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Abstract 

Rapid and accurate earthquake magnitude estimations are essential for earthquake early warning (EEW) systems. 
The distance information between the seismometers and the earthquake hypocenter can be important to the mag-
nitude estimation. We designed a deep-learning, multiple-seismometer-based magnitude estimation method using 
three heterogeneous multimodalities: three-component acceleration seismograms, differential P-arrivals, and dif-
ferential seismometer locations, with a specific transformer architecture to introduce the implicit distance informa-
tion. Using a data-augmentation strategy, we trained and selected the model using 5365 and 728 earthquakes. To 
evaluate the magnitude estimation performance, we use the root mean square error (RMSE), mean absolute error 
(MAE), and standard deviation error (ϭ) between the catalog and the predicted magnitude using the 2051 earth-
quakes. The model could achieve RMSE, MAE, and ϭ less than 0.38, 0.29, and 0.38 when the passing time of the earliest 
P-arrival is 3 s and stabilize to the final values of 0.20, 0.15, and 0.20 after 14 s. The comparison between the proposed 
model and model ii, which is retrained without the specific architecture, indicates that the architecture contributes 
to the magnitude estimation. The P-arrivals picking error testing indicates the model could provide robust magnitude 
estimation on EEW with an absolute error of less than 0.2 s.
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Graphical Abstract

Introduction
Rapid and accurate earthquake magnitude estimation 
during quaking is essential for earthquake early warning 
(EEW) systems, especially in providing quick informa-
tion about the earthquake to the public or specific users 
(Yamada et  al. 2021). The earthquake magnitude meas-
ures the size of the earthquake empirically using the peak 
amplitude after the distance is corrected carefully (Funa-
saki & Earthquake Prediction Information Division 2004; 
Katsumata 2004; Moriwaki 2017; Richter 1935; Tsuboi 
1954), such as the Japan Meteorological Agency Mag-
nitude (MJMA) is defined based on multiple magnitudes 
(the local meteorological office magnitude, displace-
ment magnitude, and velocity magnitude). The classi-
cal methods applied to EEW systems would be roughly 
classified into the predominant period (Kanamori 2005; 
Heidari 2018), peak amplitude (Wu & Zhao 2006; Kuyuk 
and Allen 2013; Colombelli et al. 2020), and energy (Festa 
et al. 2008), which still play a vital and foundational role 
in EEW. However, the accuracy of the magnitude estima-
tion is associated with the determination of the hypo-
center location which the challenges still exist to pinpoint 
the hypocenter location in real-time primarily due to 

limited information in the early stage of the earthquake 
(Saad et  al. 2022b) not yet considering the peak inte-
grated amplitude influenced by the low-frequency noise 
(Yamada and Mori 2009). There are two representative 
strategies to extract information from the waveforms for 
magnitude estimation: the classical methods (Colombelli 
et  al. 2020; Kanamori 2005; Kuyuk and Allen 2013; Wu 
and Zhao 2006) and deep-learning methods (Kuang et al. 
2021; Mousavi & Beroza 2020a; Münchmeyer et al. 2021; 
Saad et  al. 2022a). The classical methods could be con-
sidered the seismologist expertise-based physics features 
extraction strategy, and the deep-learning methods could 
be considered the automatic and direct features extrac-
tion strategy assisted by the seismologist expertise. Some 
seismologists are trying to utilize deep-learning methods 
to obtain low error levels of magnitude estimation per-
formance and make some progress, especially in the early 
stage of the earthquake (Münchmeyer et al. 2021).

In recent years, researchers have adopted deep-learn-
ing approaches to solve problems in various seismic fields 
from waveforms, such as earthquake detection (Meier 
et  al. 2019; Perol et  al. 2018; Reynen and Audet 2017), 
phase picking (Mousavi et  al. 2020; Zhu and Beroza 
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2019), estimation of earthquake location (Lomax et  al. 
2019; Mousavi and Beroza 2020b; Münchmeyer et  al. 
2021), and magnitude estimation (Kuang et  al. 2021; 
Lomax et  al. 2019; Mousavi & Beroza 2020a; Münch-
meyer et  al. 2021; Saad et  al. 2022a). The architectures 
of these magnitude estimation algorithms are mainly the 
convolutional neural networks (CNN), the long-short 
memory networks (LSTM), and the transformer net-
works. The CNN could extract significant features due to 
its architecture with a parameter-sharing design. How-
ever, it requires scale/normalization input or other neural 
networks to avoid the domination of features with higher 
amplitudes on the prediction results (Saad et al. 2022a). 
As a result of the importance of the waveform’s ampli-
tude, it is challenging to use only CNN on magnitude 
estimation. Compared with CNN, the LSTM is insensi-
tive to the non-normalization waveforms due to the gate 
mechanism with the Tanh and Sigmoid activation func-
tion (Hochreiter and Schmidhuber 1997; Mousavi et  al. 
2019). It is suitable to combine with CNN on magnitude 
estimation, such as the algorithms (Lomax et  al. 2019; 
Mousavi and Beroza 2020a). Although the methods are 
not suitable for real-time in the current structure, their 
design concepts are still worth learning to design a real-
time deep-learning magnitude estimation model; that is, 
CNN extracts significant features, and LSTM avoids the 
domination of features with higher amplitudes on the 
prediction results. The LSTM is specially designed for 
time series, which could process unfixed time using the 
different lengths of waveforms recorded on different seis-
mometers due to the wave propagation and seismometer 
distribution during quaking. The transformer networks 
(Vaswani et  al. 2017) could weigh the features accord-
ing to their relationship using the attention mechanism, 
which could be suitable for processing the features from 
multiple seismometers with different lengths of wave-
forms in real-time. The typical method (Münchmeyer 
et  al. 2021) utilized the CNN to extract the onsite fea-
tures and combine them with six transformer encoders. 
To our knowledge, it belongs to the earliest use of trans-
former encoder for multiple seismometers. In addition, 
they proposed a set of practices to build a model for 
fast earthquake source characterization, which is sig-
nificant to help more seismologists establish a suitable 
deep-learning model in their fields. Moreover, the trans-
former networks for extracting features corresponding 
to different times using a single waveform for magnitude 
estimation have made the process, and the seismologists 
are developing it to suit real-time situations (Saad et al. 
2022a). Several real-time methods currently use CNN 
(such as Van Den Ende and Ampuero 2020), seemingly 
introducing largely noise or invalid zeros, which may still 
be debated (Saad et al. 2022a).

