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Abstract 

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages 
of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitiv-
ity. However, the weak photon signal emitted by the photon counting lidar is susceptible to the background noise 
caused by the sun and the atmosphere, which can seriously affect the processing and application of laser data. 
This paper proposes an improved DBSCAN clustering algorithm for denoising single photon laser point clouds 
in mountainous areas. Firstly, a grouping method based on elevation and distance statistics is proposed to reduce 
the influence of terrain undulations on denoising accuracy. Finally, an automatic radius search method is put forward 
to determine clustering radius of each group, automatically find the optimal radius, and improve the existing DBSCAN 
clustering method. The method proposed in this paper is compared with the classical DBSCAN algorithm. The results 
show that the proposed algorithm significantly improves denoising accuracy in mountainous areas and effectively 
filters out most background noise.
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1  Introduction
Spaceborne lidar is an emerging active remote sensing 
detection technology. It transmits a laser pulse with a 
certain frequency to the Earth’s surface and receives the 
scattered echoes, finally obtaining the accurate three-
dimensional space coordinates of the laser footprint 
point. Spaceborne lidar has the ability to actively obtain 
global surface elevation and features a wide observation 
range (Neumann et  al. 2019; Xie et  al. 2021). Satellite 
altimetry data have broad prospects and applications in 
forestry remote sensing, polar glacier monitoring, and 
global change research. ICESat-2 (Ice, Cloud and Land 
Elevation Satellite-2) was launched by NASA (National 
Aeronautics and Space Administration) in 2018. ICESat-2 
is equipped with ATLAS (Advanced Topographic Laser 
Altimeter System), which uses a 6-beam micro-pulse 
photon counting lidar for measurement (Zhu et al. 2020). 
It also uses a laser with a high repetition frequency, low 
energy, and a highly sensitive laser detector. The single 
photon energy in the echo signal is used to obtain the dis-
tance information of a long-distance space target with a 
lower laser pulse energy compared to other lidar technol-
ogies. ICESat-2 can solve the problems of large volume, 
large mass, low reliability, energy intensity and repetition 
frequency that are seen in traditional lidars.

Currently, previous studies have used ICESat-2 data to 
monitor topographic changes, ice and vegetation. Vern-
immen et  al. (2020) used ICESat-2 data to create the 
Global Coastal Lowland DTM (Digital Terrain Model), 
which is much more accurate than other existing global 
digital elevation models. Michaelides et  al. (2021) used 
ICESat-2 data to estimate ground surface-height changes 
due to the seasonal freezing and thawing of the active 
layer, and discussed several influencing factors and the 
future potential of ICESat-2 data in permafrost appli-
cations. Chen et  al. (2022) verified the coverage per-
formance of ICESat-2 on global reservoirs and further 
explored its potential for monitoring long-term changes 
in reservoir water level and water storage. A variety of 
marine data products provided by ICESat-2 can be used 
to study the changes in snow depth, thickness and vol-
ume in polar sea ice, sea ice surface classification, and 
surface height on complex ice surface (Kacimi and Kwok 
2022; Petty et  al. 2021; Herzfeld et  al. 2022). Mulverhill 
et al. (2022) assessed the consistency of Canadian canopy 
height estimates obtained by using forest canopy height 
products from ICESat-2 and the NTEMS (National Ter-
restrial Ecosystem Monitoring System) at various eco-
logical gradients. The coherence between ICESat-2 and 
NTEMS datasets suggests potential integration. Many 
scholars have shown that ATL08 (Advanced Topographic 
Laser Altimeter System Level 08) canopy height is more 
suitable for relatively dense canopy environments such 

as coniferous forests and broad-leaved forests (Malambo 
and Popescu 2021). The quality of data acquired in winter 
is superior to that acquired in summer due to differences 
in vegetation structure and snow coverage (Zhu et  al. 
2022). The comprehensive evaluation of the quality of the 
ATL08 product can be useful for improving future ver-
sions of the product and for guiding the selection and use 
of ICESat-2 data (Tian and Shan 2021).

Because of the high sensitivity of the photon count-
ing lidar, instrument and background noises impact on 
ATLAS data (McGarry et  al. 2021). As a result, a large 
amount of noise is mixed into the observation results, 
which seriously restricts the use of ICESat-2. Therefore, 
denoising point cloud data quickly and efficiently have 
become a key issue for the extensive application of ICE-
Sat-2. The denoising algorithms for single photon point 
cloud data can be roughly classified into three types.

