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Abstract 

Satellite altimetry is the main tool for constructing global or regional marine gravity fields. To improve the accuracy 
and spatial resolution, it is necessary to fuse multi-mission altimeters. How to determine the weights of multi-mission 
altimeters is a crucial issue, making the conventional calculation process very complex. In addition, traditional satellite 
inversion methods are often independent of shipborne gravity, which is used only as validation data, thus not take full 
advantages of high accuracy and resolution of shipborne gravity. In this study, we introduce a convolutional neural 
network (CNN) to merge the vertical deflections (DOVs) obtained from multi-altimeter missions to construct a marine 
gravity model in the South China Sea. High-accuracy shipborne gravity and a dataset comprising DOVs and geo-
locations are employed as input data for neural network training. For the validation of CNN method, the gravity model 
is also computed by conventional Inverse Vening Meinesz (IVM) method. Independent shipborne gravity measure-
ments and SIO V32.1, DTU17 models are used as validation data. The evaluation results show that the CNN-derived 
model achieves a higher level of accuracy, yielding a standard deviation (STD) of 3.21 mGal, with an improvement 
of 36.56% compared to IVM-derived model. More than 92% of the differences between the CNN-derived model 
and shipborne gravity are less than 5 mGal. In addition, spectral analysis results further show that the CNN-derived 
model has stronger energy at short wavelengths (less than 25 km) compared to other models. These findings reveal 
that CNN method is feasible for marine gravity recovery and the CNN-derived model can achieve higher accuracy. 
The CNN method can improve the accuracy and spectral characteristics of the constructed gravity model by taking 
advantage of the high accuracy and high resolution of shipborne gravity.
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Graphical Abstract

1  Introduction
Marine gravity field serves as the essential data for ocean 
observations, reflecting the distribution, movement, and 
density changes of materials under the ocean. Accurate 
knowledge of marine gravity field is crucial for under-
standing the distribution of marine resources, submarine 
topography and tectonics, as well as underwater vehicle 
navigation, benefiting science and society. Marine grav-
ity can be obtained mainly by satellite altimetry and 
shipborne gravity measurements. Satellite altimetry can 
provide rapid access to global sea surface heights (SSHs), 
and measure the shape of the Earth and the geoid, 
thereby to obtain the global marine gravity field. Over 
the past decades, thanks to the accumulation of multi-
source altimeter data, satellite altimetry has developed 
into an essential tool for constructing global or regional 
marine gravity models (Andersen and Knudsen 1998; 
Haxby et  al. 1983; Hwang 1998; Sandwell and Smith 

2009). Shipborne gravity measurements offer advantages 
in accuracy and resolution, and are an important aid in 
obtaining marine gravity. At present, to further enhance 
the accuracy and resolution of marine gravity, it is nec-
essary to maximize the integration of multi-source data, 
including altimeter data and shipborne gravity measure-
ments, while taking advantage of the strengths of each 
data.

The spatial track density, range precision and trajectory 
diversity of altimeter are the primary factors affecting 
the spatial resolution and accuracy of altimetry-derived 
marine gravity. Combining multi-mission altimeter data, 
especially from geodetic missions (GMs), is an effec-
tive way to improve the spatial density, trajectory diver-
sity and volume of SSHs (Andersen et  al. 2010, 2021; 
Sandwell et al. 2021; Zhu et al. 2020). Different altimeters 
have different levels of accuracy. When combining multi-
mission altimeter data, how to determine appropriate 
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weights for each mission to achieve an optimal result is 
particularly important. It has been an indispensable com-
ponent in the study of marine gravity recovery.

Sandwell and Smith (1997) applied an a priori esti-
mate of along-track slope error, to weight the Geosat and 
ERS-1/GM data. Hwang (1998) weighted the altimeter 
data from Seasat, Geosat ERS-1 and TOPEX/POSEI-
DON (T/P) based on the standard deviations (STDs) of 
mean geoid gradients, and derived a global marine grav-
ity model by empirical variances function and remove–
compute–restore (RCR) technology. This method has 
been used to weight multi-source altimeter data, includ-
ing new GM data from SARAL/AltiKa/Drifting Phase 
(AltiKa/DP), Cryosat-2, Jason-1/2 and HY-2A since 2010 
(Hwang et al. 2002; Yu et al. 2021; Yu and Hwang 2022). 
Different observation modes and observation bands of 
the altimeter complicate the weighting strategy. Zhu et al. 
(2020) proposed a new iterative method to estimate the 
weight of the Ka-band AltiKa altimeter. Yu and Hwang 
(2022) employed the theory of minimum norm quad-
ratic unbiased estimator to calibrate the error variances 
of geoid gradients from Cryosat-2 and Jason-1/2 missions 
and calculated the gravity field in the Gulf of Mexico. 
These studies indicate that the process of weights deter-
mination and combination of multi-mission altimetry 
data is very complicated. Moreover, the covariance func-
tion sometimes fails to fully reflect the error characteris-
tics of each satellite, the resulting weights do not achieve 
the optimal results.

