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Abstract 

The most widely used method of determining impact direction employs asymmetric ejecta distribution 
around the crater. However, the active terrestrial landscape seldom preserves the pristine ejecta blanket, making it 
challenging for this analysis to be carried out. The deeply eroded Dhala impact structure, formed during the Pro-
terozoic, is devoid of an ejecta blanket. We, therefore, utilize the variation in the full width at half maxima (FWHM) 
of the quartz (100) peak in X-ray diffraction (XRD) spectra and the  P10 microfracture intensity in the monomict 
breccia to estimate the probable downrange direction of the Dhala impact structure. The monomict breccia rocks 
of the Dhala impact structure have experienced low shock pressures (< 10 GPa) and are highly fractured, making 
them the ideal target lithology for our study. Previous studies have used XRD extensively for strain analysis in syn-
thetic materials and rocks. Microfracture intensity acts as an indicator for the degree of fracturing or brittle dam-
age in the rocks, with the maximum shock-induced damage being concentrated in the downrange direction. The 
results from the XRD are consistent with the microfracture intensity analyses and indicate that the probable direction 
of impact was from southwest to northeast, with northeast being the downrange direction. Furthermore, we suggest 
that the degree of fracturing and X-ray diffractometry can be used to identify the downrange direction of an impact 
crater.
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Graphical Abstract

Introduction
For planetary impacts, the obliquity and direction of 
impact play a pivotal role in defining the shape of the cra-
ter and the central uplift, the distribution of ejecta, the 
size of the crater, the final state of the projectile, the decay 
of shock pressure, the amount of shock melting and the 
ejection of matter from planetary surfaces to name a few 
(Gault and Wedekind 1978; Pierazzo and Melosh 2000a; 
Kenkmann et al. 2020; Sugandhi and Agarwal 2022; Sug-
andhi et al. 2024). Hence, characterizing the direction of 
impact is a crucial aspect of the study of impact craters. 
Theoretical studies have established that oblique impacts 
are more likely than vertical ones (Gilbert 1893; Pierazzo 
and Melosh 2000a).

Actual progress in understanding the effect of obliq-
uity, i.e., changes in parameters with respect to uprange 
and downrange direction, has been made possible with 
recent advancements in numerical and 3D simulations 
and with the feasibility of carrying out hypervelocity 
impact experiments (Burcheil and Mackay 1998; Pierazzo 
and Melosh 1999, 2000a, b; Dahl and Schultz 2001; Hei-
neck et al. 2002; Anderson et al. 2003, 2004; Elbeshausen 
et al. 2009; Davison et al. 2011; Shuvalov 2011; Michikami 
et al. 2017; Collins et al. 2020; Davison and Collins 2022). 
The easiest identifier of the direction of impact is the dis-
tribution of ejecta, for example, the bi-lateral symmetric 
ejecta distribution around a crater, with ejecta extend-
ing further in the downrange direction in low-oblique 
impacts, and concentrated crossrange in highly oblique 
impacts (Gault and Wedekind 1978). However, the active 
geologic landscape of the Earth poses a major challenge 
to the identification of terrestrial oblique impact craters 

as the ejecta blanket gets eroded over time. The scope of 
identifying the direction of impact by the crater shape is 
low, as despite oblique impacts being more likely, most of 
the documented planetary craters are circular in nature 
(Pierazzo and Melosh 2000a; Elbeshausen et  al. 2013). 
Only for highly oblique impacts (impact angle < 15°), the 
crater is elongated in the direction of impact (Gault and 
Wedekind 1978; Bottke et  al. 2000). This necessitates 
other tools.