Most magnitude estimation methods are not real-time 
or network approaches. These models provide evidence 
that distance information is essential for magnitude esti-
mation, directly introducing distance or automatically 
extracting from P/S phases in waveform (Kuang et al. 2021; 
Mousavi and Beroza 2020a). For the magnitude estimation 
approaches in EEW, it is ideal to introduce the location 
information based on the final earthquake location. Unfor-
tunately, the estimation of the earthquake location might 
vary with the increase in earthquake information during 
quaking. A recent study provides a random forest-based 
approach to accurately estimate the earthquake location 
using differential P-wave arrivals and seismometer loca-
tions recorded on the five earliest seismometers (Saad et al. 
2022b). The method inspires us to introduce location infor-
mation on magnitude estimation for processing the variety 
of earthquake location estimations at the early stage of an 
earthquake. However, making direct model fusion on the 
above random forest model and a deep-learning magnitude 
estimation model using waveforms is challenging. On the 
other hand, it should be carefully considered to utilize the 
two types of heterogeneous multimodality data of an earth-
quake on magnitude estimation based on the deep-learning 
methods: the time series sequence data of the waveforms 
and the text data of the P-wave arrivals and seismometer 
locations, which the two type multimodalities might be 
related to different physics meanings. Recently, multimodal 
machine learning (MMML) could construct models that 
can process and relate information from multiple heteroge-
neous modalities (Baltrušaitis et al. 2018; Lahat et al. 2015), 
having been paying attention to a variant of multi-discipli-
nary fields, e.g., computer vision (Luo et al. 2022; Radford 
et  al. 2021; Wang et  al. 2021a, b), natural language pro-
cessing (Gong et al. 2021; Liu et al. 2021). Some research 
indicates that transformer architectures perform well on 
multimodality fusion tasks of MMML (Gong et  al. 2021; 
Nagrani et al. 2021; Zhu et al. 2020) and provide a way to 
process multimodality data of an earthquake. Although the 
real-time magnitude estimation methods (Münchmeyer 
et  al. 2021) could generally extract distance information 
from the waveforms recorded on each seismometer, it may 
not always work at the initial of the earthquake, especially 
when the seismometers are far from the earthquake loca-
tion, which leads to the larger travel time between the P/S 
phases. Thus, to avoid the potential situation, we expect to 
introduce the additional location information by the mul-
tiple triggered seismometers. Considering that the scale/
normalization influence could decrease by incorporat-
ing the maximum amplitude as additional input still be 
debated (Kuang et  al. 2021; Lomax et  al. 2019; Münch-
meyer et al. 2021; Mousavi and Beroza 2020a) when only 
using CNN, we adapt the CNN–LSTM model as the onsite 
extraction as the models (Lomax et al. 2019; Mousavi and 
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Beroza 2020a). In this paper, we propose deep-learning-
based methods for real-time magnitude estimation using 
three heterogeneous multimodalities: multiple seismome-
ter waveforms, differential P-wave arrivals, and differential 
seismometer locations, with a specific architecture to intro-
duce the distance information by automatically processing 
the variety of hypocenter location estimation. We evaluate 
the magnitude estimation performance of our model and 
provide evidence for the effectiveness of the specific archi-
tecture using the root mean square error (RMSE), mean 
absolute error (MAE), and standard deviation error (ϭ).

Methods
Inputs
The input to the model consists of three heterogeneous 
multimodalities, including the three-component accelera-
tion seismograms from multiple seismometers, differential 
P-wave arrivals (T), and differential seismometer locations 
(L). We construct the acceleration seismograms based on 
the P-wave arrivals as the following process: We set t1 + 
tnoise and ti + tnoise as the lengths of the acceleration wave-
forms recorded on the earliest and later P-wave arrival seis-
mometers. ti is the waveform length after P-wave arrival 
recorded on the ith seismometer and tnoise is the noise 
length. To simulate the real situation, ti should be t1–�ti 
which �ti is the travel time between the ith P-wave arrival 
seismometer and the earliest P-wave arrival seismometer 
(i = 1, 2, …). We clipped the waveforms after the P-wave 
arrival recorded on the ith seismometer when ti is greater or 
equal to 1.0 s, reference t1 from 1 to 30 s with an interval of 
1 s. To make the model learn the noise condition, we set the 
length of the noise ( tnoise ) as 1 s before the P-wave arrival at 
each seismometer. Based on the previous study (Mousavi & 
Beroza 2020a) about the effectiveness of the amplitude on 
magnitude estimation, we do not adopt any normalization 
process. We assumed the P-wave arrival could be identified 
when the length of the P-wave is greater or equal to 1 s. For 
the other inputs of the differential P-wave arrivals and dif-
ferential seismometer locations could be expressed as

where �lati represents the numerical latitude differ-
ence between the ith and the earliest P-arrival seismom-
eter, �loni represents the numerical longitude difference 
between the ith and the earliest P-arrival seismometer. 
Considering the computational cost, we set the maxi-
mum number of seismometers to 20. In addition, to 
simulate the real-time condition, the ith P-arrival seis-
mometer should be triggered at the same time.