The main approaches for marine gravity recovery 
from multi-mission altimeters include the inverse 
Stokes integral, the inverse Vening Meinesz (IVM) for-
mula, the Laplace equation, and the least squares col-
location (LSC) method. The inverse Stokes integral 
is appliable for marine gravity recovery from geoid 
heights (Wang 1999). The IVM method and the Laplace 
equation depend on vertical deflections (DOVs) as data 
source (Hwang 1998; Sandwell and Smith 1997). The 
LSC method is based on statistical theory and can be 
used for geoid heights or DOVs. This method relies on 
a precise covariance matrix between the geoid heights 
or DOVs and the gravity anomalies, which is difficult 
to determine exactly. So, it has been used relatively 
infrequently (Andersen and Knudsen 1998; Olgiati 
et  al. 1995). DOVs are the slope of the geoid in the 
north–south and east–west directions. Theoretically, 
due to differential computation, DOVs are less con-
taminated by long-wavelength radial orbit error, while 
containing more short-wavelength signals, resulting 
in that IVM and Laplace equation methods are widely 
used in gravity recovery (Hwang et  al. 2002; Sandwell 
and Smith 2009; Zhang et  al. 2021). However, these 

common traditional methods rely on strict functional 
relationship between geoid or DOVs and gravity anom-
alies, and are often independent of shipboard gravity 
measurements, which are used only as validation data. 
This simplifies the complex correlational relationship 
between geoids or DOVs and gravity anomalies and 
prevents these methods from taking full advantage of 
the high accuracy and resolution of shipborne gravity. 
In this study, we attempt to propose a new inversion 
method, based on neural networks, which using DOVs 
as data source.

Neural networks are applicable to simplify the pro-
cess of gravity recovery from multi-source altimeters 
and shipborne gravity, due to their powerful massive 
data processing and nonlinear fitting capabilities. They 
have been successfully applied in seismic detection and 
location (Perol et  al. 2018), noise suppression (Dong 
et  al. 2020; Zhao et  al. 2018), and bathymetry predic-
tion (Annan and Wan 2022; Li et  al. 2023; Sun et  al. 
2022). Neural networks can map various geophysical 
transfer functions and fuse data from multiple sources 
to accomplish regression tasks efficiently with high 
accuracy. Convolutional neural network (CNN) is one 
of the most widely used neural network model, per-
forming well in extracting highly non-linear features 
from images, which is challenging for traditional physi-
cal algorithms. Therefore, it is possible to adopt CNN 
to recover the marine gravity by combining multi-mis-
sion altimeters without complex weight determination.

In this paper, we attempt to construct the marine 
gravity field in South China Sea (SCS) by CNN method 
and RCR technology. CNN has been utilized to recover 
gravity data in the western Pacific Ocean from satel-
lite altimetry data (Zhu et  al. 2023). Distinguished 
from other studies, we focus on the ability of the CNN 
method to simplify the fusion of multi-satellite data-
sets. We derive gravity in short waveband from CNN 
rather than absolute gravity, since altimeter data can 
improve the short-wavelength gravity field primarily. 
We also use high-resolution shipborne gravity meas-
urements to assess the actual resolution of the CNN 
inversion results compared to other models. Specifi-
cally, we first calculate multi-source altimetry-derived 
DOVs from Altika/DP, CryoSat-2, Jason-2/GM, HY-2A/
GM, and Jason-1/GM in SCS. Then, we design a CNN 
using DOVs and geo-locations as input data, and ship-
borne gravity measurements as training data. The ship-
borne gravity measurements require quality control 
and band separation. Finally, we construct a 1′ × 1′ 
marine gravity model by the designed CNN and evalu-
ate its accuracy by comparing with conventional IVM 
method and other gravity data.
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2 � Study area and data
2.1 � Study area
The SCS is located at the junction of the Eurasian plate, 
Indo-Australian plate, and Philippine Sea plate. As one 
of the marginal seas of western Pacific, its relatively com-
plex seafloor topography records the formation and evo-
lution of the whole marginal sea, which provides a natural 
geological laboratory for the study of continental rifting 
and seafloor spreading processes. SCS is rich in tectonic 
units, including islands, trenches, basins, and submarine 
plateaus, and so on (as shown in Fig.  1a). The marine 
gravity field of SCS is the basic data for crustal structure 
and tectonic unit research. Therefore, the region of SCS 

within 13°–18°  N, 110°–120°  E is selected as the study 
area to recover the regional marine gravity field using 
multi-altimeter data sets (Fig. 1a and the red rectangle in 
the upper right). Considering the edge effect, the region 
expands outward by 1° during the calculation process 
(black dashed rectangle in the upper right of Fig. 1a). The 
region has a large topographic relief, with water depths 
ranging from 0 to 5000 m. The landforms are character-
ized by their complexity and diversity, encompassing sea-
mounts, sea basins, trenches, and other features. These 
characteristics provide a comprehensive validation of the 
neural network method’s efficacy in gravity recovery.

Fig. 1  Bathymetry of the study area (a) and the distribution of shipborne gravity. (b) Red dots and blue dots in figure b) denote calculate points 
(which are used for training the neural network) and check points (which are excluded from training), respectively
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2.2 � Datasets used
2.2.1 � Shipborne gravity data
As training sample, the collection of shipborne gravity 
data is the first priority. The shipborne gravity data used 
in this study are available from the National Centers for 
Environmental Information (NCEI) and SeaDataNet. 
The main types of features we use to train the recovery 
are longitude, latitude, and free-air gravity anomaly. The 
free-air anomalies have been adjusted for drift correc-
tion, lag time and Eötvös correction. The total number of 
shipborne gravity points is 80,899, and their distribution 
is shown in Fig. 1b.

