the ionospheric 
phenomena.
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SVM  Support vector machine
CNN  Convolution neural network
NICT  National Institute of Information and Communications 

Technology
SEALION  Southeast Asia low-latitude ionospheric network
FSF  Frequency spread-F
RSF  Range spread-F
MSF  Mixed spread-F
SSF  Strong spread-F
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FMCW  Frequency-modulated continuous wave
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Table 14 Results of 7-layer CNN model with 
ImageDataGenerator and dropout (30%)

Type/Class Precision (%) Recall (%) F1-score Support

Clear 98.0 98.0 98.0 198

FSF 85.1 85.1 85.1 114

RSF 89.6 91.8 90.7 243

SSF 90.9 52.6 66.7 19

Unidentified 98.2 100.0 99.2 130

Table 15 Model performance comparison between SVM and 
CNN models

Model F1-score of each class on SVM and CNN models

Clear FSF RSF SSF Unidentified

SVM 95.3 71.9 93.9 74.3 94.8

CNN 98.0 85.1 90.7 66.7 99.2
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FPN  Feature pyramid network
IoU  Intersection over union
VGG  Visual geometry group
ResNet  Residual network
EfficientNet  Efficient neural network
ViT  Vision transformer
MobileNet  Mobile neural network
Fast-NLmeans  Fast non-local means filter
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