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Abstract 

Some of the important geodetic time series used in various Earth science disciplines are provided without uncertainty 
estimates. This can affect the validity of conclusions based on such data. However, an efficient uncertainty quanti-
fication algorithm to tackle this problem is currently not available. Here we present a methodology to approximate 
the aleatoric uncertainty in time series, called Bayesian Hamiltonian Monte Carlo Autoencoders (BaHaMAs). BaHaMAs 
is based on three elements: (1) self-supervised autoencoders that learn the underlying structure of the time series, 
(2) Bayesian machine learning that accurately quantifies the data uncertainty, and (3) Monte Carlo sampling that fol-
lows the Hamiltonian dynamics. The method can be applied in various fields in the Earth sciences. As an example, we 
focus on Atmospheric and Oceanic Angular Momentum time series (AAM and OAM, respectively), which are typi-
cally provided without uncertainty information. We apply our methodology to 3-hourly AAM and OAM time series 
and quantify the uncertainty in the data from 1976 up to the end of 2022. Furthermore, since Length of Day (LOD) 
is a geodetic time series that is closely connected to AAM and OAM and its short-term prediction is important for vari-
ous space-geodetic applications, we show that the use of the derived uncertainties alongside the time series of AAM 
and OAM improves the prediction performance of LOD on average by 17% for different time spans. Finally, a compari-
son with alternative uncertainty quantification baseline methods, i.e., variational autoencoders and deep ensembles, 
reveals that BaHaMAs is more accurate in quantifying uncertainty.

Keywords Machine learning, Uncertainty quantification, Length of day

*Correspondence:
Mostafa Kiani Shahvandi
mkiani@ethz.ch
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-024-02066-9&domain=pdf
http://orcid.org/0000-0001-5705-7014


Page 2 of 22Kiani Shahvandi et al. Earth, Planets and Space          (2024) 76:127 

Graphical Abstract

1 Introduction
Quantifying the uncertainty in geodetic time series 
is an essential task (Kiani Shahvandi and Soja 2022a), 
since it provides a measure of the reliability of the data 
(Hüllermeier and Waegeman 2021). This type of uncer-
tainty is called aleatoric, which is related to the inher-
ent characteristics of the phenomenon the time series 
represents. Geodetic time series and the associated 
uncertainty information can be subsequently used in 
various other applications that use these data as input. 
However, often in practice, information regarding the 
aleatoric uncertainty is not provided. For instance, cli-
mate variables such as zonal and meridional winds pro-
vided by European Centre for Medium-Range Weather 
Forecasts (see e.g., ECMWF; Uppala et al. Uppala et al. 
2005) lack rigorous uncertainty estimates. As a result, 
products such as Atmospheric and Oceanic Angular 
Momentum functions (AAM and OAM, respectively) 
that rely on these data lack uncertainty information 
as well, such as those provided by the GFZ German 
Research Centre for Geosciences (GFZ; Dobslaw et al. 
2010,  Dobslaw and Dill 2018). When predicting these 
time series, it is possible to derive the so-called pre-
diction uncertainty, which is a measure of prediction 
reliability. This can be achieved using methods such as 
deep ensembles (DEs; Lakshminarayanan et  al. 2016), 
wherein various models with different parameters are 
fitted simultaneously to the same time series. Subse-
quently, prediction statistics are computed from the 
predictions of individual models. However, assigning 
uncertainty to the original time series requires a differ-
ent approach, as no prediction is made. The so-called 
autoencoders (see e.g., Baldi 2012) can be considered 
as a viable approach for approximating the aleatoric 
uncertainty in the data by learning it from the time 

series itself. In autoencoders, the input to the mapping 
pipeline and its output are the same, and the algorithm 
tries to discover the hidden structure in the data and 
reconstruct the input. However, to avoid a simple linear 
mapping that fully recovers the input (in other words 
avoiding input memorization) a so-called bottleneck is 
designed in the algorithm whereby the degree of pre-
dictability of the time series is analyzed. In other words, 
if not for the bottleneck, the parameters of the algo-
rithm would be derived such that the input X is passed 
through the identity function f (X) = X , fully recover-
ing the input. The usual bottlenecks used in autoencod-
ers are batch normalization (Loffe and Szegedy 2015), 
layer normalization (Ba et al. 2016), or instant normali-
zation (Ulyanov et  al. 2016). These normalize the out-
put of the neural network in each layer, preventing the 
autoencoder from converging to the identity function.

A variety of autoencoder approaches have been pro-
posed. One of the most important classes of these 
approaches are the so-called Variational AutoEncod-
ers (VAEs; Kingma and Welling Kingma and Welling 
2014), which are based on Bayesian models. In VAEs, a 
model approximates the posterior distribution, typically 
Gaussian, with unknown mean and standard deviation. 
By random sampling from a normal distribution and 
iteratively minimizing the loss function (which is based 
on the negative logarithm of posterior and prior likeli-
hoods, both having a normal distribution) the mean 
and standard deviation of the approximating posterior 
are derived. Although widely used for deriving a distri-
bution over the output of the autoencoders, Yang et  al. 
(2021) have shown that Hamiltonian Monte Carlo sam-
pling (HMC; Neal 2011) is more accurate than vari-
ational sampling, partly due to the fact that the samples 
follow Hamiltonian dynamics (Lowenstein 2012). HMC 
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thereby accurately represents the geometry of the prob-
lem, for example by finding the best optimization path 
and thus facilitating the loss minimization. We therefore 
present a new autoencoder method that uses HMC sam-
pling, named Bayesian HMC Autoencoders (BaHaMAs). 
BaHaMAs is a general method that can be used for vari-
ous time series, especially in the field of Earth sciences, 
where knowledge of uncertainty plays a pivotal role in 
the analyses (Kiani Shahvandi and Soja 2022a). To pre-
sent the applicability of the method to Earth science data, 
we focus on the atmosphere and ocean and their role in 
causing variations of the rotation of the Earth (Brzeziński 
et al. 2002). This is achieved by analyzing the net effect of 
global atmospheric winds and pressure variations, as well 
as oceanic currents and mass redistribution, resulting in 
the AAM and OAM time series (Gross 2015).