For quality control, it is necessary to edit the ship-
borne gravity first to remove incorrect measurements 
(see Sect.  3.1). Then to train a neural network model, 
approximately 80% (64,720 data points illustrated as red 
dots in Fig. 1b) are selected evenly as calculate points to 
train the neural network. These data are processed to get 
the short-wavelength component. During the training 
process, 80% of the calculate points is randomly selected 
as the training set and 20% as the test set to iteratively 
optimize the model. The remaining data points (16,179 
points depicted as blue dots in Fig. 1b) are independent 
of the calculation process and used as check points to 
evaluate the altimeter-derived gravity models.

2.2.2 � Altimetry data
Up to now, there are several satellite altimeters provid-
ing numerous SSHs data of GMs, including Geosat/GM, 
ERS-1/GM, Jason-1/GM, CryoSat-2, HY-2A/GM, Altika/
DP, and Jason-2/GM. Whether all geodetic missions still 
make great contributions to the marine gravity recovery 
is a concern for simplifying the gravity construction pro-
cesses. Sandwell et al. (2021) assessed the contribution of 
each altimeter GM to the marine gravity recovery, and 
found that Geosat/GM and ERS-1/GM provide minor 
improvement. Therefore, SSHs data from Geosat/GM 
and ERS-1/GM are excluded from this study, and data 
from Altika/DP, HY-2A/GM, CryoSat-2, Jason-1/GM and 
Jason-2/GM are employed, and the information on the 
GMs used are shown in Table 1.

We mainly use the 1  Hz along-track non-time criti-
cal Level-2 Plus (L2P) products, which can be accessed 
through AVISO. The L2P products are results of further 
processing of Level 2 altimetry data (geophysical data 
records, GDRs). L2P products for all altimetry missions 
have a uniform format and content (CNES 2020). The 
reference datum used is WGS-84, which is similar with 
shipborne gravity data. For Jason-2/GM, the 1-Hz GDRs 
in Ku band are adopted due to the less measured SSHs 
from L2P. GDRs have a different reference ellipsoid with 
equatorial radius of 6378.1363  km and flattening coeffi-
cient of 1/298.257 from that of WGS 84, which should be 
transformed before calculating the DOVs (Jin et al. 2008; 
Rapp et al. 1994). In the end, we use the SSHs after data 
editing and various geophysical corrections.

2.2.3 � Dynamic topography model and reference gravity field
Given the effect of sea surface topography, a dynamic 
topography model is considered to interpolate and 
remove from altimeter-measured SSHs before calculat-
ing DOVs. The mean dynamic topography (MDT) model 
MDT-CNES-CLS18 from AVISO is employed in this 
study. MDT-CNES-CLS18 model is an estimate of the 
mean sea surface height above geoid over the 1993–2012 
period, with a global geographic coverage and resolution 
of 0.125°.

To derive gravity in a certain waveband, RCR tech-
nique is introduced to separate the gravity field into the 
long-wavelength reference field and the short-wavelength 
residual field (Forsberg 1984). In this study, the Earth 
Gravitational Model 2008 (EGM2008) is chosen as the 
reference gravity field, which is one of the widely used 
combined global gravity field models (Andersen and 
Knudsen 2019; Pavlis et  al. 2012; Sandwell and Smith 
2009; Zhang et al. 2017; Zhu et al. 2020). EGM2008 is a 
spherical harmonic model of the Earth’s gravitational 
potential, which is completed to degree and order 2159, 
and contains additional coefficients up to degree 2190 
and order 2159 (Pavlis et  al. 2012). By removing the 
MDT-CNES-CLS18 model and EGM2008-derived geoid 
from the SSHs, residual geoid heights can be obtained, 
which are the key data for DOVs calculation.

Table 1  Information of altimeter data used in this study

Satellite Product Time scope Cycle scope Orbit inclination Repeat cycle 
(d)

Cross-track 
distance at 
equator (km)

Altika L2P 16.07–23.07 100–173 ± 81.5 – ~ 5

CryoSat-2 L2P 10.07–20.05 007–130 ± 88 369 ~ 2.5

HY-2A L2P 16.03–20.05 118–288 ± 81 168 ~ 15

Jason-1 L2P 12.05–13.06 500–537 ± 66 406 ~ 7

Jason-2 GDR 17.07–19.10 500–644 ± 66 369 ~ 7
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2.2.4 � Gravity data for validation
To evaluate the accuracy of marine gravity models using 
external data is an important part of marine gravity 
recovery. The models of V32.1 from Scripps Institution 
of Oceanography (SIO), DTU17 from DTU space (DTU) 
are introduced to verify the recovered gravity model. 
They adopted different multi-satellite altimeter dataset 
and data processing method that ensure independence 
from recovered model. SIO V32.1 adopted new altim-
eter data from Envisat, Cryosat-2, Jason-1/2, Altika and 
Sentinel-3A/B. Advanced data processing methods such 
as retracking waveforms, slope correction, biharmonic 
spline interpolation, multiple filtering, and Laplace equa-
tion are employed for gravity recovery. As a result, it has 
a spatial resolution up to 1′ × 1′ and an accuracy up to 
1–2  mGal in some regions (Sandwell et  al. 2014, 2021). 
DTU17 employed the altimeter data from Geosat, ERS-
1, Cryosat-2, Jason-1 and Altika, which have been pro-
cessed with double waveform retracking method to 
improve the range accuracy, especially in coastal and 
polar regions. And it calculated the marine gravity by 
inverse stokes formula from altimeter measured geoid 
(Andersen and Knudsen 2019). It is widely recognized 
that these marine gravity models have high spatial resolu-
tion and accuracy, and are typical marine gravity models 
in the world, which are used as a comparative standard 
for accuracy assessment.