The first denoising algorithm is based on local statisti-
cal parameters, which is based on the local density infor-
mation of photon point cloud data, and determines noise 
points according to the local density value or local den-
sity histogram of the signal points (Wang et al 2016). Zhu 
et al. (2018) proposed a local statistical analysis method 
for denoising point cloud data. By calculating the maxi-
mum density of each photon in each direction as its true 
density, the noise points are denoised out by using the 
empirical threshold. But the algorithm is sensitive to the 
grid size when calculating the photon density, thus affect-
ing the denoising accuracy.

The second denoising algorithm is based on raster 
image processing. This algorithm, which is based on 
morphological information from point cloud signals, ras-
terize two-dimensional images of point cloud sections. 
Also, image processing technology is applied to eliminate 
noise points. Aiming at the difficulty in measuring fea-
ture length in point cloud data, Li et al. (2021) proposed 
to convert the three-dimensional point cloud data into a 
two-dimensional elevation grid map in order to estimate 
the geometric features, which simplifies the problem. 
However, signal photons may cause partial data loss after 
rasterization, losing effectiveness.

The third denoising algorithm is based on density 
spatial clustering. This method makes clustering analy-
sis using the discrete distribution of noise photons in 
space, thereby eliminating noise. The main density clus-
tering methods include Bayesian, Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN), 
and ordering points to identify the clustering structure 
(OPTICS). Among the three methods, DBSCAN is 
one of the most widely used photon denoising meth-
ods and can be extremely effective in clustering sig-
nal photons. Zhang et  al. (2021) proposed an effective 
algorithm for the extraction of signal photons from the 
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Fig. 1  Location of the experimental areas and ATLAS data trajectory

weak beam data of ICESat-2 in mountainous areas. By 
using the slope–noise relationship in strong beam data 
to invert the track slope of the weak beam, an improved 
DBSCAN algorithm can be used to extract effective 
signal photons from weak beam data with a low signal-
to-noise ratio. However, the classical DBSCAN algo-
rithm is sensitive to the input parameters, so it has poor 
adaptability to different terrains. Inappropriate param-
eter settings in areas with large variations in terrain 
tend to cause excessive denoising, resulting in a lack 
of ground points that cannot reflect the surface mor-
phology or filter out the noise points floating above the 
surface (Kui et al. 2023). Therefore, improving the accu-
racy of denoising is a key focus of research in altimetry 
observation.

Some scholars have proposed other types of denois-
ing algorithms. An adaptive denoise that depends on the 
local slope is considered to be robust in the identification 
of signal points from points with high background noise, 
and appropriate for low-density data caused by slope (Xie 
et al. 2020). Zhang et al. (2022) proposed a noise removal 
algorithm with no input parameters based on the isola-
tion of quadtrees, which can improve denoising accuracy 
and efficiency.

Due to the profile observation of the single photon 
laser radar system, the single photon point cloud data 

are distributed in a narrowband, which is different from 
the conventional point cloud data that can generate a 
large area of 3D topographic map. The denoising effect 
is typically not good enough in the area with large terrain 
fluctuations. Therefore, it is necessary to perform fine 
denoising on point cloud data to filter out noise points 
suspended above or below the ground. However, owing 
to uneven point cloud distribution in the signal, the algo-
rithm using a single threshold cannot effectively remove 
a large amount of noise. Targeting the presence of many 
noise points in single photon point cloud data and the 
similarity of the height of many noise points to that of 
signal points, denoising ground surface point cloud data 
can be formulated as a classification task. Ground points 
are considered signals, whereas instrument noise, back-
ground noise, and non-ground points such as vegetation 
are considered noise. However, the traditional denois-
ing method is insufficient to filter out a large amount of 
background noise at significant variations in topography.

This paper proposes a refined DBSCAN algorithm to 
avoid the manual selection of parameters during cluster-
ing, and improve the efficiency and accuracy of data pro-
cessing. Our main contributions are as follows: 

(1)	 Proposal of a DBSCAN denoising method coupled 
with height and distance factor. The DBSCAN algo-
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rithm is improved, grouping areas with large varia-
tion in topography based on elevation and distance 
statistics and automatically calculating the cluster-
ing radius Epsilon (Eps) according to the distance 
between point clouds.

(2)	 The influence of different elevation and distance 
parameters on the results is analyzed and the best 
parameters are selected.

(3)	 The denoising results of the classical DBSCAN 
algorithm and the improved DBSCAN algorithm 
are compared, which reflects the correct detection 
effect of the improved DBSCAN algorithm on sig-
nal points.