During the initial contact of a projectile with the 
ground, shock waves are generated which move out-
ward from the point of impact. The propagation of shock 
waves through a medium causes an irreversible defor-
mation known as shock metamorphism (Ahrens and 
Rosenberg 1968; Stöffler et  al. 1975; Langenhorst et  al. 
1992; Stöffler and Langenhorst 1994). Fractures associ-
ated with the impact form at different stages during the 
propagation of the shock waves (Kenkmann et al. 2014). 
These can generally be classified into (i) radial, (ii) con-
centric, and (iii) spall fractures (Field 1971; Ahrens and 
Rubin 1993). While the radial fractures develop during 
the compressive phase of the shock wave, the concentric 
fractures develop during the release phase (Agarwal et al. 
2015, 2016, 2017). Numerical simulations carried out to 
study oblique impacts indicate that most of the shock 
pressure is concentrated in the downrange direction 
(Pierazzo and Melosh 2000a). These results are backed up 
by cratering experiments which show that the magnitude 
of peak stress and the shock-induced damage is higher 
in the downrange as compared to the uprange direction 
(Schultz and Anderson 1996; Dahl and Schultz 2001; Ai 
and Ahrens 2005).
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X-ray diffractometry (XRD) is extensively used to 
determine material properties like crystal structure, 
crystallite size, and lattice strain. The nature of the lat-
tice strain is determined by the shifting of a peak, char-
acterized by a change in the 2θ angle (peak position), 
and the broadening of a peak, determined by variation 
in the full width at half maxima (FWHM) (Williamson 
and Hall 1953; Ungár 2004). FWHM is generally used 
as an indicator of strain with higher FWHM indicating 
higher strain in rocks (Williamson and Hall 1953; Nasiri-
Tabrizi 2014). Peak shifting indicates uniform strain 
whereas peak broadening indicates non-uniform strain. 
In synthetic materials, XRD has been extensively used 
not just to study peak shifting and broadening but also 
for the calculation of particle size and strain (Khorsand 
Zak et al. 2012; Thandavan et al. 2015; Kibasomba et al. 
2018; Wu et al. 2019). Though rare, XRD has been used 
to carry out similar studies in natural rocks and miner-
als as well (Reznik et al. 2016; Agarwal and Alva-Valdivia 
2019; Kumar et  al. 2023). Kumar et  al. (2023) reported 
an increase in the FWHM of the quartz (011) peak with 
increasing strain rate and Reznik et  al. (2016) docu-
mented an increase in FWHM in magnetite with increas-
ing shock pressure, at low shock pressures.

The Dhala impact structure is more than 1.7 Ga old and 
is a deeply eroded structure (Pati et  al. 2008). The lack 
of a preserved ejecta blanket and the presence of syn- to 
postimpact sediments over a significant part of the struc-
ture makes it difficult to employ the conventional meth-
ods of identification of oblique impact craters. Hence, we 
turn to the two aforementioned laboratory techniques 
(degree of fracturing and XRD) to look for evidence of an 
oblique impact and to estimate the probable direction of 
the impact.

Geologic setting
Located nearly 50  km west of Jhansi city, the Dhala 
impact structure (Fig.  1) is almost 11  km in diameter 
(Fig. 1) and occupies an area of nearly 64  km2 (Pati et al. 
2008, 2019). Initially thought of as a “crypto-volcanic 
explosion” structure (Basu 1986), the presence of shock 
planar deformation features (Pati et  al. 2008) proved 
the meteoritic impact origin of the Dhala structure. 
The Bundelkhand craton forms the target basement of 
the impact structure. The Bundelkhand craton is one 
of the five Archean cratons of the Indian subcontinent. 
With an estimated areal extent of almost 29,000   km2, 
the Bundelkhand craton is dominantly composed of 
the older tonalite–trondhjemite–granodiorite (TTG) 
gneisses intruded by younger granitoids and granodi-
orites (Pati et  al. 2019; Deb and Bhattacharyya 2022). 
In addition, meta-sediments of Banded Iron Forma-
tions, felsic volcanics, calc–silicate rocks, amphibolites, 

corundum-bearing schists, and quartzites are also pre-
sent (Mondal et  al. 2002; Malviya et  al. 2006; Pati et  al. 
2010; Saha et  al. 2011). Collectively, they are known as 
the Bundelkhand Granitoid Complex. Three tectonic 
events between 3.3 and 2.4 Ga have deformed the TTG 
gneisses and the meta-sediments. The younger grani-
toids are further classified as medium-to-fine-grained 
and coarse-grained. The darker medium-to-fine-grained 
granitoids are composed of alkali feldspar, quartz, plagio-
clase, muscovite, hornblende, biotite, zircon, magnetite, 
chlorite, and epidote. The porphyritic coarse-grained 
granitoids are dominantly composed of quartz, plagio-
clase, alkali feldspar, hornblende, biotite, and chlorite. 
NNE–SSW trending giant quartz veins crosscut by NW–
SE trending tholeiitic mafic dike swarms are also present 
throughout the craton (Pati et al. 2010).