3 � Methods
In this study, the altimeter-measured SSHs after geo-
physical correction obtained from satellite missions 
such as Altika/DP, CryoSat-2, Jason-2/GM, HY-2A/GM 
and Jason-1/GM are used. Two different data processing 
strategies are employed to compute the gravity anoma-
lies in the study area. The performance of the CNN tech-
nique is evaluated by comparing the results, as illustrated 
in Fig. 2.

In the first processing strategy, the residual DOV com-
ponents of each satellite are calculated separately by 
along-track LSC method (Hwang and Parsons 1995), 
after subtracting the long-wavelength reference field and 
the effect of sea surface topography. Then the CNN tech-
nique is applied to each residual DOV components to 
determine the residual gravity in the study area. Finally, 
by restoring the long-wavelength gravity from EGM2008, 
we get the gravity anomaly model named GA_CNN.

The second processing strategy follows a common 
approach in gravity recovery from altimeter. Firstly, the 
along-track residual geoid gradients of each satellite are 
calculated by differentiation, after subtracting the long-
wavelength reference field and the effect of sea surface 
topography. These residual geoid gradients are then fused 

using appropriate weights to compute the gridded resid-
ual DOV by LSC. The weights are determined by the pre-
cision of geoid gradients, which is derived from crossover 
discrepancies of SSHs after the crossover adjustment. 
The details followed the method proposed by Zhu et al. 
(2020). The residual DOV is then converted to residual 
gravity by IVM formula. Finally, by restoring the long-
wavelength gravity from EGM2008, a gravity anomaly 
model named GA_IVM is obtained.

To assess the performance of CNN method, the results 
from both data processing approaches are compared with 
shipborne gravity data and other gravity models.

3.1 � Data preprocessing
For altimeter data, we begin with the unifying of the 
reference ellipsoids of L2Ps and GDRs. Specifically, the 
Jason-2/GM SSHs are converted to those in WGS84 
using the method described by Rapp et  al. (1994) and 
Jin et  al. (2008). To suppress the high-frequency noise 
caused by surface temporal variability, a Gaussian low-
pass filter is applied to each altimeter SSH. The convolu-
tion window radius is identified as 7 km, considering that 
the distance between adjacent points of the 1 Hz along-
track SSH is about 7  km. Subsequently, WGS84-based 
multi-satellite altimeter-measured SSHs are ready for 
next DOV gridding.

For shipborne gravity data, the systematic errors 
between each survey line should be eliminated primar-
ily. Although the Eötvös and drift corrections have been 
applied to the released shipborne gravity, there may still 
be systematic errors between different cruises, due to the 
different measuring organization, instruments, and ves-
sels and so on (Wessel and Watts 2012). To enhance the 
quality of shipborne gravity data, we employ the gravity 
anomalies from EGM2008 as a priori model for quality 
control. The reference ellipsoid for both the EGM2008 
and shipborne gravity is WGS84. We first compute the 
differences between EGM2008 and the shipborne grav-
ity data at measuring points. Then the mean and STD 
of these differences are counted. Gravity data with dif-
ferences greater than three times STD are eliminated. If 
the mean value is far from 0, it indicates that there is a 
systematic error. And it is necessary to correct the sys-
tematic error by adding the average value to each meas-
urement cruise. In the study area, due to the old age and 
poor accuracy of many shipborne gravity measurements, 
systematic errors of some cruises need to be eliminated 
segment by segment, among which the whole routes of 
RC2614 and KH7605 are not employed. In this study 
area, there are a total of 84,698 shipborne gravity obser-
vations. After quality control, about 4.49% of the obser-
vations are deleted as outliers and 80,899 points are 
retained for subsequent calculations.
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In addition, according to the RCR technique, the gravita-
tional field can be divided into long-wavelength reference 
field and short-wavelength residual field, as shown in Eq. 1.

where the �gres
(

x, y
)

 represents the short-wave-
length residual gravity field, �gEGM2008

(

x, y
)

 is the 

(1)�g
(

x, y
)

= �gres
(

x, y
)

+�gEGM2008

(

x, y
)

,

long-wavelength reference gravity obtained from 
EGM2008.

In CNN method, the short-wavelength component of 
shipborne gravity at training points is employed as the 
feature. Before training the neural network, EGM2008 
gravity anomalies at training points are subtracted from 

Fig. 2  The data processing strategy in this study



Page 8 of 16Li et al. Earth, Planets and Space          (2024) 76:129 

the shipborne gravity data to obtain the residual gravity 
anomalies.

3.2 � DOV gridding
The components of DOV are the gradients of the geoid 
resolved in north–south and east–west directions, which 
can be calculated by along-track differentiation and LSC 
method (Hwang and Parsons 1995). Computation of 
DOV through along-track differentiation can suppress 
long wavelength errors of SSHs and avoid the complex 
calculations of crossover analysis (Hwang and Parsons 
1995; Zhu et al. 2020). Along-track DOV is the negative 
of the along-track geoid gradients, which can be calcu-
lated by differentiating the geoid of two adjacent points 
with respect to their spherical distance, as follows

where ePQ is the along-track DOV between two adjacent 
points P and Q. distPQ represents the spherical distance 
between points P and Q. SSHP, SSHQ, MDTP and MDTQ 
are the adjusted SSH at points P and Q, and the sea sur-
face topography at points P and Q from MDT-CNES-
CLS18 model, respectively.