(1)T = [�t1,�t2, . . . ,�ti]

(2)L = [(�lat1,�lon1), (�lat2,�lon2), . . . , (�lati ,�loni)]

Model
We build the real-time earthquake magnitude estimation 
model based on the CNN, LSTM, and transformer archi-
tecture. The proposed model consists of four parts: single 
waveform feature extraction, implicit distance informa-
tion extraction, feature fusion, and magnitude output. 
We adopt CNN and LSTM layers to extract each three-
component acceleration waveform. We mainly utilize 
the CNN layer without any activation unit to downsam-
ple the three-component dimensions of the waveform. 
The kernel size and step size are 3×1. To the ith P-arrival 
seismometer with waveform dimension 3×100× ( ti+1) 
(the sampling frequency is 100 Hz), the dimension tunes 
to 100× ( ti+1) by the CNN layer which keeps the time 
series of the waveform. Then, we adopt the LSTM with 
32 units to extract the features in advance, in which the 
activation and recurrent activation are Tanh and Sig-
moid activation functions (Hochreiter and Schmidhu-
ber 1997), respectively. The LSTM could have the same 
weights on the time series, which could be more suitable 
for processing the unfixed time length of the waveforms. 
We set the input time window to the LSTM as 0.5 s (50 
points) and slip the time window with an interval of 0.5 s. 
We selected the final time window output by the LSTM 
units as the single waveform features. To avoid possible 
information leakage, we selected the penultimate time 
window output by the LSTM as the final single waveform 
features when the length of the last input time window is 
less than 0.5 s. The advantage of the LSTM design is that 
it could make the dimension of the features the same as 
the features extracted from each three-component accel-
eration waveform with unfixed time length.

For the implicit distance information extraction archi-
tecture, we mainly utilized the transformer encoder and 
decoder architectures to extract and fuse features. We 
tune the dimension and extract features of the differential 
P-wave arrivals or the differential seismometer locations 
by a fully connected layer (FC) without any activation 
units, respectively. The input dimension is i × 1 (or i × 2) 
and the output dimension is i × 32. The dimension pro-
cess could make the following calculation easily by the 
transformer encoder and decoder architectures. We 
first extract the time feature vectors by the transformer 
encoder with the input of the differential P-arrivals after 
the FC layer. The time feature vectors might indicate the 
travel time relationships between the seismometers and 
the location of an earthquake. Then, we obtain the loca-
tion feature vectors using the transformer decoder by 
fusing the input of the differential seismometer locations 
after the FC layer (as the query vector) and the time fea-
ture vectors (as the value and key vectors). The location 
feature vectors might indicate the distance between the 
seismometers and the location of an earthquake. The 
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transformer encoder contains a self-attention layer, a 
layer normalization layer, two FC layers, and one dropout 
rate layer, as shown in Fig.  1. The transformer decoder 
has one attention layer, three layer normalization layers, 
two FC layers, and one dropout rate layer (Fig.  1). The 
two FC layers contain 64 and 32 neurons, respectively, 
the first FC layer followed by a Relu (rectified linear unit) 
activation (Nair & Hinton 2010) unit and a dropout layer 
(Srivastava et  al. 2014). The above architecture differs 
from the traditional architecture (Vaswani et  al. 2017). 
We adopt the above architecture as the previous study 
(Xiong et al. 2020), which could be easily trained without 
a warm-up stage.

We fuse the features from multiple seismometers 
through a transformer encoder and a global average pool-
ing (GAP) layer. We first add the location feature vectors 
on the waveform features from multiple seismometers. 
Then, we adopt the transformer encoder on the adding 
features to obtain the weight features. We use a global 

average pooling (GAP) layer to downsample the weight 
features. The GAP could be flexible to make the model 
process multiple seismometer features. Then, we use an 
FC layer with one neuron to estimate the magnitude.

Results
To ensure the data quality, we selected the earthquakes 
recorded on the K-NET and KiK-net between January 
2008 and June 2020 as the following criteria (National 
Research Institute for Earth Science and Disaster Resil-
ience, 2019). (1) The P-wave arrivals could be identified; 
(2) epicenter distances are less than 2 degrees; (3) mag-
nitudes of the earthquakes are greater or equal to MJMA 
3.0; (4) depths of the earthquakes are less than 300  km; 
(5) acceleration waveforms in three components are 
recorded on the seismometers equipped at the ground 
surface or upbore (Okada et al. 2004); (6) signal-to-noise 
ratios (SNR) are greater than 10 which the SNR is defined 
based on the previous study (Wang et  al. 2021a, b); and 

Fig. 1  Architecture of the proposed model for magnitude estimation
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(7) seismometers are greater than 5. We selected 297,099 
three-component waveforms from 8144 earthquakes in 
Japan’s inland and offshore areas. We obtained the above 
acceleration waveforms from the online data sets. The 
information concerning the event location, seismometer 
location, and magnitude are provided by the JMA (Japan 
Meteorological Agency). After picking the P-arrivals man-
ually and removing the baseline offset by subtracting the 
mean before P-arrival, we filtered these waveforms with 
corner frequencies of 0.075  Hz using a high-pass digital 
infinite impulse response (IIR) filter. Then, we extracted 
the earthquakes after the origin time of 11 November 
2016 as the testing data set, which is used to evaluate the 
model. We randomly split the earlier earthquakes into the 
training and validation data sets. The training and valida-
tion data sets are used to train and select the model. The 
training, validation, and testing data sets consist of 5,365, 
728, and 2,051 earthquakes, with magnitude ranges from 
3.0 to 9.0, 3.0 to 7.3, and 3.0 to 7.4, as shown in Fig. 2b. 
As there are only two earthquakes whose magnitudes 
exceed 7.0 on the testing data set, we add the earthquake 
with a magnitude of 7.4, and the origin time is 2022/03/16 
23:36. For each data set, most earthquakes’ magnitudes 
and depths range from 3.0 to 5.0 (Fig. 2b) and 0 to 100 km 
(Fig.  2c). Figure  2d shows the distribution between the 

magnitudes and epicenter distances (∆) of these earth-
quakes’ waveforms in three data sets, and the testing data 
set has a few points with ∆≤ 50 km when the magnitude 
is ≥ 5.0. Most epicenter distances are distributed from 20 
to 100  km in each data set (Fig.  2e). We set the catalog 
magnitude provided by the Japan Meteorological Agency 
as a label, and we expected the model to estimate the cata-
log magnitude, which could be considered as JMA magni-
tude. We trained the model for 150 epochs using the mean 
square error (MSE) loss function with an Adam optimizer 
(the initial and final learning rate is 0.001 and 0.0001) 
and randomly selected the 129th model when valida-
tion loss was stable during training processing. To avoid 
overfitting, we adopted a data augmentation strategy and 
randomly selected 20 seismometers per earthquake dur-
ing training, if possible. During the model evaluation, we 
evaluated the model using the 20 earliest P-arrival seis-
mometers per earthquake. We achieved the data aug-
mentation strategy by resampling the earthquakes with 
the unfixed ratios to make the sample number of different 
magnitude bins approximately the same. The ranges of the 
magnitude bins are 3.0 ~ 3.5, 3.5 ~ 4.0, 4.0 ~ 4.5, 4.5 ~ 5.0, 
5.0 ~ 5.5, 5.5 ~ 6.0, 6.0 ~ 6.5, 6.5 ~ , respectively.