At Dhala, the impactite lithologies consist of suevites, 
pseudotachylitic breccias, monomict breccias, and 
impact melt rocks. The bottommost layer, suevite is 
composed of lithic and melt clasts imbedded in a fine-
grained matrix composed of shocked lithic and mineral 
clasts and glassy or crystalline impact melt (Pati et  al. 
2019). The pseudotachylite breccias (PTBs) occur as 
veins in the host granitoids. Within the PTBs, the lithic 
clasts are more abundant than the mineral clasts and the 
matrix of the PTBs can be extremely fine-grained, rich 
in phyllosilicates (chlorite, biotite, and sericite), or may 
contain melt components. The PTBs are further classi-
fied into the light grey colored cataclastic PTBs and the 
dark grey to black colored melt-bearing PTBs. The clasts 
of cataclastic PTBs are highly angular and do not show 
significant alteration whereas the melt-bearing PTBs 
are highly altered (Pati et  al. 2015). Impact melt rocks 
are reddish orange in color with elliptical vesicles and 
amygdales on their surface. They are composed of clasts 
containing feldspars, quartz, biotite, magnetite, ilmenite, 
and zircons and indicate significant post-impact hydro-
thermal alterations (Pati et  al. 2010, 2019; Joshi et  al. 
2023). The presence of planar deformation features and 
feather features in shocked quartz grains indicate shock 
pressures of ~ 20–25  GPa, while the presence of zircon 
grains and diaplectic glass indicate shock pressures as 
high as 60 GPa (Pati et al. 2019). Thus, the impact melt 
rocks likely experienced shock pressures between 20 and 
60 GPa.

Monomict breccia is generally autochthonous and 
forms during the excavation stage of crater formation in 
the proximal ejecta blanket close to the wall of the tran-
sient cavity or the fractured basement rocks of the cra-
ter (Kenkmann et al. 2014). In Dhala, the reddish-brown, 
whaleback-like elevated outcrops of monomict breccia 
consist of extensively fractured and brecciated coarse-to-
medium grained granitoid and form the outermost ring 
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of the Dhala structure. They are generally composed of 
clasts of K-feldspar and quartz in a feldspar-rich matrix; 
the clasts are pervaded by trans-granular microfractures 
filled with impact melt. Pati et al. (2019) reported a shat-
ter cone in the northeastern outcrops of monomict brec-
cia indicating shock pressure less than 10 GPa.

The impactite lithologies were overlain by rocks of the 
Dhala formation, which are stratigraphically equivalent to 
the Semri Group of the Vindhyan supergroup (Pati et al. 
2019). The Dhala formation is a layer of post-impactite 
sediments composed of sandstones, siltstones, shales, 
and conglomerates. These sediments are dominantly 

composed of poorly sorted, angular clasts of quartz, feld-
spars, biotite, and sericite in a feldspar and sericite-rich 
matrix (Agarwal et  al. 2020). The central elevated area 
(CEA) is a ~ 418  m tall mesa-like structure that uncon-
formably overlies the rocks of the Dhala formation. It is 
almost 5   km2 in area and is composed of Sumen sand-
stone of the Kaimur group in the Vindhyan supergroup. 
The presence of a scarce amount of shocked quartz 
grains in the CEA indicates the reworking and deposi-
tion of the ejecta blanket by postimpact processes to form 
the CEA (Agarwal et al. 2020). The age of the Vindhyan 
supergroup has been calculated as 1.7 ± 0.11  Ga., by the 

Fig. 1 Geologic map of the Dhala impact structure showing major lithologies and sample locations (modified after Singh et al. 2021)
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Pb–Pb whole-rock technique (Sarangi et  al. 2004). This 
also serves as the minimum age limit for the Dhala impact 
event.

Methodology
For this study, we collected thirty hand samples of 
monomict breccia oriented in the field with a magnetic 
compass. Oriented thin sections were prepared from 
each hand sample for X-ray diffraction (XRD) analysis 
and microfracture intensity study. The thin sections were 
analyzed and photographed under plane and cross-polar-
ized light using an optical scanning microscope, Leica 
DM4. For each of these thin sections, the P10 microfrac-
ture intensity was calculated.  P10 is one of the methods 
within the Pij system of microfracture intensity measure-
ments (Dershowitz and Herda 1993), commonly used 
by the Discrete Fracture Network modeling community 
(Rogers et al. 2017; Tonkins and Coggan 2017; Lei et al. 
2017). P10 is a linear measure of fracture intensity. It is 
given as the number of fractures per unit length of scan 
lines. We calculated the number of intersections between 
the microfractures and scan lines and the total length of 
the scan lines within the clasts (Supp. Table 1). The inten-
sity was calculated as

The scan lines required in this method were con-
structed in the ArcGIS Pro desktop software. A mesh of 
two mutually perpendicular sets of scan lines, with 1 mm 
line spacing, was constructed over the entire thin sec-
tion image (Supp. Figure 1). The microfracture intensity 
was calculated for all the thin sections and the variation 
in the microfracture intensity values with the azimuth 
was plotted. Only fractures present within the clasts were 
considered.