With reference to the RCR technique summarized 
in Fig.  2, it is a key step to calculate the residual DOV 
components on regular grid and use them to calculate 
the residual gravity anomaly. The residual DOV can be 
obtained by residual along-track geoid gradients, after 
removing the reference geoid gradients of EGM2008 
from along-track geoid gradients. Then the LSC method 
is applied to calculate gridded residual DOV components 
by Zhu et al. (2020)

where eres is the residual geoid gradient. ηres and ξres are 
residual east–west and north–south components of 
DOVs. The covariance matrices Cee , Cξe and Cηe are for 
eres − eres , ξres − eres and ηres − eres , respectively. The 
covariance matrices are obtained from Tscherning–Rapp 
degree variance Model 4 (Tscherning and Rapp 1974) 
and coefficients errors of EGM2008. Cnn is the matrix of 
noise variances of geoid gradients, which can be obtained 
by the method proposed by Hwang and Parsons (1995) 
and Zhu et al. (2020).

3.3 � Inverse Vening Meinesz formula
Gravity anomalies can be recovered from DOVs by the 
IVM formula, which was presented by Hwang et  al. 
(2002):

(2)ePQ = −

(

SSHQ −MDTQ

)

− (SSHP −MDTP)

distPQ
,

(3)
(

ξres
ηres

)

=

(

Cξe

Cηe

)

(Cee + Cnn)
−1eres,

where �gP represents the gravity anomaly at point P. γ0 is 
the normal gravity based on WGS-84. ηQ and ξQ are the 
east–west and north–south components of the DOV at 
point Q, respectively. αQP is the azimuth from Q to P. H′ 
is the kernel function defined as

ψPQ is the spherical distance between Q and P. Consid-
ering that the residual components of DOVs are given in 
regular grid, �gP can be calculated by 1-D fast Fourier 
transform (1D FFT) (Hwang 1998). ψPQ cannot be 0, or it 
will cause singularity of kernel function. The innermost 
zone effect on gravity anomaly should be considered and 
are computed by �gi =

s0γ0
2

(

ξy + ηx
)

 , where ξy = ∂ξ/∂y 
and ηx = ∂η/∂x are the north derivative of ξ and the east 
derivative of η , respectively; s0 is the radius of the inner-
most zone, which can be approximated from the grid 
intervals as: s0 =

√

�x�y
π

.

3.4 � Convolutional neural network used for gravity 
recovery

In this study, a multilayer convolutional neural network 
(CNN) model is constructed to recover residual gravity 
using multi-altimeter DOVs and shipborne gravity. Its 
architecture is shown in Fig. 3. The input data is north–
south and east–west components of DOVs from Altika/
DP, Jason-2/GM, CryoSat-2, HY-2A/GM and Jason-1/
GM, respectively, for a total of 10 components. Since the 
CNN input is an image, the smaller and more pixels of 
the image, the more it helps to extract the detailed fea-
tures of the image and improve the performance of the 
neural network. So, each grid of DOVs is sliced into 
smaller grids using a 4 × 4 sliding window. That is the 
DOVs on 1′ × 1′ grid are resampled to 0.251′ × 0.25′. 
Therefore, each 4 × 4 grid is an equivalent of 1′ spatial 
resolution. Because the gravity anomaly is an integral cal-
culation of the DOVs in the surrounding region, employ-
ing more surrounding points provide more information 
for gravity determination. Considering the integration 
radius and the performance of computers, 32 × 32 sur-
rounding points are chosen. Since the positions of the 
calculation points also affect the gravity field, longitude 
and latitude are considered as input features. All these 
input features are 3D-concatenated to form a 32 × 32 × 12 
input image.

(4)

�gP =
γ0

4π

∫∫

σ

H ′
(

ξQ cosαQP + ηQ sin αQP
)

dσQP ,

(5)

H
′(ψPQ) = −

cos
ψPQ

2

2 sin2
ψPQ

2

+

cos
ψPQ

2

(

3+ 2 sin
ψPQ

2

)

2 sin
ψPQ

2

(

1+ sin
ψPQ

2

) .
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In addition to the input images and output result, the 
CNN architecture is mainly composed of seven blocks. 
The first three blocks are similar and consist of convo-
lution, batch normalization, max pooling and rectified 
linear unit (ReLU) layers, respectively. The convolution 
layer conducts convolutional operations on the input 
images to extract features such as edges, textures and 
shapes. The batch normalization layer normalizes the 
extracted features of each layer to ensure a similar fea-
ture distribution and enhance stability. The max pooling 
layer reduces the dimensionality of the data and pre-
serves the most important information. The ReLU layer 
applies nonlinear transformations to the output to help 
extract complex features. Compared to other activation 
functions, ReLU has stronger nonlinear fitting ability to 
improve the expressive power of neural network models. 
And it is the most commonly used nonlinear activation 
function (Glorot et al. 2011). The fourth block consists of 
convolution, batch normalization and ReLU layers, fol-
lowed closely by a 25% dropout layer. The dropout layer is 
designed to mitigate overfitting and enhance the model’s 
generalization capability. After flattening the extracted 
features, the last three blocks contain a fully connected 
layer with ReLU as activation function, respectively. The 
fully connected layers map the extracted features to the 
regression labels, learn the associations between the fea-
tures, and implement the final regression calculation. 
Finally, the output of CNN is the residual gravity anomaly 
at the point on 1′ × 1′ grids.