We evaluated the proposed model by the root mean 
square error (RMSE), mean absolute error (MAE), and 

Fig. 2  Distribution of earthquake and seismometer locations. a indicates the earthquake epicenter and seismometer locations The size 
of the circles is proportional to the magnitude, and the different colors indicate the focal depth. b, c show the frequency distribution 
of the earthquake magnitudes and focal depths. d indicates the distribution between epicenter distances and magnitudes. e indicates 
the frequency distribution of the epicenter distances. Different colors indicate different data set in b–e 
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standard deviation error (ϭ) between the catalog and 
predicted magnitude with time ( t1 ) increases from 1 to 
30 s after the first P-wave arrival per earthquake (Fig. 3). 
The MAE could measure the average absolute difference 
between the statistical model’s predicted and catalog 
magnitude. Compared with the MAE, the RMSE is more 
sensitive to the predicted magnitudes with an absolute 
error > 1.0 (Chai and Draxler 2014). For the EEW appli-
cation, the prediction error may not be expected when 
the absolute value exceeds 1.0, especially when the error 
exceeds 1.0. We considered the ϭ as a supplement met-
ric that measures the stability of the prediction errors by 
the model. To the three evaluation metrics, the less val-
ues mean the model has lower error levels and is more 
stable on magnitude estimation. The error curves of the 
three evaluation metrics could be considered as the prior 
knowledge to guide the EEW systems to alert the public 
or specific users with the different tolerations. To show 
the magnitude performance of the proposed model, we 
chose the classical model (Kuyuk and Allen 2013) as a 

baseline comparison and the real-time deep-learning 
method from Münchmeyer et al. (2021) as a CNN-based 
comparison. The classical model utilized the linear rela-
tionships between the magnitude, epicenter distance, 
and the vertical peak displacement of P-wave ( Pd ) for the 
magnitude estimation, which its basis is that Pd should 
be proportional to the rate of moment release (Aki and 
Richards 2002) in the far field (Trugman et al. 2019). To 
avoid the inclusion of the S-wave, we adopted the theo-
retical S-arrivals based on the previous study (Colombelli 
et al. 2014). Assuming the epicenter location as a known 
parameter for the classical model, we directly averaged 
the magnitudes calculated from the triggered seismom-
eters, using the coefficients in the previous study (Kuyuk 
and Allen 2013). The real-time deep-learning model 
(Münchmeyer et  al. 2021) utilized the normalized time 
series and logarithmic peak absolute value of the accel-
eration waveforms and geographical location (latitude 
and longitude) from multiple seismometers to estimate 
the magnitude Gaussian mixture, which contains the 

Fig. 3  RMSE (a and d), MAE (b and e), and ϭ (c and f) curves with time ( t1 ) increasing on the testing data set. The top figures indicate the curves 
with magnitudes ranging from 3.0 to 7.4. The bottom figures indicate the curves with magnitudes greater than 7.0. Different colors indicate 
different models
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onsite feature extraction part (the CNNs and the multi-
layer perceptron) and the multiple seismometers’ feature 
combination part (the six transformer architectures and 
the trained weights). The time window of the input cor-
responding to the onsite time series is fixed to 30 s, and 
pad zeros to 30  s if the time series length is less than 
30  s. Considering the Gaussian mixture, it could not be 
assumed that the predicted uncertainties are indeed 
well calibrated, as they mentioned (Münchmeyer et  al. 
2021); we made the model output the magnitude by the 
minor change using an FC layer instead of the multi-
layer perceptron used to predicted mixture Gaussian. 
The minor change cannot influence the comparison with 
our proposed model. Then, we retrained the deep-learn-
ing model using the same data sets and loss function as 
the proposed model, according to the technical details 
Münchmeyer et  al. mentioned (2021), mainly the pre-
training model trick.

For the proposed model, the RMSE, MAE, and ϭ are 
0.38, 0.29, and 0.38 at 3  s and are stable with the final 
values of 0.20, 0.15, and 0.20 after 14 s, respectively. The 
RMSE, MAE, and ϭ of the classical model are 0.44, 0.34, 
and 0.44 at 3 s and stabilize to 0.35, 0.26, and 0.32 after 
10 s, respectively. To the CNN-based model, the RMSE, 
MAE, and ϭ are 0.49, 0.39, and 0.44 at 3 s and stabilize to 
0.28, 0.21, and 0.27 after 15 s. Compared with the base-
line and CNN-based models, the errors of our proposed 
magnitude estimation model decrease more rapidly 
and achieve a smaller final value. The proposed model 
could achieve the final value of the baseline and the 
CNN-based models when the time ( t1 ) is approximate 4 
and 8 s, as shown in Fig. 3a–c. We further analyzed the 
three earthquakes from the testing data set to evaluate 
the performance of the M7 earthquakes with the cata-
log magnitudes exceeding 7.0, which the EEW is more 
concerned with. The M7 RMSE of the proposed model 
is 0.94 and less than the 1.09 and 1.61 corresponding to 
the classical and CNN-based models when the time ( t1 ) 
is 3 s. Compared with the two models, the M7 RMSEs of 
the proposed model decrease more rapidly with a lower 
final value of 0.29, which means the proposed model has 
lower error levels on the three earthquakes with a magni-
tude ≥ 7.0. Moreover, each model’s M7 MAE and ϭ errors 
at different times show the same trend as the M7 RMSEs 
(Fig. 3). For each model, the M7 RMSE, MAE, and ϭ are 
larger than the errors of the whole magnitude bins. In 
addition to considering the smaller quantity of M7 may 
influence the results, the larger error levels of M7 may 
also be related to the rupture progress of earthquakes 
with the magnitude ≥ 7.0, which is more complex and has 
a longer duration (Trugman et  al. 2019). The proposed 
model has less errors (lower error levels) on magnitude 
estimation using the testing data set, which the following 