As mentioned, AAM and OAM time series are usu-
ally provided without uncertainty information. AAM and 
OAM are widely used in different studies for the predic-
tion of Earth Orientation Parameters (see e.g., EOPs; 
Gross 2015), including Dill et al. (2019); Kiani Shahvandi 
et  al. (2022b); Kiani Shahvandi and Soja (2022d); Gou 
et al. (2023). Notwithstanding the improvements in pre-
dicting EOPs when AAM and OAM are used, the predic-
tion accuracy can reach a limit due to the unquantified 
uncertainties of AAM and OAM, obscuring the predict-
ability of EOPs. In case these uncertainties are available, 
it would be possible to design and use algorithms that 
directly take into account the uncertainty in the data for 
prediction purposes (Kiani Shahvandi and Soja 2022a). 
Among EOPs, this is particularly important for the case 
of Length of Day (LOD, unit milliseconds (ms)), because 
it is directly proportional to the AAM and OAM varia-
tions from subdaily to interannual time scales (Gross 
2015; Kiani Shahvandi et  al. 2024d). Therefore, we pri-
marily focus on improving the prediction of LOD by 
quantifying the uncertainties in AAM and OAM. Note 
that the net sum of Hydrological and Sea-Level Angular 
Momentum functions (HAM and SLAM, respectively) 
as provided by GFZ (see, for instance, Dill et al. 2019) is 
close to zero (due to mass conservation in the continent-
ocean system), thus the contribution of HAM and SLAM 
to the LOD prediction are not analyzed. We mainly focus 
on the short-term prediction of LOD (up to 30 days into 
the future) using the data provided by the International 
Earth Rotation and Reference Systems Service (IERS). 
The reason is the 4-week latency between the rapid and 
final data, implying that this forecasting horizon is most 
widely demanded and after this time interval the final 
observations are made available, making predictions less 
useful (Kiani Shahvandi et al. 2023a).

It should be mentioned that there are some studies that 
quantify the uncertainty in the AAM and OAM data. 

Lehmann and Névir (2012) quantify the uncertainties 
in the AAM data by comparing them with radiosonde 
observations and analyzing the agreement between these 
two approaches. Quinn et  al. (2019) follow a similar 
path for quantifying the OAM uncertainties by compar-
ing their OAM time series with those of other studies. 
Koot et  al. (2006), however, follow a different approach 
more similar to ours by analyzing the noise level in the 
AAM data by mathematical means rather than by com-
paring it with other series. Similarly, Li et al. (2023) ana-
lyze the noise level in the angular momentum data for 
the purpose of EOP prediction but do not quantify the 
uncertainties in the data. Dill et  al. (2023) quantify the 
uncertainties in AAM but rather for the forecasts, imply-
ing what they provide is, as mentioned before, the pre-
diction uncertainty rather than the uncertainty in the 
data. However, currently no uncertainty information is 
provided for AAM and OAM data by operational data 
centers. We therefore present our method for uncertainty 
quantification in these time series. In summary, the goals 
of the study are as follows:

• presenting a novel and general methodology for 
uncertainty quantification in time series,

• demonstrating the usefulness of the uncertainties 
derived for AAM and OAM by incorporating them 
in the prediction of LOD.

The rest of this paper is organized as follows. In Sec-
tion Methods, the methodology is described in detail. 
In Section Data description, the data used for the 
numerical studies are described. Section Results and 
discussions is used to present the numerical results and 
analyses. Finally, Section Conclusions is used for drawing 
conclusions.

2  Methods
2.1  Rationale behind BaHaMAs
As mentioned in the Introduction, BaHaMAs is based on 
the assumption of the predictability of time series (see 
e.g.,  Xu et  al. 2019). In fact, BaHaMAs captures epis-
temic uncertainty due to the model deficiencies (Sullivan  
2015). Therefore, the degree to which we can predict the 
time series is a representation of aleatoric uncertainty. 
BaHaMAs essentially approximates the aleatoric uncer-
tainties through a loss function akin to traditional least 
squares. Least squares estimators are shown to be unbi-
ased (Lukman et  al. 2020); therefore, the uncertainties 
estimated by BaHaMAs are mathematically convergent 
to the ’true’ uncertainties, provided that sufficient num-
ber of samples are used in the algorithm. Nevertheless, 
we note that these uncertainties are approximate val-
ues and do not necessarily correspond to the ’true’ yet 
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unknown uncertainties. For instance, instrument meas-
urement errors might not be captured if their effect in the 
time series is not evident. In the following sections, how-
ever, we derive a condition on the BaHaMAs that guar-
antees the convergence to the ’true’ uncertainties. Hence, 
the uncertainties derived by BaHaMAs are useful to gain 
insight to the time series and its inherent uncertainty.

Considering that BaHaMAs is based on autoencoders 
and Bayesian machine learning with HMC sampling, in 
the following we present the methodology in two parts. 
We first discuss the autoencoder part.

2.2  Autoencoders
We denote the input to the autoencoder f as X, where X 
can be multidimensional (such as batch dimension, fea-
ture dimension, among others). The autoencoder f itself 
can be written as the composition of m neural networks 
f1, ..., fm as in Eq. (1). It is important to mention that these 
neural networks are parametric functions, i.e., having 
parameters θ1, ..., θm that must be optimized to best rep-
resent and reconstruct the input:

As mentioned in the Introduction, to create a bottleneck 
that allows to quantify the aleatoric uncertainty, we apply 
batch, layer, or instance normalization to the output of 
each function (except for fm , which is the final output 
that needs to be mapped to the observations). Therefore, 
the following operator in Eq. (2) is applied to f1, ..., fm−1:

where µ and σ denote the mean and standard deviation 
of the output fi , respectively, and ǫ is a numerical stabi-
lizer that prevents division by zero in the optimization 
phase (in case σ 2

fi
 is too small, the numerical results 

would be unstable). Similar to the case of DEs, a value of 
ǫ = 10−8 has proven to be quite effective in deriving 
accurate and representative uncertainties (Kiani Shah-
vandi et al. 2023a, 2024a, b) and is therefore adopted here 
as well. Even though the form of the normalization oper-
ator N is similar for batch, layer, and instance normaliza-
tion, the computation is different. In batch normalization 
µ, σ are computed for each feature in X separately, 
whereas in layer normalization they are computed for 
each input across all features. In case of multidimen-
sional time series input (such as sequence of images), µ, σ 
are computed for each batch separately and over spatial 
dimensions (such as rows and columns in an image). 
However, if the input is a one-dimensional time series the 