Once the neural network architecture is constructed, 
the important task is to train the neural network using 

sample data. Shipborne residual gravity with high 
accuracy and DOVs at training points are employed as 
training data, and the rest of the data is applied for test-
ing. The neural network is trained according to the fol-
lowing method.

First of all, the neural network model is initialized to 
randomly generate initial parameters such as weights 
and biases. Secondly, the input data are propagated 
forward through the neural network architecture to 
obtain the output value. Thirdly, the error between the 
output value and the target value (testing data) is calcu-
lated, and the error is transmitted back to the network 
when it is larger than the expected value. The weights 
and biases will update according to the proper algo-
rithm, and so on iteratively until the error meets the 
expected value, then the model training is completed. 
In this study, a loss function based on the root-mean-
square error between the computed gravity and ship-
borne residual gravity is used to train the network for 
40 epochs at an initial learning rate of 0.001. Based on 
the learning rate and loss function, the weights and 
biases are updated using Adam optimization algorithm. 
Adam is an algorithm for first-order gradient-based 
optimization of stochastic objective functions, based 
on adaptive estimates of lower-order moments. It can 
adaptively adjust the learning rate of each parameter 
according to the historical gradient and update of each 
parameter during the training process, thus speed-
ing up the training of neural networks. Adam is widely 
used in large-scale neural network research (Kingma 
and Ba 2014). Ultimately, the derived residual gravity is 

Fig. 3  CNN architecture used for gravity recovery



Page 10 of 16Li et al. Earth, Planets and Space          (2024) 76:129 

obtained by feeding the DOVs obtained from altimetry 
to the well-trained neural network.

4 � Results and evaluation
4.1 � Gravity anomalies from CNN and IVM method
Based on the data process methods described in Sect. 3 
and Fig.  2, we derive two 1′ × 1′ marine gravity models 
in the study area. The model calculated by CNN method 
is marked as GA_CNN in Fig. 4a, while the model calcu-
lated by IVM formula is marked as GA_IVM in Fig. 4b. 
Additionally, two gravity models used for validation, 
SIO V32.1 and DTU17, are also illustrated in Fig.  4c, 
d, under the same color bar. As demonstrated in Fig. 4, 
the spatial distribution of GA_CNN is highly in agree-
ment with those of other gravity models, which clearly 
represents the geomorphic features such as seamounts, 
ridges, trenches, and submarine plains. The gravity 
anomalies within the entire study area range from − 170 
to 220 mGal, with obvious fluctuations, which are closely 
related to the seafloor topography. Moreover, GA_CNN 
and GA_IVM contain more high-frequency details com-
pared with DTU17 and SIO V32.1. The reason may be 
that the V32.1 model adopts low-pass filtering related 
to water depth in the calculation process, cutting off 
the short wavelength gravity signal due to upward con-
tinuation (Sandwell et al. 2021). The DTU17 model uses 
geoid as data source for recovering the gravity anomalies, 
which contains less high-frequency information com-
pared with DOVs.

4.2 � Comparison with shipborne gravity data
To evaluate the accuracy of the GA_CNN model and 
the performance of the CNN method, we compare the 
GA_CNN model with shipborne gravity data at check 
points excluded from neural network training. The linear 
regression and differences between the GA_CNN model 
and the shipborne gravity are calculated, and the scatter 
density plot and difference distributions are represented 
in Fig.  5. Two main evaluation indicators are chosen to 
measure the linear regression: the goodness of fit R2 and 
the root mean square error (RMSE). R2 values approach-
ing 1 indicate that the linear regression model is valid, 
while an RMSE close to 0 is optimal (Sun et  al. 2022). 
In Fig.  5a, the linear regression between GA_CNN and 
shipborne gravity anomalies at check points yields an R2 
exceeding 0.99 and an RMSE of 3.22 mGal. All these indi-
cate a strong correlation between the GA_CNN model 
and shipborne gravity. In addition, the histograms of the 
two gravity datasets are highly consistent, with most of 
the values distributed in the − 30 mGal to 30 mGal range. 
The density plot shows that the data density is greatest in 
the range of 0 mGal to 5 mGal.

Figure 5b, c show the histogram and spatial distribu-
tion of differences between the GA_CNN model and 
shipborne gravity. The histogram result illustrates that 
the discrepancy values are mostly between − 5 and 
5  mGal, which account for 92.84% of the total, with 
only a few points having larger discrepancy values. The 
points with larger discrepancy values are mainly located 
in the central and eastern regions, where water depths 

Fig. 4  Gravity models in study area. a GA_CNN model. b GA_IVM model. c SIO V32.1 model. d DTU17 model
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are shallow and topography changes rapidly. This may 
be due to the fact that these areas are influenced by 
land and the accuracy of SSHs from multi-altimeter is 
relatively low, limiting the accuracy of gravity recovery. 
In addition, at the turning points of the ship surveying 
line, the discrepancy is generally large due to the effect 
of sharp directional changes on Eötvös correction, thus 
influencing the accuracy of shipborne gravity measure-
ment. As one of the important means of marine gravity 
measurement, shipborne gravity measurement requires 
more reasonable track planning and more accurate data 
processing.