The XRD analysis of the samples was carried out with 
a PANalytical X’Pert Pro diffractometer housed in the 
Advanced Center for Material Sciences at the Indian 
Institute of Technology, Kanpur. The 2θ angle was var-
ied between 5° and 70° at an angular speed of 0.1°/sec to 
generate the XRD spectra, which were then analyzed in 
the Origin Pro software. To calculate the full width at half 
maxima (FWHM) and the peak position (2θ) a Gauss-
ian curve (Williamson and Hall 1953) was fitted on each 
peak in the XRD spectra (Supp. Figure 2). With the help 
of the X’Pert Highscore Plus 3.0 software, the 2θ values 
were used to identify the lattice planes of the minerals.

The application of the proposed method warrants cer-
tain precautions. First, it is only effective in impactite 
lithologies that have experienced shock pressures < 20 

P10

(

mm
−1

)

=

Number of inter sections between microfractures and scan− lines

Total length of the scan− lines within the clasts(mm)

GPa. At shock pressures over 20 GPa, the formation of 
fractures is no longer the preferred mechanism of defor-
mation, and localized amorphization of rocks takes place 
(Kenkmann et al. 2014). Low shock pressure regions can 
be identified in the field by the presence of shatter cones 
(~ 1–10 GPa), and under a microscope by the presence of 
planar fractures (~ 5–10 GPa), feather features, and pla-
nar deformation features (~ 5–35  GPa) within the min-
eral grains (Kenkmann et al. 2014). Second, the collected 
rock samples should be almost equidistant from the esti-
mated point of impact. With increasing distance from the 
point of impact, the amount of brittle deformation (Buhl 
et al. 2013b, a, 2014) as well as the FWHM of the peaks 
in the XRD spectra (Agarwal and Alva-Valdivia 2019) 
decreases. Third, the rock should be autochthonous or 
parautochthonous. Rocks that have suffered significant 
displacement may not be true indicators of the direc-
tion and distance with respect to the estimated point of 
impact. Fourth, the pre- and post-impact tectonic activity 
in the study area should be well-characterized. Tectonic 
activity can introduce new fractures as well as strain in 
the samples leading to an overestimation in the fractur-
ing intensity and FWHM values and fifth, the samples 
should be evenly distributed around the estimated point 

of impact. Missing samples would lead to gaps in our 
data which might lead to errors in the estimation of the 
direction of impact.

To appreciate the variation in microfracture intensity 
and XRD data around the impact structure, the bearing 
of the sample locations with respect to a reference point 
was needed. We fitted a circle through the maximum 
outer extents of the monomict breccia (Supp. Figure 3). 
The center of this circle was regarded as the probable 
point of impact. The angle subtended from the North (in 
degrees), by each sample location on this estimated point 
of impact was calculated.

Results
Petrographic analysis
The monomict breccia are highly fractured, with angu-
lar clasts, which are surrounded by a very fine-grained 
matrix or by glassy textured impact melt (Fig.  2d). The 
impact melt also fills some of the microfractures (Fig. 2e). 
Feldspars, namely plagioclase and orthoclase and quartz 
are the dominant minerals both within the clasts and the 
fine-grained matrix. The size of the quartz grains can 
range from very fine-grained to almost 1500  µm, while 
the feldspar grains can be as large as 1800 µm. The modal 



Page 6 of 11Behera et al. Earth, Planets and Space           (2024) 76:83 

Fig. 2 a Oriented block of monomict breccia (H28) collected from the field. b, c Outcrops of monomict breccia in the field. A thin section 
under plane-polarized light showing d different clasts embedded in the finer matrix and e melt filling the space between clasts and f multiple 
microfractures within the clasts. A thin section under cross-polarized light showing g pre-impact undulose extinction and serrated grain boundaries 
in quartz and h sericitization in K-feldspar. i Cross-cutting relationships showing the concentric fractures terminating against the radial fractures. c–g 
White arrow within the black inset at the top-right points towards the estimated point of impact
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percentage ratio of feldspars to quartz within the clasts 
varies between 60:30 and 40:50, while minerals such as 
chlorite, biotite, zircon, apatite, rutile, and opaque min-
erals make up the remaining 10% of the composition 
(Fig.  2). Within the clasts, most of the mineral grains 
have a euhedral-to-subhedral shape. Pre-impact tectonic 
deformation at high P–T conditions is realized as undu-
lose extinction and serrated grain boundary in quartz 
grains (Fig.  2g). There are three stages of pre-impact 
deformation reported from the area (Prasad et  al. 1999; 
Bhatt and Singh 2011; Deb and Bhattacharyya 2022). 
Post-impact hydrothermal alteration in some samples 
(Pati et al. 2008; Singh et al. 2021) is evidenced by seric-
itization of the plagioclase feldspar grains (Fig. 2h).