(1)f = fm
(

fm−1...(f1)
)

(2)N(fi) =
fi − µfi
√

σ 2
fi
+ ǫ

, i = 1, ...,m− 1

instance normalization is identical to batch normaliza-
tion. The suitability of each of these three different nor-
malization schemes depends on the problem under 
consideration. In Section Results and discussions we ana-
lyze the impact of these different approaches on the pre-
diction accuracy of LOD. Finally, we note that even 
though our approach is based on the application of nor-
malization operators as bottleneck, autoencoders in gen-
eral do not need normalization. Even the very presence of 
bottlenecks is questioned (Yong and Brintrup 2022), as 
the main purpose of autoencoders is dimensionality 
reduction. However, since the application of normaliza-
tion in autoencoders improves their sensivity to out of 
distribution samples (Zhou 2022), we have applied them 
here in our approach.

2.3  Bayesian HMC
With the design of the architecture of the autoencoder as 
above, we proceed to the optimization phase, where the 
difference between the output of the autoencoders and the 
input should be minimized. In this phase, Bayesian HMC is 
applied. In Bayesian HMC, the posterior distribution in the 
Bayes theorem (see, for instance, Jaynes 2012), denoted by 
P(θ |X) where θ represents the parameters of autoencoder f, 
is approximated as in Eq. (3):

where P(θ) is the prior distribution of parameters 
and P(X |θ) is the likelihood of observations given 
the parameters θ =

{

θi
}m

i=1
 . P(θ) is usually formu-

lated as having a normal distribution with zero mean 
and variance as a parameter that needs to be opti-
mized in the algorithm (Yang et  al. 2021). On the 
other hand, P(X |θ) has a Gaussian distribution with 
mean f. The optimization is done by minimizing 
− log

(

P(X |θ)P(θ)
)

= − log
(

P(X |θ)
)

− log(P(θ)) , where 
log denotes the natural logarithm function. Following 
Yang et  al. (2021), we provide the explicit form of the 
optimization problem in Eq. (4). Note that constants such 
as N2 log(2π) that would appear in the loss function are 
omitted, since they neither participate in the optimiza-
tion nor influence the results:

(3)P(θ |X) ≈ P(X |θ)P(θ)

(4)

min
θ ,σθ

− log (P(θ |X)) =min
θ ,σθ

�

− log (P(X |θ))− log (P(θ))
�

=min
θ ,σθ

�

1

2

N
�

i=1

�

f (Xi, θ)− Xi

�2

+
1

2

Nθ
�

j=1

log
�

σ 2
θj

�

+
|θj|

2

σ 2
θj
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In this equation, N is the total number of samples in 
the time series and Nθ the total number of parameters. 
σθ =

{

σθi
}m

i=1
 are the standard deviation of parameters 

considered as hyperparameters, which can be optimized 
together with the parameters θ by gradient descent and 
its variants (Bengio 2000; Bergstra and Bengio 2012). 
In this case, the uncertainty of parameters is part of 
the parameters denoted as θ , which are then jointly 
optimized (in other words θ ←−

[

θ , σθ
]

 ). To optimize 
Eq. (4), Bayesian HMC is applied, where Q samples 
θ(k), k = 1, ...,Q are generated and used to compute the 
mean and standard deviation of the autoencoder output. 
First, θ(0) is generated by random sampling from normal 
distribution N (0, 1) . Then, for each sample θ(k) we fol-
low the optimization scheme as follows. First, an auxil-
iary variable r at step k − 1 (i.e., r(k−1) ) is sampled from 
multidimensional normal distribution N (0, INθ

) , where I 
denotes the identity matrix. This is due to the fact that 
Hamiltonian dynamics (in differential form) is repre-
sented by two intertwined variables θ and r. θ(k−1) and 
r(k−1) are subsequently used as initial values θ0 and r0 for 
the optimization step with learning rate δt and L epochs, 
as in Eq. (5):

The final values θL and rL from Eq. (5) are passed through 
the Metropolis-Hastings step (see, for instance, Robert 
2015), whereby a random number p is generated from the 
uniform distribution U(0, 1) and used to ensure that the 
derived values sufficiently satisfy the Hamiltonian condi-
tion as follows:

After performing the mentioned steps for all the 
samples k = 1, ...,Q , a Markov chain is derived: 

(5)

U(θ) =
1

2

N
∑

i=1

(

f (Xi, θ)− Xi

)2
+

1

2

Nθ
∑

j=1

log
(

σ 2
θj

)

+
|θj|

2

σ 2
θj

for s = 0, ..., L− 1 :

rs ← rs −
1

2
δt∇U(θs)

θs+1 ← θs + δt rs

rs+1 ← rs −
1

2
δt∇U(θs+1)

(6)

H(θ , r) = U(θ)+
1

2
|r|2

α = min
(

1, exp (H(θL, rL))−H
(

θ(k−1), r(k−1)
))

if p ≥ α :

θ(k) = θL

if p < α :

θ(k) = θ(k−1)

{

f
(

X , θ(Q−k+1)
)}Q

k=1
 . The mean of this chain, µ , is the 

reconstructed value. What we are interested in is the 
standard deviation of this chain, σ , which represents the 
aleatoric uncertainty in the data, computed as in Eq. (7):

2.4  Convergence property of BaHaMAs
Here, we discuss whether the uncertainties derived by BaHa-
MAs correspond to the ’true’ uncertainties. In other words, 
our goal is to derive certain conditions under which the 
uncertainties derived by BaHaMAs are convergent to the 
actual uncertainties in the data. For this purpose, we need to 
analyze the consistency (or unbiasedness) of BaHaMAs. The 
general approach for consistency theorems is based on theo-
rems derived by Jennrich (1969) and Wu  (1981). Following 
Wu  (1981), we present the following proposition.