The deviations of GA_CNN, GA_IVM and other 
models from the shipborne gravity at check points 

Fig. 5  The scatter density and distribution of difference between GA_CNN model and shipborne gravity at check points. a The scatter 
density between GA_CNN model and shipborne gravity, the black line is the linear regression fitting line. b The histogram of the differences 
between GA_CNN model and shipborne gravity. c The spatial distribution of the differences between GA_CNN model and shipborne gravity, 
the red dots represent points that have absolute deviations greater than 5 mGal, and the green dots show the points that have absolute deviations 
less than 5 mGal

Table 2  Comparisons between altimeter-derived gravity models and shipborne gravity data

Unit: mGal

Data Max Min Mean RMS STD Correlation 
Coeff. (%)

GA_CNN-shipborne 30.17 − 28.36 0.22 3.22 3.21 99.63

GA_IVM-shipborne 29.80 − 31.40 − 0.83 5.13 5.06 99.08

V32.1-shipborne 34.38 − 30.92 − 0.51 4.96 4.93 99.12

DTU17-shipborne 30.33 − 31.12 − 0.84 5.27 5.20 99.04

Fig. 6  The histogram distribution of the absolute differences 
between shipborne gravity and gravity models at check points
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are computed. The STDs and correlation coefficients 
are shown in Table  2 and the comparison of histo-
gram distributions is displayed in Fig.  6. For the GA_
CNN model, the STD of deviation is 3.21  mGal, with 
an improvement of 36.56% compared to GA_IVM, 
34.89% compared to SIO V32.1, and 38.27% compared 
to DTU17. The correlation coefficient between the 
GA_CNN model and shipborne gravity reaches 99.63%, 
surpassing that of the other models. From Fig.  6, it is 
evident that 92.84% of the absolute deviations between 
the GA_CNN model and shipborne gravity are less 
than 5  mGal, which is significantly higher than GA_
IVM model (74.62%), SIO V32.1 model (75.90%), and 
DTU17 model (73.34%). These results show that the 
GA_CNN model achieved higher accuracy and CNN 
method for marine gravity recovery is feasible.

Furthermore, to analyze the actual spatial resolution 
of derived models, an uninterrupted marine gravity pro-
file with higher resolution, measured by independent 
JMGrav marine gravimeter (Wu et  al. 2023), is applied 
for cross spectral analysis between marine and derived 
altimetric gravity. The location of the marine gravity pro-
file is presented in the top left of Fig. 7a. JMGrav marine 
gravimeter adopts a new gravity sensor based on electro-
magnetic damping, ensuring the accuracy of the gravity 
measurements better than 2  mGal, with approximate 
resolution of 500 m (Wu et al. 2023). Figure 7a displays 
the result of the marine and altimetric gravity profile 
comparisons. All four altimetric gravity models yield 
approximately the same profiles as the JMGrav gravity, 
verifying the veracity of the computed results. Table  3 
provides the statistical results of difference between each 
altimetry-derived gravity model and JMGrav gravity. 
Compared to the JMGrav gravity, the GA_CNN model 
has an STD error of 3.17 mGal, while the other models 
GA_IVM, SIO V32.1 and DTU17 have STDs of 3.67, 3.54 
and 3.89 mGal, respectively.

Cross-spectral analysis can measure the correlation of 
two signals at different wavelengths. Shipborne gravity 
is assumed to have high resolution due to its high sam-
pling rate of a few meters. By cross spectrum between 
the interpolated altimetry and shipborne gravity profile, 
the actual resolution of the altimetry-derived gravity 
field can be analyzed (Yale et  al. 1995). The cross spec-
trum between JMGrav gravity and interpolated altimetry 
gravity profiles are calculated and shown in Fig.  7b–e. 
The findings suggest that at short wavelengths the ship-
borne gravity anomalies are more powerful than altime-
try-derived gravity anomalies. It is noteworthy that the 
GA_CNN and GA_IVM models gradually attain power 
comparable to shipborne gravity at wavelengths longer 
than approximately 7 km. Whereas the SIO V32.1 model 
gradually reaches the same power as shipborne gravity at 

wavelengths beyond about 10 km, and the DTU17 model 
has the same power as shipborne gravity at wavelengths 
beyond about 20  km. The results further show that the 
altimetry-derived GA_CNN and GA_IVM models have 
relatively higher resolution compared to SIO V32.1 and 
DTU17 models.

4.3 � Comparison with other gravity models
To further assess the GA_CNN model, we directly com-
pare it with the GA_IVM, SIO V32.1, and DTU17 mod-
els. We calculate the discrepancy values between the 
GA_CNN model and the other models, and the statisti-
cal results are shown in Table 4. The STDs of differences 
between the GA_CNN model and other models are 
between 3 and 4 mGal, which is slightly larger than that 
of GA_IVM model. The reason may be that GA_CNN 
model is quite different from the traditional inversion 
models over a large area in the western of the study area, 
as shown in Fig. 4. In these regions, the training data are 
sparsely distributed, whereas the CNN method relies on 
the amount and distribution density of the training data. 
This is probably making the CNN method perform worse 
than traditional methods. The exact conclusions need to 
be further verified by more independent high-precision 
shipborne gravity.