Microfracture intensity
Most of the clasts are pervaded by high aspect-ratio 
opening-mode microfractures having lengths between 
1 and 10 mm and apertures between 0.01 and 0.04 mm. 
The traces of the microfractures are generally curvilin-
ear or straight and they either trend radially outwards 
from the point of impact, parallel to the crater rim, i.e., 
concentric, or have a random orientation. Based on the 
orientation of the thin sections, most of the microfrac-
tures can be classified as radial or concentric fractures. 
The cross-cutting relationships indicate that the radial 
fractures formed earlier than the concentric fractures 
(Fig.  2i). In the investigated fifteen samples, the micro-
fracture intensity varies between 1.23 and 0.17   mm−1 
(Fig.  3a). It averages at 0.64   mm−1 with and standard 
deviation of 0.29   mm−1. The intensity is lowest in sam-
ple no. N12 and highest in sample no. N45 (Fig. 3a, Supp. 
table  1). In general, the microfracture intensity is high-
est in samples from ENE and lower in samples collected 
from other parts of the impact structure (Fig. 3a).

XRD analysis
The X-ray diffraction spectra of the samples are domi-
nated by signatures of the lattice planes of quartz (Supp. 
Table 2). Multiple lattice planes of quartz including (100), 
(101), (211), (212), (110), (102), (200), (201), (112), and 
(202) have been identified in the samples. Not all these 
planes have a high intensity or can be identified relatively 
easily in the XRD plots of all thirty samples (Supp. Fig-
ure 4). Thus, the variation in FWHM of only quartz (100) 
peak, identified in 21 samples, and quartz (101) peak, 
identified in 27 samples were considered.

The FWHM value of quartz (100) peak varies between 
0.02° and 0.14° and it averages at 0.07° with and stand-
ard deviation of 0.03°. The intensity is lowest in sample 
no N40 and highest in sample no. N47 (Fig.  3b, Supp. 
Table  2). The FWHM value of quartz (101) peak varies 
between 0.03° and 0.13° (Fig. 3c). It averages at 0.05° with 

and standard deviation of 0.02°. The intensity is lowest in 
sample no. N27 and highest in sample no. N47 (Fig. 3c, 
Supp. Table  2). For the quartz (100), peak the highest 
FWHM values are observed in samples collected from 
ENE (~ 070°), while the FWHM of the quartz (101) peak 
does not show any trend (Fig. 3b, c).

Discussion
The highest intensity fracturing,  P10 values, are recorded 
in samples from the ENE, ~ 060° (Fig.  3a). The brittle 
deformation at the microscopic scale is, therefore, high-
est in the ENE. On moving away from this direction, the 

Fig. 3 Variation in the a  P10 microfracture intensity, b 
FWHM of quartz (100) peak, c FWHM of quartz (101) peak 
around the estimated point of impact. The x-axis shows the bearing 
of the sample locations from the estimated point of impact
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intensities of fracturing and, thus, the brittle deforma-
tion decreases. More intense deformation in ENE may 
have been caused by a stronger shock in this direction. 
Concurring trends are observed in the XRD spectra with 
higher FWHM values of Quartz (100) peak towards the 
ENE (~ 70°) from the probable point of impact.

However, we do not see any discernible trend in the 
variation of the FWHM values of quartz (101) peak 
(Fig.  3c). It is possible that the deformation intensity 
or mechanism varies across the different lattice planes 
of quartz as previous studies have indicated that pla-
nar deformation features (PDFs) and planar fractures 
in shocked quartz have a preferential distribution along 
certain lattice planes (Goltrant et al. 1992; Stöffler et al. 
2017). This has been observed in the Dhala impact struc-
ture as well (Pati et al. 2019).