Proposition 1 The uncertainties derived by BaHa-
MAs correspond to the ’true’ uncertainties provided that 
for two different set of parameters θ and θ ′ the quantity 
∣

∣f (X , θ)− f (X , θ ′)
∣

∣ scales proportional to N−p , where 
1
2 < p ≤ 1.

The proof of the proposition is given in the Appendix.
Proposition 1 provides important constraints on the 

convergence property of BaHaMAs: to derive accu-
rate uncertainties, the number of samples Q from the 
parameters space should be appropriate. Furthermore, 
the role and choice of bottleneck is important in that the 
algorithm should not fully reconstruct the input, as the 
condition above will be violated. In Section Results and 
discussions we discuss the appropriate choices of Q and 
bottleneck more thoroughly.

2.5  BaHaMAs applied to sequences
The relations in Eq. (7) are valid if the output appears 
only once in the computations. In other words, if the 
inputs and outputs to the algorithm are taken from a 
moving window in the time series, each output would 
appear several times in the calculations. One of the rea-
sons to use moving windows on the time series is to take 
into account the temporal dependency in the data. For 
instance, consider that for the first sample the first 30 
values (i.e., 1,...,30) of the time series are taken as input 
(and because the architecture is an autoencoder they are 

(7)

µ =
1

Q

Q
∑

k=1

f
(

X , θ(Q−k+1)
)

σ =

√

√

√

√

1

Q

Q
∑

k=1

(

f
(

X , θ(Q−k+1)
)

− µ
)2
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the outputs as well). Then, the second sample contains 
the next 30 values with one shift (i.e., 2,...,31). But these 
samples have 29 overlapping values, which must be taken 
into account when computing µ, σ from Eq. (7).

Let us assume samples are taken in a moving window 
of length M from Xi, i = 1, ...,N  . Then, the total number 
of samples is N −M + 1 , each with length M. The maxi-
mum number of times a sample appears in the outputs is 
then equivalent to z = min

(

M,N −M + 1
)

 . Note, how-
ever, our goal is to assign uncertainty to each individual 
value in the time series and therefore, Xi, i = 1, ...,N  
should be considered. The first z values in Xi, i = 1, ...,N  
for each of the N outputs appear hi = i, i = 1, ..., z 
times respectively. The next N − 2z values all appear 
hi = z, i = z + 1, ...,N − z times. Finally, the last z values 
appear hi = N − i + 1, i = N − z + 1, ...,N  times. Based 
on these, the relations in equations in (7) are modified as 
in Eq. (8):

where f (j) represents the j-th time the value appears in 
the outputs. It is important to note that the definition of 
σ can be changed to represent only the mean of the indi-
vidual standard deviations for each f (j) in Eq. (8). Even 
though simpler, we consider Eq. (8) to be more accurate, 
because it takes into account the contribution of each 
output to the mean and standard deviation by the num-
ber of instances they appear in the output. Finally, the 
same convergence property as in Proposition 1 applies 
here as well.

2.6  Architecture of BaHaMAs
It should be mentioned that since BaHaMAs is based on 
autoencoders, m (i.e., number of neural networks) is usu-
ally an even number in order for the algorithm to repre-
sent a symmetrical architecture together with the input. 
The hidden dimension of the encoder part of autoen-
coders, i.e., neural networks f1, ..., fℓ, ℓ =

m−2
2  , form a 

descending sequence. The lowest hidden dimension is 
that of the intersection between the encoder and decoder 
parts of the autoencoder, i.e., fℓ+1 (in our numerical 
analyses it has dimension 1). On the other hand, the hid-
den dimension of neural networks fℓ+2, ..., fm form an 
ascending sequence and that of fm matches the dimen-
sion of the input X. Note that in the general case each 
of fi, i = 1, ...,m are neural networks with arbitrary 
number of layers. However, since we are using m neural 

(8)

µ =
1

Q

Q
∑

k=1

hk
∑

j=1

1

hk
f (j)

(

X , θ(Q−k+1)
)

σ =

√

√

√

√

√

1

Q

Q
∑

k=1

hk
∑

j=1

1

hk

(

f (j)
(

X , θ(Q−k+1)
)

− µ

)2

networks and to facilitate training and interpretation, we 
use neural networks with only one layer. Therefore, the 
autoencoder is a stack of m neural networks each with 
one layer. Finally, it should be mentioned that the form of 
fi, i = 1, ...,m can be chosen from a vast number of pos-
sible architectures. We focus on Multi-Layer Perceptron 
(MLP; refer to Bishop 2006). Additionally, we use Long 
Short-Term Memory (LSTM; Hochreiter and Schmidhu-
ber 1997) to analyze the influence of model architecture 
on the robustness of the results. In summary, in Fig. 1, we 
have shown the schematic architecture of BaHaMAs in 
its general case.

2.7  Application of BaHaMAs in earth rotation analysis 
and its importance

To analyze the influence of the derived uncertainties as 
in Eq. (8), we follow the approach of Kiani Shahvandi 
and Soja (2022a), in which the loss function is modified 
according to the observational uncertainty (reciprocal of 
the variance) to pay more attention to the values that are 
more accurate. The usefulness of these uncertainties can 
be analyzed by computing the prediction performance 
improvement of an independent – yet related – time 
series in case of using these uncertainties against the case 
when they are not. As mentioned, the time series that we 
use for this purpose is that of LOD. For the prediction of 
LOD, we use the model proposed by Gou et  al. (2023), 
which is based on LSTM neural networks. This model 
is composed of an Encoder-Decoder LSTM architecture 
which contains three consecutive LSTM layers with 10, 
14, and 7 hidden neurons, respectively, followed by two 
time-distributed dense layers with 14 and 1 hidden neu-
rons, respectively. Our analyses are mainly based on the 
application of BaHaMAs to the AAM and OAM time 
series. However, we also analyze the case where we also 
use AAM and OAM forecasts to improve the prediction 
accuracy.