The rest of this paper is organized as follows: Sect.  2 
describes the experimental areas, data sources and meth-
ods. Section 3 describes the parameters selection and the 
experiments. Section  4 discusses the results and poten-
tial future work. Section 5 presents general conclusions, 
highlights the main contributions.

2 � Materials and methods
2.1 � Data sources
The ATLAS and its auxiliary system (GPS and space-
borne camera) carried by ICESat-2 measure the pho-
ton round-trip time and determine the spatial position 
of the surface reflecting the photon (Zhu et  al. 2021). 
ATLAS uses a 6-beam photon counting lidar with 
higher spatial coverage, which is more than three times 
that of ICESat-1. Laser pulses generate three pairs of 
ground trajectories, each of which is usually about 17 m 
wide. The left/right points of each pair of ground tra-
jectories are about 90  m apart in the direction across 
the track, about 2.5  km apart in the direction along 
the track, and about 3.3 km apart between columns, as 
shown in Fig. 1. Each pair of beams has different emis-
sion energies, i.e., weak light and strong light, and the 
energy ratio between them is about 1:4 (Neuenschwan-
der et al. 2020).

ATLAS is a lidar altimetry system based on micro-
pulse photon counting. It emits and receives laser sig-
nals and records them at a band of 532  nm only, with 
a pulse width of about 1  ns. Since photon counting 
detects weak signals, in order to reduce the influence of 
background noise, the field angle of ICESat-2 is about 
66 μrad (~ 40  m), smaller than that of ICESat-1 at the 

Table 1  Comparison of instrument parameters between ICESat-1 and ICESat-2

Key parameter ICESat-1 ICESat-2

Rail type Non-sun synchronization Non-sun synchronization

Height (km) 600 500

Scope of coverage 86°N—86°S 88°N—88°S

Observation period (d) 91 91

Laser sensor GLAS ATLAS

Number of lasers 1 active and 2 standby 1

Number of laser beams 1 6

Measuring principle Impulse type Micro pulse photon-counting

Spot diameter (m) 70 17

Track spacing (m) 170 0.7

Wavelength (nm) 1064/532 532

Frequency (Hz) 40 10,000

Transmitted pulse width (ns) 4—6 About 1

Recording mode Full-waveform Photon point cloud

Fig. 2  The idealized beam and footprint pattern of ATLAS, with deep 
blue representing strong light and pale blue representing weak light



Page 5 of 16Wang et al. Earth, Planets and Space          (2024) 76:128 	

Fig. 3  Original point cloud in the distance and elevation coordinate system: a the original point cloud data of latitude 48.16° to 48.20° 
in Daxing’anling experimental area; b the original point cloud data of latitude 36.18° to 36.22° in Laoshan experimental area; c the original point 
cloud data of latitude 42.52° to 42.56° in Changbaishan experimental area
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532  nm band. The footprint diameter of ICESat-2 is 
only about 17  m, which is the average of each point-
ing. ICESat-2 has a laser emission frequency of up to 
10 kHz and a footprint spacing of approximately 0.7 m 
along the satellite’s trajectory. Compared to ICESat-1’s 
170 m footprint spacing, the sampling density is greatly 
improved while the official photon sampling accuracy 
can reach the centimeter level (Xing et  al. 2020). As 
a new generation of multi-beam lidar, compared with 
ICESat-1, its observation mode has varied greatly. 
Table  1 shows the comparison of the two instrument 
parameters.

The ATL03 (Advanced Topographic Laser Altimeter 
System Level 03) Gt1l photon laser point cloud data 
collected by the ATLAS pulsed beam during the opera-
tion of ICESat-2 around mid-October 2020 were used 
in this experiment. Due to the large data span of the 
whole experimental area, the point cloud density in the 
data segment changes significantly. Therefore, this paper 
selects the point cloud data within the latitude range of 
48.16° to 48.20° in the Daxing’anling experimental area, 
36.18° to 36.22° in the Laoshan area and 46.52° to 46.56° 
in the Changbaishan area for denoising. As shown in 
Fig.  3, the Laoshan experimental area has a more com-
plex terrain, with an elevation gap of about 600  m and 
numerous hills. The elevation difference of Changbais-
han experimental area is about 150  m. Changbaishan is 
covered with rich vegetation. The elevation difference of 
Daxing’anling experimental area is about 350 m, and this 
area contains a large number of forests. The point cloud 
profile generated is shown in Fig. 2.