The Bundelkhand granitoid and the Dhala impact 
structure have a significant post-impact geologic his-
tory, including the emplacement of the Dhala formation 
and Sumen sandstone, three distinct phases of hydro-
thermal activity, and the intrusion of mafic dykes (Pati 
et  al. 2015, 2019; Agarwal et  al. 2020; Singh et  al. 2021; 
Joshi et al. 2023). Furthermore, evidence of post-impact 
fracturing and fluvial and glacial activity has also been 
reported from the area (Singh et al. 2021). While this may 
have affected our estimation of the  P10 fracturing inten-
sity, most of the measured microfractures could be classi-
fied as radial and concentric, thus indicating their impact 
origin (Fig. 2). Furthermore, although it has been estab-
lished with relative certainty that higher degrees of frac-
turing can cause enhanced rates of weathering (Molnar 
et al. 2007; Roy et al. 2015, 2016; Duvall et al. 2020), the 
converse is not so well-established. Thus, it is not possible 
to separate out the effect of weathering and hydrothermal 
activity from our estimated fracture intensity values. In 
addition, necessary precautions were taken during sam-
pling to avoid collecting weathered samples.

Notably, a trend similar to that of the fracture intensity 
values is also indicated by the FWHM values of Quartz 
(100) peaks. Quartz is highly resistant to both mechanical 
and physical weathering (Gerrard 1988; Nesse 2017), thus 
its XRD peaks are unlikely to be significantly affected by 
weathering processes. While quartz is still susceptible to 
hydrothermal alterations (Monecke et al. 2002), the sam-
ples selected for this study were not collected from the 
alteration halo, which, at Dhala is located in the immedi-
ate proximity of the Giant Quartz Veins. Thus, we argue 
that the effect of hydrothermal alteration on the fracture 
intensity and quartz FWHM was minimal. This argument 
is supported by the presence of unaltered grains of quartz 
and magnetite (highly susceptible to alteration) in some 
of the collected samples (Supp. Figure 6).

Several authors have previously attempted to evaluate 
the direction as well as the angle of impact in terrestrial 
craters from the crater morphology by integrating experi-
mental, field, and remote sensing observations (Schultz 
and Anderson 1996; Schultz and D’Hondt 1996; Shoe-
maker and Shoemaker 1996; Ekholm and Melosh 2001; 
Stöffler et  al. 2002; Herrick and Forsberg-Taylor 2003; 
Kenkmann et  al. 2005; Lindström et  al. 2005; Tsikalas 
2005; Wallis et al. 2005; Poelchau and Kenkmann 2008). 
These methods are, however, difficult to apply to the 
deeply eroded Dhala impact structure whose morphology 
is not preserved and is also overlain by post-impact sedi-
mentary layers. In this study, we propose a new method 
which integrates field and micro-scale observations from 
the impactite lithologies with previous experimental 
studies to estimate the direction of impact. The accuracy 
of this method cannot be commented upon as of right 
now as there are no other studies estimating the direction 
of impact at the Dhala impact structure. However, we 
propose that this method, which is yet to be verified, can 
be applied to various pristine and eroded craters meeting 
the criteria laid down in the Methodology section.

3-D numerical models for oblique impacts indicate 
that although the propagation of shock waves in the tar-
get rock is symmetric, the strength of the shock waves 
is asymmetric with the strongest waves concentrated in 
the downrange direction (Pierazzo and Melosh 1999, 
2000a). These results have been backed up by cratering 
experiments which report higher shock-induced dam-
age beneath craters in the downrange as compared to the 
uprange direction (Ai and Ahrens 2005). Furthermore, 
experiments measuring the stress wave asymmetry in 
oblique impacts indicate that in target rocks downrange, 
the peak stress is almost twice the peak stress in the 
uprange direction (Dahl and Schultz 2001). This higher 
peak stress also suggests a higher damage in the down-
range direction.

Conclusions
In this study, we have calculated the FWHM of quartz 
and microfracture intensity in the monomict brec-
cia of the Dhala impact structure. While the FWHM is 
an indicator of lattice strain, the microfracture intensity 
has a positive correlation with the shock-induced brittle 
damage. Thus, we propose that fracturing intensity and 
FWHM of a mineral peak from XRD data can be used 
as a viable tool to understand the distribution of dam-
age around an impact crater. Since, in inclined impacts, 
higher damage is focused in the downrange, we suggest 
that fracturing intensity and FWHM can be used to iden-
tify the downrange direction of a crater. In our study, 
the monomict breccia outcrops located towards the 
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northeast from the calculated point of impact show the 
highest values of fracturing intensity as well as FWHM 
of quartz. Hence, we suggest that northeast is the prob-
able downrange and the direction of impact at the 
Dhala impact structure was possibly from southwest to 
northeast.
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