We focus on this application, because prediction of 
LOD is an important task in spacecraft navigation and 
orientation of deep space telescopes (Gou et  al. 2023). 
Thus, by improving the LOD predictions, we contribute 
to the improvement in important space geodetic applica-
tions. Furthermore, since AAM and OAM are quantities 
that can be used for the study of weather and climate, 
knowledge of the uncertainty of AAM and OAM plays 
an important role in understanding ways to improve the 
accuracy of AAM and OAM, thus benefiting the environ-
mental studies.

2.8  Evaluation metrics
We note that our metric for prediction accuracy is Mean 
Absolute Error (MAE), as established in various EOP 
prediction studies (Kalarus et  al. 2010; Kiani Shahvandi 
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et al. 2022b). If the predicted and the final value to evalu-
ate against are ŷ and y, respectively, MAE is computed as 
in Eq. (9) based on D prediction values (i.e., total number 
of predictions is D):

The improvement (in percentage) is computed by com-
paring the MAE of the cases with and without the AAM 
and OAM uncertainties considered, denoted by MAEw 
and MAEwo respectively, as in Eq. (10):

Figure 2 summarizes the algorithm for the quantification 
of uncertainty in AAM and OAM, and their use in the 
prediction of LOD.

3  Data description
3.1  Data used in the analyses
For the numerical results presented in the paper, we 
use three different data sets. First, we use the AAM and 
OAM series provided by GFZ (Dobslaw et al. 2010). The 
temporal resolution of the data is 3 h and the data span 

(9)MAE =
1

D

D
∑

j=1

∣

∣yj − ŷj
∣

∣

(10)improvement = 100%
MAEwo −MAEw

MAEwo

the range 1976 to the present. Since angular momen-
tum is either caused by mass redistribution or motion 
relative to the reference frame (Gross 2015), the data are 
divided into mass and motion terms. GFZ uses numeri-
cal weather model data of ECMWF (Uppala et al. 2005) 
and the climate-ocean forcing models to compute the 
net effect of global pressure and zonal and meridional 
wind variations through integral formulas defining AAM 
and OAM. Even though for LOD variations the motion 
terms are by far the most important (Gross 2015), we 
also analyze the mass terms. We only analyze the axial 
component of these series, because they are directly pro-
portional to LOD. The equatorial components could be 
analyzed for the case of polar motion prediction in future 
studies.

Regarding LOD, we use the recent IERS EOP series 
named IERS 20 C04 (Petit and Luzum 2010). The reason 
to use this series is that Kiani Shahvandi et  al. (2023a) 
have shown this series is more accurate than its prede-
cessor, i.e., IERS 14 C04 (Bizouard et  al. 2019) for the 
application of EOP prediction, mainly due to the rigor-
ous alignment to the International Terrestrial Reference 
Frame 2020 (Altamimi et al. 2023).

For the highest accuracy in the prediction of EOPs, 
it is important to use AAM and OAM forecasts. The 

Fig. 1 Proposed architecture of BaHaMAs in its general case where the input X is multidimensional and each of the neural networks fi , i = 1, ...,m 
has multiple layers with parameters θi,l,n (i: neural network number; l: layer number; n: hidden neuron number). Sampling of θ through HMC 
is performed from normal and Gaussian distributions. N represent the normalization in Eq. (2)
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length of the forecasts is also important (Kur et  al. 
2022). For these reasons, we use the 14-day-ahead 
AAM and OAM forecasts provided by Geodetic Pre-
diction Center (GPC;  Soja et  al. 2022) at ETH Zurich, 
which are shown to present state-of-the-art accuracy 
compared to the currently available 6-day-ahead fore-
casts (Kiani Shahvandi et  al. 2022c). However, these 
series are provided without uncertainty information. 
We therefore apply our algorithm to these forecast data 
as well to first quantify the uncertainties and subse-
quently use them in the prediction of LOD.

Figure  3 shows the mass terms of axial AAM and 
OAM from 1976 to the end of 2022, i.e., our study 
period. Similarly, in Fig. 4 we display the motion terms 
of AAM and OAM in the study period. These are the 
input and output of the BaHaMAs algorithm. Each of 
the series is analyzed individually, because autoencod-
ers take one time series at a time.

3.2  Studies and their evaluation intervals
The LOD observations since 1976 to the end of 2022 
are shown in Fig.  5. Since the goal is to analyze the 
improvement in prediction performance once the 
uncertainties in the AAM and OAM data are derived 
and used in the prediction of LOD, we present two 
studies to rigorously analyze the results. In study 1, the 
LOD, AAM, and OAM data (with their uncertainties) 

in the range 1976 to the end of 2000 are used for train-
ing, and LOD predictions are made in the range 2001 
to the end of 2005. In study 2, on the other hand, the 
training and prediction intervals are 1976 to the end of 
2017, and 2018 to the end of 2022, respectively. These 
separate intervals are long enough to give us robust 
results, thus adding confidence to the conclusions 
drawn.

4  Results and discussion
4.1  Configurations of BaHaMAs
In our default setting, we use MLP (with tangent hyper-
bolic activation function) as the base neural network. 
According to Gou et  al. (2023), an input sequence 
length of 30 is effective for the prediction of LOD using 
AAM data. Considering this and that the temporal 
resolution of AAM and OAM data is 3  h (8 times per 
day), we chose our windowing size to be 240. Then, the 
first and second neural networks reduce the dimen-
sion from 240 to 8, and from 8 to 1. Subsequently, 
the decoder part increases the dimension from 1 to 8, 
and finally from 8 to 240 again. Furthermore, we uti-
lize Q = 50000 samples, learning rate δt = 5× 10−4 , 
and number of epochs L = 200 . However, we investi-
gate the effect of sample size and model architecture 
on the prediction accuracy of LOD. The value chosen 
for the learning rate is confirmed and used in various 
studies (Gou et  al. 2023; Kiani Shahvandi et  al. 2023a, 

Fig. 2 Summary of the BaHaMAs algorithm for the quantification of AAM and OAM uncertainty and their use in the prediction of LOD
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2024a). Furthermore, the number of epochs is quite 
robust as convergence is usually achieved in much 
fewer epochs than 200. The reason is the use of early 
stopping (Prechelt 2012) in the computations wherein 
if the loss function is not reduced after a certain num-
ber of epochs (in our case 30, from Gou et  al. 2023), 
we assume that the minimum of the loss function has 
already been reached. Finally, the layer normalization is 
applied, but the impact of this choice and the compari-
son with other normalizations are presented in the fol-
lowing analyses.