reasons may cause: (1) the proposed model extracts more 
information from the three-component waveforms, the 
differential P-arrivals, and the differential seismometer 
locations than just utilizing the peak displacement of 
P-wave; (2) the proposed model is trained on simulating 
a complex situation by random selecting the triggered 
seismometers which lead the model could be more suit-
able to the real-time situation without random seismom-
eters selected; and (3) the difference between the data 
sets in the study and the previous study (Münchmeyer 
et al. 2021) may lead the CNN-based model having larger 
errors than their results. Except for containing the dif-
ferent earthquakes, the data sets of this study contain 
the waveforms recorded on the seismometers equipped 
at the ground surface from the K-NET and uphole from 
the KiK-net, without the waveforms recorded on seis-
mometers equipped at the downbore from the KiK-net. 
However, as the earliest deep-learning-based magnitude 
estimation model (Münchmeyer et  al. 2021) using mul-
tiple seismometers in real time, the concepts still have 
great value, such as combining the multiple seismometer 
features by utilizing the transformer encoder architec-
tures, the positional embedding (seismometer location), 
the event token, and pre-training model.

Figure  4 indicates the predicted results by the pro-
posed model when time ( t1 ) is at 1, 2, 3, 4, 5, 6, 7, and 
8  s after the earliest P-wave arrival. The figure could 
show the magnitude estimation performance corre-
sponding to errors in detail. Overall, with time ( t1 ) 
increases, the top sub-figures from a to f directly 
indicate that the points distribute more convergence 
around the 1:1 relationship line as the errors decrease. 
Similarly, as the bottom subfigures show (the blue color 
bars), the better performance trend is also reflected in 
the increased numbers of earthquakes in which the pre-
diction errors are less than 0.5. When t1 is equal to 3 s, 
the results of the proposed model indicate that most of 
the prediction errors are within ± 0.5 range. However, 
for the earthquakes of magnitudes ≥ 6.5, the model still 
underestimates magnitude with an absolute prediction 
error exceeding 1.0 when t1 is 3 s and the underestima-
tion is mitigated with t1 increases, as the top subfigures 
show. Based on the physical model from Trugman et al. 
(2019), the physical model suggests a weak rupture pre-
dictability based on the peak displacement after 50% of 
the rupture duration. Münchmeyer et  al. (2021) ana-
lyzed the magnitude saturation based on the physical 
model; that is, the value of the saturation magnitude 
could be expected to be 5.7 after 1  s, 6.4 after 2  s, 7.0 
after 4 s, and 7.4 after 8 s. Considering the complexity 
of rupture progress, triggered seismometer distribu-
tion, and data distribution of the training data set in 
real-time situations, the model could only achieve the 
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threshold somewhat. Moreover, we observed that there 
are several points with the error > 1 when t1 is 1 or 2 s. 
The more significant error points occurred inland with 
only 1 or 2 triggered seismometers in which the epi-
center distance is less than 10 km and the earthquake’s 
depth is less than 24 km, as shown in Fig. 4a ( t1=1 s), b 
( t1 = 2  s). To the data-driven model, the training data 
set lacks seismometers with an epicenter distance of 
less than 10 km, as shown in Fig. 2e, which may be one 
reason for the overestimated magnitude only using 1 or 
2 seismometers with the  ∆<10 km. Moreover, we spec-
ulated that diversity may be a factor to consider. In this 
current situation of the distribution of the triggered 
seismometers, the model also could not contribute to 
the magnitude estimation by introducing the implicit 

location information between the seismometers and 
earthquake source from the P-arrivals and seismometer 
locations.

To provide the effectiveness of the encoder–decoder 
architecture with different P-wave arrivals and seismom-
eter locations, we only removed the above architecture of 
the proposed model and retrained, called model ii. The 
RMSE, MAE, and ϭ of the model ii achieve 0.46, 0.36, 
and 0.45 at 3 s and stabilize to approximately 0.21, 0.16, 
and 0.20 after 20 s, respectively. Based on the curves of 
the errors (Fig. 3a–c), the proposed model has less errors 
consistently and reaches the final value of model ii with 
less time. For earthquakes with a magnitude ≥ 7.0, the 
curves of the proposed model also perform less errors 
than those of the model ii. In other words, the results 

Fig. 4  Results predicted by the proposed model on the testing data set when time ( t1 ) is at 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and 8 (h) s
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indicate that the encoder–decoder architectures con-
tribute to the magnitude estimation, especially at the 
initial earthquake. The differential errors between the 
proposed model and model ii decrease with time ( t1 ) 
increase, indicating that the contribution of the encoder–
decoder architectures decreases with time ( t1 ) increases. 
Their same single waveform feature extraction process 
may cause a decreased trend, extracting the information 
related to distance from longer waveforms, which con-
tain more information, just like the difference between 
P-arrival and S-arrival could be used to estimate the dis-
tance. Based on the previous study (Saad et  al. 2022b), 
the P-arrivals and seismometer location could be used 
to ensure the earthquake location and be more accurate 
with more triggered seismometers. Thus, we expected 
the encoder–decoder architecture to obtain more accu-
rate implicit earthquake location information with more 
triggered seismometers, which bring more accurate mag-
nitude estimation performance. Figure  5 indicates the 
error curves with time ( t1 ) increase when the triggered 
seismometers exceed 1, 3, 5, 10, and 15. Taking the MAEs 
as an example, when the time ( t1 ) is 2  s, the MAEs are 
0.36, 0.30, 0.24, 0.18, and 0.19, respectively. Similarly, 
the other two errors also decreased with the increased 

number of triggered seismometers. The prediction error 
curve for each earthquake at different triggered seis-
mometer conditions indicates that the error decreased 
trend with the triggered seismometers increased, as 
shown in Fig. 5d. There are almost no earthquakes with 
an absolute error ≥ 1.0 when the triggered seismom-
eters ≥ 3. The error analysis indicates that the proposed 
model obtains better magnitude estimation performance 
with more triggered numbers and could provide evidence 
that encoder–decoder architecture obtains implicit loca-
tion information.