The power spectral density (PSD) can be used as a 
measure for evaluating the energy of signals at varying 
wavelength. Many researchers have used PSD for marine 
geophysical model assessment because a higher PSD 
indicates more details at the same wavelength (Annan 
and Wan 2022; Li et al. 2023; Sun et al. 2022). The PSD is 
computed as 10log10 (P), where P is the relevant power. It 
is expressed in dB. The PSDs of the four gridded marine 
gravity models are shown in Fig. 8.

At medium to long wavelengths (≥ 25 km) as shown in 
Fig.  8, the energies of the four gravity models are com-
parable and relatively high. At short wavelengths less 
than 25 km (in red broken rectangle in Fig. 8), the ener-
gies are low. Nevertheless, the GA_CNN model gener-
ates a relatively high energy, which indicates that the 
GA_CNN model carries more short-wavelength gravity 
details than the other models. The reason may be that the 
GA_CNN model is derived from CNN method, which 
uses shipborne gravity to train the neural network model. 
The spatial resolution and accuracy of shipborne grav-
ity are both relatively high, so GA_CNN contains more 
high-frequency signals of gravity. In addition, SIO V32.1 
model adopts low-pass filtering related to water depth 
in the calculation process, which filters out some high-
frequency information. DTU17 uses the geoid as the data 
source to recover gravity anomaly, and the geoid con-
tains less high-frequency information than DOVs. It fur-
ther attests that CNN method can introduce shipborne 
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Fig. 7  The JMGrav gravity profile in study area (a), location of the profile is inserted in the figure to the top left. And the cross-spectral analysis 
of shipborne gravity and GA_CNN, GA_IVM, SIO V32.1 and DTU17, respectively (b–e)

Table 3  Comparisons between altimeter-derived gravity models and JMGrav shipborne gravity data

Unit: mGal

Data Max Min Mean RMS STD Correlation 
Coeff. (%)

GA_CNN-JMGrav 12.13 − 13.31 0.49 3.21 3.17 97.19

GA_IVM-JMGrav 12.13 − 14.20 0.11 3.67 3.67 97.31

V32.1-JMGrav 14.51 − 15.28 − 0.38 3.56 3.54 97.19

DTU17-JMGrav 13.94 − 14.92 − 0.04 3.90 3.89 97.02
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gravity as prior information reasonably to improve the 
accuracy and spectral characteristics of constructed grav-
ity model.

5 � Conclusions
In this study, a convolutional neural network (CNN) 
and remove-compute-restore (RCR) technology are 
applied to derive the gravity model in the SCS by com-
bining multi-mission DOVs from Altika/DP, HY-2A/
GM, CryoSat-2, Jason-2/GM and Jason-1/GM. The net-
work’s inputs are 32 × 32 × 12 × n images consisting of 
geo-information about the calculated point and residual 
DOVs on surrounding points. The output of CNN is the 
residual gravity anomaly at the calculated point. The 
final gravity anomaly is then recovered by restoring the 

long-wavelength reference gravity field. In addition to 
CNN method, gravity anomaly also be calculated by IVM 
formula. To assess the accuracy of the recovered gravity 
model and the performance of CNN method, we com-
pare GA_CNN, GA_IVM models to independent ship-
borne gravity, JMGrav gravity profile and gravity anomaly 
models SIO V32.1 and DTU17.

The results show that the CNN method could cal-
culate marine gravity model effectively via simplified 
fusion of multi-source DOVs, and the derived model 
reached a high accuracy level. There is a strong correla-
tion between the GA_CNN model and shipborne gravity, 
with R2 of the linear regression exceeding 0.99. The STD 
of the differences between the GA_CNN model and ship-
borne gravity is 3.21  mGal, with significantly improve-
ment than GA_IVM model of 5.06 mGal, the SIO V32.1 
model of 4.93 mGal, and the DTU17 model of 5.20 mGal. 
More than 92% of the absolute differences between the 
GA_CNN model and shipborne gravity are less than 
5  mGal. The STD between the GA_CNN model and 
JMGrav gravity profile is 3.17  mGal, which is superior 
to all other models. The correlation coefficients between 
the GA_CNN model and the other gravity models exceed 
99%, indicating that the GA_CNN model is largely con-
sistent with other gravity models. Furthermore, the PSDs 
of four gravity models are also computed and compared. 
The results show that the GA_CNN model has stronger 
energy at short wavelength (less than 25 km) than other 
models, which suggests that CNN method can introduce 

Table 4  Comparisons between altimeter-derived gravity and 
other marine gravity models

Unit: mGal

Data Min Max Mean RMS STD

GA_CNN-V32.1 − 55.90 29.26 − 0.86 4.08 3.97

GA_CNN-DTU17 − 33.70 30.35 − 0.94 3.98 3.88

GA_IVM-V32.1 − 41.12 23.60 0.04 2.54 2.54

GA_IVM-DTU17 − 15.57 14.58 − 0.04 1.94 1.94

GA_CNN-GA_IVM − 33.64 31.74 − 0.89 3.74 3.63

V32.1-DTU17 − 20.28 37.07 − 0.08 2.28 2.28

Fig. 8  PSD of gravity models. The black line represents the PSD of the CNN-derived model, the red line represents the IVM-derived model, 
the blue line represents the V32.1 model, and the green line represents the DTU17 model. The red broken rectangle indicates the wavelengths 
less than 25 km
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shipborne gravity as prior information reasonably to 
improve the accuracy and spectral characteristics of con-
structed gravity model.
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