4.2  Uncertainties derived by BaHaMAs
We show the results of applying BaHaMAs to the AAM 
and OAM in Fig. 6. The distribution of the uncertainties 
are also shown (at the level of one standard deviation). 

From these figures, most of the uncertainties are below 
0.06 ms. For AAM and OAM mass terms (as well as 
OAM motion term), the uncertainties are mostly around 
0.01 ms. This is already close to the uncertainties of LOD 
time series as provided by IERS (around 0.01 ms), imply-
ing that AAM and OAM have the potential to improve 
the prediction performance of LOD prediction. For AAM 
motion term, the uncertainties in earlier times are larger 
and around 0.02 ms, but over time the uncertainties are 
reduced such that in the interval 2010–2023 they are 
close to 0.01 ms. By dividing the time series values with 
their associated uncertainty, overall the approximate sig-
nal-to-noise ratio is 90% or higher, implying that AAM 
and OAM time series are sufficiently accurate. The larger 
uncertainties around 1986 are due to the large and anom-
alous change of the AAM motion term in the time series 

Fig. 3 Mass terms of a AAM and b OAM in the range 1976 to the end of 2022. The unit is ms
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itself. This could be potentially attributed to the 1986 El 
Niño event which had a distinctive characteristic (Chen 
and Li 2018), causing the LOD to change rapidly.

4.3  Validating the uncertainties: comparison 
with differences between two independent series

We present the differences between AAM and OAM 
series of GFZ and another independent series, namely 
SYstèmes de Référence Temps-Espace (SYRTE), in 
Figs. 7–8. Since these two data centers provide the time 
series independently, the mentioned differences might 
approximate the aleatoric uncertainty provided that 
the exact same mathematical approach is used to com-
pute AAM and OAM. As shown from the figures, the 
differences for OAM mass and motion terms, as well 
as AAM mass term are in good agreement with the 

uncertainty values we derived using BaHaMAs. How-
ever, for the AAM motion term, the differences are 
large and almost five times bigger than those derived 
by BaHaMAs. This might imply that the uncertain-
ties derived by BaHaMAs for the AAM motion term 
are overoptimistic. Nevertheless, it is crucial to note 
that there are visibly pronounced signals in the AAM 
motion term differences that are probably related to the 
omission of some contributors to the AAM variations, 
such as the El Niño Southern Oscillation (ENSO) – rep-
resented as Multivariate ENSO Index (MEI; Wolter and 
Timlin 1993) – that exhibits similar amplitude and vari-
ations on interannual time scales(Zheng et al. 2003; Yu 
et al. 2021). By analyzing the differences between AAM 
and OAM series of GFZ and several other institutes, 
Dobslaw and Dill (2019) also conclude that there are 

Fig. 4 Motions terms of a AAM and b OAM in the range 1976 to the end of 2022. The unit is ms
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large discrepancies that are most probably due to the 
computation of the AAM and OAM themselves (such 
as inaccuracies in the removal of tidal variations) and 
not so much related to the intrinsic uncertainty in the 
input data. Therefore, our derived uncertainty values 
might in fact more accurately represent the aleatoric 
uncertainties. Further evidence supporting our conclu-
sion comes from the fact that the AAM motion term 
can be predicted to the future as accurately as 0.01 ms 
(Kiani Shahvandi et al. 2022c, 2023b, 2024c), suggesting 
that the aleatoric uncertainty in the data is similar to 
the value that we derive using BaHaMAs.

4.4  Prediction of LOD
Next, we use the uncertainties derived alongside the 
AAM and OAM time series in a machine learning 
framework in the loss function of which the uncertain-
ties are considered (here only for the observations). This 
is inspired by the weighted least squares methodology 
and based on the approach of Kiani Shahvandi and Soja 
(2022a). The predictions made are then compared with 
the final IERS 20 C04 time series and the MAE is com-
puted. We present the MAE for the case where uncer-
tainties are used and compare it with the case when no 
uncertainty information is used in the LOD prediction 
algorithm, Fig. 9. As observed, in both studies mentioned 
in Fig. 5 the prediction accuracy is improved, confirming 
the usefulness of the uncertainties derived. The average 
improvement across all prediction horizons is 17% and 
13% for study 1 and 2 respectively. We note that, longer 
predictions are less accurate and therefore, the potential 

of improving predictions by using uncertainties is better 
realized (as much as 22%. The numerical values are sum-
marized in the Appendix B).

4.5  Analyzing the impact of sample size
To test the impact of sample size (Q) on the robustness of 
the uncertainties derived, we compute the average MAE 
of LOD across all prediction horizons for Q in the range 
1 to 50,000 (with increment 1). The results are presented 
in Fig.  10. As seen, the average MAE with Q < 5000 is 
almost twice as large as that of Q = 50000 , implying that 
more than 5000 samples are needed for high accuracies. 
As suggested by this diagram, the relationship between 
sample size and the average MAE is exponential, resem-
bling the traditional Monte Carlo sampling that scales 
with the reciprocal of the square root of sample size 
(Thomopoulos 2013). Even though as the sample size 
increases the average MAE decreases, no significant gain 
in accuracy is obtained after around Q = 30000 . Never-
theless, we choose to use Q = 50000 samples to ensure 
that the highest accuracy is obtained in all other analyses 
as well, as presented in the following.