Discussion
Hyperparameter optimization of the model
To obtain the optimal network architecture of the pro-
posed model, we tuned the network architecture and 
selected the final architecture based on the MSE using 
the validation data set. Based on our design criteria in 
the Method Section, the LSTM units are a crucial and 
fundamental parameter that influences all the layers. In 
other words, we could change the units to tune the net-
work architecture. First, we set the several numbers of 
the LSTM units as 2, 4, 8, 16, 32, and 64. We found that 
when the units exceed 8, the proposed model begins 

Fig. 5  Error curves predicted by the proposed model with time ( t1 ) increasing on the testing data set when the triggered seismometers 
per earthquake are greater or equal to 1, 3, 5, 10, and 15. a–c indicate the MSE, MAE, and ϭ curves, respectively. d indicates the prediction error 
curve of each earthquake. Different colors indicate different triggered seismometer numbers
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to have the ability to estimate the magnitude. Since the 
LSTM units are greater than 32, the MSE of the pro-
posed model is similar. Thus, we chose the LSTM units 
as 32. Second, we added a dropout layer between the two 
FC layers in each transformer encoder or the decoder to 
avoid overfitting. We tested the dropout rate as 0.1, 0.2, 
0.3, 0.5, and 0.7. We found that the magnitude estima-
tion performance is not significantly decreased when 
the dropout rate is less or equal to 0.5. Considering the 
advice value in the previous study (Srivastava et al. 2014) 
and our testing results, we finally chose 0.3 as the drop-
out rate. We mainly utilized the attention mechanism 
to obtain the location information and weigh the onsite 
features. We did not test the variation of the magnitude 
estimation performance with the number of the trans-
former decoder or encoder increases. While tuning the 
LSTM units and dropout rate, the transformer decoder 
or encoder number with different inputs is 1. The tuning 
results seemly indicate there is no need to tune the num-
ber of the transformer decoder or encoder. Thus, we set 1 
as the transformer decoder or encoder number with dif-
ferent inputs.

Magnitude estimation performance using only P‑wave
The proposed model estimates the magnitude using the 
unfixed length waveforms from the triggered seismom-
eters, the waveform contains only P-wave or both P/S-
wave in real-time situations. However, for the proposed 
model, whether the P-wave contributes to the magnitude 
estimation and the error level on magnitude estimation 
only using the P-wave information might be unclear. 
On the other hand, it might be challenging to analyze 
the contribution directly from the P-wave based on the 
proposed model using the LSTM architecture. To indi-
cate the P-wave contribution to the magnitude estima-
tion of the proposed model, we retrained the proposed 
model and model ii only using P-wave based on theo-
retical S-arrivals (Colombelli et  al. 2014), called model-
P and model ii-P. Then, we utilized the same data sets to 
train and select the models (only using P-wave) using the 
same criteria as the other models above. Considering the 
P-arrival times could contribute to the magnitude esti-
mation when the triggered seismometers are greater than 
3 (as shown in Fig. 5), we evaluated the models using the 
earthquakes from the testing data set when the triggered 
seismometers exceed 3. As shown in Fig. 6a–c, the RMSE, 
MAE, and ϭ of the proposed model-P are 0.41, 0.31, and 
0.40 at 3 s and stabilize with the final values of 0.32, 0.24, 
and 0.31 after 16 s, respectively. To evaluate the perfor-
mance of the M5.5 earthquakes with catalog magnitude 
exceeding 5.5, we further analyzed the 76 earthquakes 
from the testing data set. For the M5.5 earthquakes, the 
RMSE, MAE, and ϭ of the proposed model-P are 0.87, 

0.69, and 0.71 at 3 s and stabilize with the final values of 
0.68, 0.51, and 0.64 after 15 s, respectively. To the model 
ii-P, the RMSE, MAE, and ϭ of the model ii-P are 0.49, 
0.37, and 0.48 at 3 s and stabilize with the final values of 
0.32, 0.24, and 0.32 after 14 s, respectively. For the M5.5 
earthquakes, the RMSE, MAE, and ϭ of the model ii-P 
are 0.94, 0.74, and 0.71 at 3 s and stabilize with the final 
values of 0.71, 0.54, and 0.58 after 15 s, respectively. The 
results of the model-P and model ii-P indicate that the 
two models only using the P-wave information could be 
used for magnitude estimation, but the error level is high. 
In addition, the comparison between the two models 
only using P-wave and the proposed model suggests that 
introducing the S-wave or Surface-wave could have lower 
error levels on the performance of magnitude estimation, 
especially for the magnitude earthquakes M5.5.