2.2 � Methods
2.2.1 � Classical DBSCAN clustering method
DBSCAN is a classical density-based clustering algo-
rithm (Ester et al. 1996). Its principle is as follows: firstly, 
an initial radius and a minimum number of neighbor-
hoods are determined. Starting from any point in the 
data set, if there is more than the minimum number of 
neighborhoods within the radius distance from this 
point (including the original point itself ), it is considered 
that they are all part of the “cluster”. Then, the cluster is 

expanded by checking all points, and whether they also 
have points exceeding the minimum number of neigh-
borhoods within the radius distance. Then, the cluster is 
recursively expanded. Finally, points that exceed the min-
imum number of neighborhoods are added to the cluster. 
A new arbitrary point is selected, and the above process 
is repeated.

For a given dataset D = {x1, x2, . . . , xm} , several con-
cepts involved in the DBSCAN clustering algorithm are 
defined as follows:

Epsilon-neighborhood ( NEps ): For xj ∈ D , its NEps con-
tains the points in D whose distance from xj is not greater 
than Eps, namely NEps

(

xj
)

= {xi ∈ D
∣

∣dist(xi, xj) ≤ Eps};
Core object: If the NEps of xj includes at least MinPts 

(minimum points) samples, i. e. 
∣

∣NEps(xj)
∣

∣ ≥ MinPts , 
then xj is the core object;

Density direct: If xj is located in the NEps of xi and xi is 
the core object, xj is called density direct from xi;

Density-reachable: For xi and xj , if there is a sample 
sequence P1,P2, · · · ,Pn , where P1 = xi,P2 = xj and Pi+1 
are density direct from Pi , then xj is called density-reach-
able from xi;

Density-based: For xi and xj , if there is xk so that xi and 
xj are both density-reachable from xk , then xi is called 
density-based with xj.

The basic concept of the DBSCAN clustering algorithm 
is briefly described through four points x1, x2, x3, x4 and 
their spatial distribution characteristics (Fig. 3). The dot-
ted lines in Fig. 3 express Epsilon-neighborhoods. x1 con-
tains more samples than MinPts and is the core object. x2 
is density-reachable from x1 directly, x3 is density-reacha-
ble from x2 directly and is density-reachable from x1 indi-
rectly. x3 is density-based with x4.

2.2.2 � Improved DBSCAN clustering method
To improve denoising accuracy and efficiency for point 
cloud data in large topographic gradients, we propose a 
revised DBSCAN method using elevation and distance 
statistics with an automatic radius search. The specifics 
of the method are as follows (Fig. 4).

	 (1) 	 Point cloud data grouping method based on ele-
vation and distance statistics

For mountainous forest areas with large topographic 
relief, a single Eps and MinPts parameter setting can-
not simultaneously meet different terrain conditions in 
the experimental area. Therefore, the data of the experi-
mental area are grouped to realize the adaptability of the 
parameters and improve the overall denoising accuracy. 
The grouping process is described as follows:
① The original point cloud data are arranged along 

the track; the average elevation is calculated and 
Fig. 4  DBSCAN basic concept diagram (MinPts = 3)
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second-order curve fitting is performed using the least 
squares method. According to Eqs. (1):

② Taking the fitting curve of the average elevation as 
a reference, the height difference h along-track direc-
tion is calculated and the height difference parameters 
ha and distance parameters la are set as grouping condi-
tions. Each group needs to meet the following conditions: 
hi ≤ ha and li ≤ la (where, hili is the height difference and 
horizontal distance along the orbit of group i).

	 (2) 	 Calculating Eps parameter by group

After grouping, Eps is calculated in each group. In each 
group of raw data, the distance between any two points is 
calculated. According to Eqs. (2) to (5), the Euclidean dis-
tance, the maximum distances, the minimum distances 
and the differences between the maximum and minimum 
distances for any two points are calculated, respectively:

where D is a group of sample data sets, and n is the num-
ber of point clouds in the group of data sets.

The search radius (Eps) is further refined. Based on the 
difference between the maximum and minimum values 
of the distance, a statistical interval value is set. Using the 
minimum distance as the starting point and the maxi-
mum distance as the ending point, the distances between 
points in each section are plotted based on a histo-
gram. The interval with the highest frequency appears 
as the Eps of this dataset, which is the search radius for 
clustering.

The statistical Eps are substituted into the DBSCAN 
clustering algorithm. MinPts is set based on the point 
cloud density and the size of Eps, combined with expe-
rience, to obtain the clustering results of a data set. The 
results after grouping and clustering are integrated to 
obtain the final denoising results. The points in the clus-
ter are saved as signal points, and the points free from the 
point cloud cluster are denoised as noise points.

(1)h = ax2 + bx + c.