4.6  Analyzing the impact of model architecture
We analyze the influence of the model architecture on 
the robustness of the derived uncertainties by analyz-
ing the corresponding LOD prediction accuracy. All 
the analyses so far have been based on the architecture 
of MLP. In Fig.  11, however, we compare the MAE of 
MLP with that of LSTM. While LSTM is less accurate 
than MLP in study 1 by as much as 0.5%, it presents a 

Fig. 5 LOD time series (in ms) from 1976 to the end of 2022. Two separate studies are presented. First: training in the range 1976–2001 
and predicting in 2001–2006. Second: training in the range 1976–2018 and predicting in 2018–2023
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Fig. 6 Reconstructed aleatoric uncertainty by BaHaMAs for a AAM mass term, b OAM mass term, (c) AAM motion term, and d OAM motion term. 
The distribution of uncertainties (histogram) are also shown. The unit is ms
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2% improvement on average compared to MLP in study 
2. These values confirm that the role of model architec-
ture on the uncertainties derived is marginal. This also 
implies that the epistemic uncertainties due to the model 
deficiencies are captured well enough by sampling a large 

number of candidates for the prior such that changing 
the architecture from MLP to LSTM does not fundamen-
tally alter the results. Therefore, we proceed to follow the 
MLP architecture in the remaining analyses.

Fig. 7 Differences between mass terms of a AAM and b OAM of GFZ and SYRTE. The unit is ms. The shaded areas represent the region containing 
values in one standard deviation (computed across all these difference values). The horizontal black dashed lines show the region in one standard 
deviation derived from BaHaMAs
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4.7  Analyzing the impact of normalization choice
To analyze the influence of the bottleneck (i.e., normali-
zation type) in the architecture of BaHaMAs, we com-
pare the batch and layer normalization approaches (note 
that instance normalization in our problem is equiva-
lent to batch normalization). The results are presented 
in Fig.  12. Similar to the model architecture, it appears 

that the role of normalization type on the uncertain-
ties derived and the prediction accuracy of LOD is mar-
ginal. More precisely, however, layer normalization is on 
average 0.5% and 3% more accurate than the batch nor-
malization, confirming the suitability of our choice of 
normalization type.

Fig. 8 Differences between motion terms of a AAM and b OAM of GFZ and SYRTE. The unit is ms. The shaded areas represent the region containing 
values in one standard deviation (computed across all these difference values). The horizontal black dashed lines show the region in one standard 
deviation derived from BaHaMAs
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Fig. 9 Prediction accuracy of LOD in terms of MAE in ms for both studies 1 and 2. The results of two cases are compared: with and without the use 
of uncertainty values derived for AAM and OAM using BaHaMAs

Fig. 10 Impact of sample size Q on the average prediction accuracy of LOD, for studies 1 and 2
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Fig. 11 Impact of the model architecture on the prediction accuracy of LOD using BaHaMAs algorithm for the determination of AAM and OAM 
uncertainties

Fig. 12 Impact of the normalization type in BaHaMAs on the prediction accuracy of LOD
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4.8  Comparison of BaHaMAs with VAEs and DEs 
as baselines

To compare BaHaMAs with alternative uncertainty 
quantification algorithms, we present the results 
of VAEs and DEs. Similar to BaHaMAs, VAEs use 
Q = 50000 samples. For DE, 10 models are trained, 

as suggested in several studies (Kiani Shahvandi et al. 
2023a, 2024a) to present robust analyses for the pre-
diction of EOPs (in fact we also tested the impact of 
the number of DE models, but after 10 models we 
did not see significant improvement in the results, 
implying that the results presented here are robust). 

Fig. 13 Impact of the uncertainty algorithm on the prediction accuracy of LOD. The results of BaHaMAs, VAEs, and DEs are compared for study 1 
and 2 in (a) and (b), respectively
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The results are presented in Fig.  13, indicating a 
higher accuracy of BaHaMAs. In study 1, the average 
improvement of using BaHaMAs instead of VAEs and 
DEs is 5% and 7%, respectively. On the other hand, in 
study 2 the corresponding values are 9% and 10%.

4.9  Analyzing the impact of using AAM and OAM forecasts 
and comparison with independent predictions 
as baselines

Since it has been shown that AAM and OAM fore-
casts have significant impact on the prediction accuracy 

Fig. 14 a Impact of including AAM and OAM forecasts on the prediction accuracy of LOD, when the uncertainties are determined using BaHaMAs. 
b Comparison of the prediction accuracy of our algorithm with the independent predictions provided by SYRTE. Note here that the results are 
based on the predictions in the range May 20, 2021 to the end of 2022
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of LOD (Gou et  al. 2023), we proceed to use 14-day-
ahead forecasts provided by ETH Zurich, quantify their 
uncertainty, and use them in the prediction of LOD. As 
observed in Fig. 14(a), the inclusion of AAM and OAM 
forecasts with their uncertainties derived from BaHaMAs 
significantly improves the LOD prediction accuracy, on 
average by 30% and 31% for studies 1 and 2, respectively. 
In addition, to compare the prediction accuracy of our 
algorithm with an independent data provider, we use the 
LOD predictions of SYRTE (Bizouard et al. 2019). Since 
we have archived these operational predictions only since 
May 20, 2021, we only present the results for a part of the 
Test 2 time frame. The results are presented in Fig. 14(b). 
Comparisons with the predictions of SYRTE from May 
2021 until the end of 2022 reveal that BaHaMAs predic-
tions are on average 66% more accurate, demonstrating 
the high accuracy of our algorithm.

We also compare our results with the best result 
obtained in the second Earth Orientation Parameters 
Comparison Campaign (EOPPCC; Śliwińska et al. 2023, 
Śliwińska-Bronowicz et  al. 2024), under the campaign 
conditions. The results are shown in Fig.  15. As it can 
bee seen, we can improve the prediction performance of 
LOD by 12% on average (we note that these results are 
before various filtering applied by EOPPCC). This further 
confirms that using the uncertainties derived by BaHa-
MAs in the prediction of LOD is advantageous.

5  Conclusions
We present BaHaMAs, a method for quantifying the 
aleatoric uncertainty in time series using autoencod-
ers based on Bayesian machine learning through Ham-
iltonian Monte Carlo sampling. In case a time series is 
provided without the information regarding uncertainty, 
BaHaMAs can be used to approximate the aleatoric 
uncertainty in the time series from itself by analyzing 
how predicable or stochastic the time series is. We apply 
the method to the AAM and OAM time series of GFZ 
and use the derived uncertainties alongside the AAM 
and OAM themselves for the short-term prediction of 
LOD. The prediction performance is improved by around 
17% on average. Furthermore, BaHaMAs is more accu-
rate than VAEs or DEs. Among the parameters that can 
impact the accuracy of BaHaMAs the most important 
is the sampling size (around 50000 is recommended). In 
terms of data, the most significant contribution to the 
improvement of prediction accuracy of LOD is from 
14-day-ahead forecasts of AAM and OAM.