Effect on magnitude estimation from the uncertainty 
of the P‑wave arrival picks
The proposed model for magnitude estimation relies on 
the P-arrivals, in which the P-arrivals influence the uti-
lization of the length of the acceleration waveforms and 
P-wave travel times from multiple seismometers. The 
accuracy of the P-arrival picks should influence the pro-
posed model’s magnitude estimation performance. To 
obtain the effect on the magnitude estimation from the 
uncertainty of the P-arrival picks, we calculated the mag-
nitudes 50 times by simulating erroneous P-arrival picks 
on the testing data set. We simulated erroneous P-arrival 
picks by adding random perturbations on P-arrival times 
from different absolute picking error bins. The ten abso-
lute picks error bins are 0.0 ~ 0.1, 0.1 ~ 0.2, …, 0.8 ~ 0.9, 
and 0.9 ~ 1.0 s; for example, the absolute picks error bin 
is 0.2 ~ 0.3 s; we added the random perturbations from–
0.2 ~–0.3 or 0.2 ~ 0.3  s. Figure 7 shows the model’s sim-
ulation results for different absolute picking error bins 
on the testing data set. Overall, the RMSE, MAE, and ϭ 
curves have greater values in a higher absolute picking 
error bin; the phenomenon means the higher absolute 
picking error brings a higher error level on magnitude 
estimation by the proposed model (shown in Fig. 7d–f). 
The comparison with the RMSE, MAE, and ϭ curves 
from different absolute picking error bins shows that the 
0.0 ~ 0.1 s absolute picking error bin curves coincide with 
the manual picks curves, and the curves of the 0.1 ~ 0.2 s 
absolute picking error bin are slightly higher than those 
of the manual picks. However, the curves of the 0.2 ~ 1.0 s 
absolute picking error bin are significantly higher than 
those of the manual picks, which means a more signifi-
cant error level on magnitude estimation and the pro-
posed model may not obtain a reliable estimation when 
the absolute picking error exceeds 0.2  s. To quantita-
tively calculate the effect of the absolute P-arrival picking 
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error bins, we chose the RMSE, MAE, and ϭ errors of 
different picking error bins when t1 is at 3  s and evalu-
ated the effect based on the increased ratio of the error 
(RMSE, MSE and ϭ), as shown in Fig.  7a–c. The larger 
ratio means a higher increase in error levels on magni-
tude estimation which mean decreased performance. We 
calculate the ratio by setting the MAE (RMSE or ϭ) of the 
manual picks as the denominator, and the molecule is the 
error difference between the absolute picks error bin and 
the manual picks. The effects of the absolute P-arrival 
picking error bins are reflected similarly in the RMSEs, 
MAEs, and ϭ. Thus, we take the MAEs when t1 is 3 s as an 
example (Fig. 7b). The MAE with 0.0 ~ 0.1 s absolute pick-
ing error bin range is 0.30, approximately the same as the 
MAE with manual picks. The MAE with 0.1 ~ 0.2 s abso-
lute picking error bin range is 0.35 (20.70% increase of 
the MAE with manual picks), which could be considered 
a slightly higher increase in error level. To the 0.2 ~ 1.0 s 
absolute picking error bins, the MAEs are greater than 
0.40, and the error level significantly increased, at least 
37.90%. Thus, by combining the error curves with t1 

(Fig.  7d–f), the model could obtain a robust magnitude 
estimation when the P-wave arrivals picking errors are 
less than 0.2 s. Such accuracy is generally achievable with 
recently proposed picking methods (Mousavi et al. 2020).

Prospects
To better illustrate our proposed model’s magnitude esti-
mation of the study region and develop its performance, 
we analyzed the spatial distribution of the magnitude 
prediction errors on the testing data set with time ( t1 ) 
at 1, 3, 5, 6, 7, and 8  s when the earthquake’s triggered 
seismometers exceed one (as shown in Fig.  8). For the 
total study region when t1 is at 3 s (Fig. 8b), most of the 
prediction errors of the earthquakes that occurred in 
the inland region are greater than zero and those of the 
earthquakes that occurred in the offshore region are less 
than zero, within ± 0.5 range. With t1 increases (Fig. 8c–
f), the prediction errors of the inland and offshore have 
a tendency closer to zero, but slight overestimation and 
underestimation trends still exist. The phenomenon may 
mainly be related to the distances (epicenter distance and 

Fig. 6  RMSE (a and d), MAE (b and e), and ϭ (c and f) curves with time ( t1 ) increasing only using P-wave on the testing data set when the triggered 
seismometers exceed three. The top figures indicate the curves with magnitudes ranging from 3.0 to 7.4. The bottom figures indicate the curves 
with magnitudes greater than 5.5. Different colors indicate different models
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depth) and the azimuths of the varying triggered seis-
mometers. The triggered seismometers from the offshore 
region’s earthquake are generally farther, and the earth-
quakes have greater depth, in which the distances influ-
ence the amplitude of the real-time waveforms to lead to 
variations in magnitude estimation (Mousavi and Beroza 
2020a). The influence of the azimuths is mainly reflected 
in two aspects: (1) the azimuths from offshore earth-
quakes are relatively simpler with sparse seismometers 
may bring uncertainty on P-arrival-based earthquake 
location (Saad et  al. 2022b) and also introduce uncer-
tainty on the implicit distance information provided by 
our proposed model; (2) the directivity related to the 
azimuths would also influence the amplitude of the real-
time waveforms with varying distances. Figure 8a shows 
the influence more clearly than Fig.  8b–f; that is, most 
prediction errors exceeding 1.0 are close to the epicenter 
with ∆≤ 10  km, and most underestimated prediction 
errors of the earthquakes occurred offshore when t1 is at 
1 s and only one seismometer is triggered. The directivity 
and distance influence could generally be decreased with 
more triggered seismometers, as shown in Fig. 8b–f.

To explore the detailed distance influence on the mag-
nitude estimation of our proposed model, we selected 
the subset region of the testing data set (latitude from 
35°N to 40°N and longitude from 139°E to 144°E), which 
contains massive earthquakes that occurred in the sub-
duction. There are 399 earthquakes from inland with 
MJMA ranging from 3.0 to 6.3. The depths and epicenter 
distances are less than 151 km and 100 km. For the off-
shore, 588 earthquakes with MJMA from 3.0 to 7.4, the 
depth ranges from 0 to 90 km, and the epicenter distance 
is less than 200 km. Considering the potential difference 
of earthquakes among the crustal, subduction, and upper 
mantle and highlighting the epicenter distance influ-
ence as much as possible, we roughly class the offshore 
earthquakes into three depth segments based on the 
earthquake location classification methods (Zhao et  al. 
2015). The depth segments are 0 to 25 km (the crustal), 
25 to 70 km (mainly focus on the subduction), and 70 to 
160  km (the upper mantle). We also divided the inland 
earthquakes into three depth segments. The detailed dis-
tribution of the earthquakes can be found in the Addi-
tional file 1: Figure S1.