Prediction of LOD is important for a host of applica-
tions such as spacecraft navigation and orientation of 
deep space telescopes (Dobslaw and Dill 2018). As a 
result, the second EOPPCC (Śliwińska-Bronowicz et  al. 
2024) was organized to compare the prediction accuracy 
of different methods under operational settings. In the 
30-day horizon our predictions were the most accurate 

Fig. 15 Comparison of the prediction accuracy (in MAE) of LOD for the best results obtained during the second EOPPCC and those from our 
approach. The unit is ms
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in terms of MAE, providing us with incentive to enhance 
our methodology to further improve the LOD predic-
tions. With BaHaMAs we have made a step toward this 
goal and hope to motivate other researchers to consider 
incorporating the uncertainty quantification in their 
methods as well. We note, however, that one of the main 
shortcomings of BaHaMAs is that there is no universal, 
independent approach to compare the results of BaHa-
MAs against. Therefore, for various applications different 
ways of comparison should be designed based on prior 
knowledge. One way, as we have shown in this paper, is 
to compare the data of different institutions provided 
that the modelling approach is the same for all data cent-
ers. Finally, the uncertainties derived by BaHaMAs are 
approximate and do not necessarily correspond exactly 
to the ’true’ yet unknown uncertainties. However, we 
derived conditions under which the uncertainties derived 
by BaHaMAs correspond to the actual uncertainties. 
Hence, these uncertainties are useful for the prediction 
purposes, as we have demonstrated in this paper.

Appendix A
Proof of proposition 1
According to Jennrich (1969) and Wu  (1981), an estima-
tor θ̂ is said to be consistent (weakly or strongly) if the 
quantity 1N DN (θ , θ

′) uniformly converges to a continuous 
function D(θ , θ ′) , and D(θ , θ0) = 0 ⇐⇒ θ = θ0 . D has 
the form as in Eq. (11):

Now, we note that f is an autoencoder and thus, we can 
write

in which ξi and ηi are functions of θ and θ ′ , as well as X. 
Putting Eq. (12) to (11) we get Eq. (13):

As Wu  (1981) states, the condition 
limN→∞ DN (θ , θ

′) −→ ∞ should be satisfied. Accord-
ing to theorems on divergence of infinite series (see 
e.g., Bourchtein and Bourchtein (2022)) if we assume 
∣

∣ξi − ηi
∣

∣ ∼ N−p , then DN (θ , θ
′) ∼ N−2p+1 and there-

fore p ≤ 1 . On the other hand, 1
N DN (θ , θ

′) ∼ N−2p 
should be convergent and therefore, p > 1

2 . 

(11)DN (θ , θ
′) =

N
∑

i=1

(

f (Xi, θ)− f (Xi, θ
′)

)2

(12)
f (Xi, θ) = Xi + ξi

f
(

Xi, θ
′
)

= Xi + ηi

(13)DN (θ , θ
′) =

N
∑

i=1

(

ξi − ηi

)2

Therefore, the DN (θ , θ
′) should in general scale as 

N−p, 1
2 < p ≤ 1 . Turning to second condition, if θ = θ0 

then ξi = ηi , implying DN (θ , θ
′) = 0 and therefore 

D(θ , θ ′) = limN→∞
1
N DN (θ , θ

′) −→ 0 . On the other 
hand, if D(θ , θ ′) = 0 , then since DN (θ , θ

′) > 0 we con-
clude that ξi = ηi, ∀i . Considering that ξi and ηi are con-
tinuous functions in terms of θ and θ ′ , the only possible 
way to satisfy ξi = ηi, ∀i is θ = θ0.

Appendix B
Numerical values of MAE and improvement in Fig. 9

The numerical values of the MAE and improvement in 
Fig. 9 are given in the following Table 1.

Abbreviations
BaHaMAs  Bayesian Hamiltonian Monte Carlo Autoencoders

Table 1 Numerical values of the MAE (in ms) and improvement 
(in percentage) related to Fig. 9

Forecast 
horizon

MAE 
study 1

Improvement 
study 1

MAE study 2 Improvement 
study 2

1 0.015 5.4 0.014 6.0

2 0.039 8.6 0.038 7.4

3 0.059 11.2 0.059 9.5

4 0.074 12.2 0.074 10.8

5 0.085 12.1 0.084 11.2

6 0.095 11.9 0.094 11.2

7 0.102 12.0 0.103 10.8

8 0.109 12.2 0.111 9.9

9 0.115 12.3 0.118 8.5

10 0.121 12.7 0.124 7.5

11 0.125 13.6 0.129 7.4

12 0.128 14.7 0.134 7.6

13 0.131 15.7 0.138 7.7

14 0.133 17.1 0.140 8.2

15 0.134 18.5 0.142 9.2

16 0.136 19.4 0.143 10.1

17 0.138 19.5 0.146 10.5

18 0.140 19.3 0.147 10.9

19 0.142 19.4 0.149 11.2

20 0.143 20.0 0.150 11.9

21 0.143 20.7 0.151 12.4

22 0.144 21.0 0.152 12.3

23 0.145 21.3 0.154 12.2

24 0.146 21.7 0.155 12.2

25 0.147 21.9 0.156 12.0

26 0.148 22.1 0.158 12.0

27 0.149 22.2 0.159 11.9

28 0.150 22.2 0.160 11.7

29 0.151 22.2 0.162 11.5

30 0.154 22.3 0.165 11.5
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DEs  Deep Ensembles
EOPs  Earth Orientation Parameters
IERS  International Earth Rotation and Reference Systems Service
MAE  Mean Absolute Error
mas  Milliarcseconds
SYRTE  SYstèmes de Référence Temps-Espace
VAEs  Variational Auto Encoders
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