Fig. 7  Simulation results of the proposed model for different picking absolute error bins on the testing data set. a–c indicates the results 
about RMSE, MAE, and ϭ when time ( t1 ) is at 3 s. The black dashed lines indicate the results of the model with P-arrivals picked manually. The gray 
dashed lines indicate the ratio of increased error levels on the magnitude estimation performance from different picking absolute error bins 
compared with the results with manual P-arrivals. d–f indicates the error curves of the model for different picking absolute error bins with time ( t1 ) 
increasing. Different colors indicate different picking absolute error bins
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Considering the epicenter distance variation with more 
triggered seismometers when t1 increases, it is challeng-
ing to quantitatively show the distribution between the 
prediction errors and the epicenter distances. Thus, we 
qualitatively analyze the epicenter distance influence on 
the magnitude prediction errors of the proposed model. 
Figure 9 shows the spatial distribution of the magnitude 
prediction errors of the proposed model from three 
depth segments in the subset region when t1 is at 1 and 
3  s. As shown in Figs.  8, 9 indicates a more significant 
epicenter distance influence on the magnitude estimation 
prediction error of the proposed model, such as the pre-
diction error results when t1 is at 1 s and the depth ranges 
from 0 to 25 km (Fig. 9a). The prediction errors for earth-
quakes from 25 to 70 km depth segment are generally less 
than 0.0 with farther epicenter distance (Fig. 9b, e). How-
ever, several points with prediction error greater than 
0.0 with farther epicenter distance exist. Apart from the 
potential magnitude saturation and epicenter distance 

influence, the depth distance influences should also be 
considered. Meanwhile, we noticed that most prediction 
errors < 0 from inland earthquakes with a depth ≥ 70 km 
(Fig. 9c, f ).

To analyze the depth influence on the magnitude 
estimation of our proposed model, we chose the distri-
bution between the prediction error and depth when 
t1 is from 1 to 8  s. Based on the error bars of the pre-
diction errors corresponding to three depth segments, 
the prediction errors have an overall decreased trend 
with depth increases, and the trend weakens with t1 
increases, as shown in Fig.  10. The results show that 
the magnitude estimation of the proposed model varies 
with depth variation, in which the depth also influences 
the amplitude of the real-time waveforms. The mean of 
prediction errors for the offshore region with 25–70 km 
depth is slightly less than the other two depth segments, 
especially when t1 ≤ 3 s. Two aspects may mainly cause 
the phenomenon: (1) Compared with the other two 

Fig. 8  Spatial distribution of the magnitude prediction errors of the proposed model in the study region with time ( t1 ) at 1 (a), 3 (b), 5 (c), 6 (d), 7 
(e), and 8 (f) s when the earthquake’s triggered seismometers exceed one. The squares and circles represent the earthquakes located in the inland 
and offshore, respectively. Different colors indicate different error levels
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depth segments, the 25 to 70  km depth segment con-
tains many earthquakes that occurred on the subduc-
tion, and the earthquakes have farther seismometers, as 
shown in Fig.  9 and Additional file  1: Figure S1. Thus, 
the earthquakes have higher distance levels, and the 
distance influence leads to a lower mean value of the 
earthquakes from the depth segment from 25 to 70 km. 
(2) The 25–70 km depth segment contains more earth-
quakes with a magnitude ≥ 5.5 than the other two. At 
the initial of the earthquakes, the earthquake rupture 
progress and duration may influence the mean predic-
tion errors. Moreover, we will investigate how the azi-
muthal distribution of the seismometers will affect the 
magnitude estimation in the future.

To deal with the above issue of the different magnitude 
estimation performance for earthquakes that occurred 
inland and offshore regions, there are some potential 
ways, e.g., introducing more additional information 
related to distance and azimuth (Iwata et al. 2015; Noda 
et  al. 2012), introducing a simple and rough two-class 
structure similar to the classifier from Yang et al. (2024) 
to make the model distinguish the earthquakes occurred 
region and expect the model automatically correct the 
difference. Moreover, we also notice that the subset 
region inland has slightly higher error levels relative to 
the whole region at the initial of the earthquake, such 
as the subset region (139°E/144°E/35°N/40°N), which is 
relative to the earthquake location distribution (occurred 

Fig. 9  Spatial distribution of the magnitude prediction errors of the proposed model in the subset region when the t1 is at 1 and 3 s. The 
top and bottom subfigures indicate the results when t1 is at 1 and 3 s, respectively. The left to right subfigures indicate the prediction errors 
of the earthquakes from different depth segments. The gray triangles represent seismometers. The squares and circles represent the earthquakes 
located in the inland and offshore, respectively. Different colors indicate the error levels
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on the crustal or upper mantle). For these subset regions, 
we will further investigate the potential region difference, 
and the model could be more suitable for these regions 
by transferring the current model using the earthquakes 
from the specific regions. Since the model has a relatively 
simple structure and a small volume of parameters, it 
does not seem difficult to transfer.

Conclusions
In this study, we designed a deep-learning network to 
estimate earthquake magnitude automatically, using 
three multimodalities: real-time acceleration wave-
forms, differential P-wave arrivals, and differential loca-
tions from multiple seismometers per earthquake. We 

adopt a specific architecture to introduce the distance 
information on the magnitude estimation by automati-
cally processing the variety of hypocenter location esti-
mation. We trained and selected the model based on 
the training and validation data sets. We utilized the 
testing data set to evaluate the model on magnitude 
estimation performance. Compared with the error 
analysis from the classical and CNN-based methods, 
the proposed model performs less error level on mag-
nitude estimation, especially on the high magnitude. 
The comparison of the results between model ii and 
the proposed model provides evidence that the specific 
architecture could introduce the distance information 
on magnitude estimation. In addition, the P-arrivals 

Fig. 10  Distribution of prediction errors with depth when t1 is 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g), and 8 (h) s. The red color indicates 
the earthquake from offshore, and the blue color indicates the earthquake from inland. The solid line indicates the error bars from three depth 
segments (0–25 km, 25–70 km, 70–160 km)
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picking error testing indicates the model has robust-
ness on EEW with absolute error less than 0.2 s.
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