(2)dist(i, j) =

√

(xi − xj)
2 + (yi − yj)

2,

(3)max = MAX
{

dist
(

i, j
)∣

∣0 ≤ i ≤ n, 0 ≤ j ≤ D
}

,

(4)min = MIN
{

dist
(

i, j
)∣

∣0 ≤ i ≤ n, 0 ≤ j ≤ D
}

,

(5)Dist = max −min,

2.3 � Accuracy evaluation
The confusion matrix of binary classification data is used 
to describe some common error indicators. These error 
indicators reflect the accuracy of point cloud denoising 
from different aspects.

Accuracy was evaluated by defining Accuracy and 
Sensitivity . The equations are as follows:

where TP is the actual target signal, identified as the 
target signal. FN is the actual target signal, but identi-
fied as a non-target signal. FP is the actual non-target 
signal, but identified as target signal. TN is the actual 

(6)Accuracy =
TP + TN

TP + TN + FP + FN
,

(7)Sensitivity =
TP

TP + FN
,

Fig. 5  Schematic diagram of grouping to determine Eps parameters
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non-target signal, identified as a non-target signal. 
Accuracy can reflect the overall effect of processing 
the algorithm on experimental data. A higher accu-
racy indicates a better classification effect. Sensitivity 
can reflect the classification effect of the algorithm for 
positive class. In this paper, denoising ground surface 
point cloud data is formulated as a classification task, 
where ground points are considered as signals and the 

remaining points are considered as noise. The reference 
signal photon obtained by visual interpretation is used 
as the actual target signal.

2.4 � Study areas
The study areas are located in the Daxing’anling area 
in the northwest of Heilongjiang, the Laoshan area in 

Fig. 6  Schematic diagram of parameter analysis: a accuracy changes for different la ; b accuracy changes for different ha
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Qingdao, Shandong Province and Changbaishan area in 
Antu County, Jilin Province, as shown in Fig. 5.

The Daxing’anling Mountains are home to plenty of 
mountainous forests, which are well-preserved and the 
largest primitive forests in China. The Daxing’anling 
area is one of the important forestry bases in China, with 
complex and diverse forest features. The Daxing’anling 
Mountains range from the north of the Heilongjiang 
River in the northern part of Mohe City, Heilongjiang 
Province, to the upper reaches of the Xilamulun River 
in the northern part of Chifeng City, Inner Mongolia 
Autonomous Region. With a northeast–southwest trend, 
the mountains are more than 1,400  km long, with an 
average width of about 200 km and an altitude of 1,100 
-1,400 m. The Daxing’anling area is covered by primitive 
forest, with the southern section being temperate hard-
wood forest and the northern section being cold temper-
ate coniferous forest.

The Laoshan mountainous area, with a size of 446 
km2, is the first peak along China’s coastline. The 
mountains are centered on Laoding and extend in all 
directions, with longer branches in the northwest and 
southwest directions. The Laoshan branch extends to 
the north of Jimo District along the east coast and to 
the Jiaozhou Bay in the west and the southwest branch 
extends to the city of Qingdao, forming more than ten 
hilltops and the ups and downs of the hilly terrain. 
Laoshan is more than 100 km long, with an altitude of 
about 600—1,100 m. Due to the complexity of the ter-
rain and a wide variety of plants, various vegetation 
cover such as forests, shrubs, grasses, desert plants, 
halophytes, and agricultural cultivation have been 
formed.

Changbaishan is located in the southeastern part of 
Jilin Province. The northern and southwestern parts 
are bordered by Heilongjiang and Liaoning provinces, 
respectively. The southeastern and eastern parts bor-
der North Korea and Russia, respectively. The terrain 
of Changbaishan gradually slopes from southeast to 
northwest. The southeast is mainly a middle moun-
tain range with an altitude of more than 1000 m, which 
gradually decreases to low mountains and hills in the 
northwest, until the platform with an altitude of about 
300 m. The forest cover is 87.9%. It is a natural complex 
nature reserve with forest ecosystem as the main object 
of protection.

3 � 3 Results and analysis
3.1 � Parameter selection analysis
In order to select the optimal parameters of height 
difference and distance, the accuracy of different 
parameters is calculated. As shown in Fig.  6, when 
the distance parameter la is 150—500  m, the accu-
racy is higher than la > 500  m. However, it is found 
in the verification that if the distance parameter la < 
300 m, it will lead to more groups, much workload and 
reduced efficiency. Considering the need to balance 
the work efficiency and high accuracy, the distance 
parameter la is set to 400 m. The accuracy is above 0.9 
when the height difference parameter ha is 50—80 m, 
although overall the highest accuracy was achieved at 
ha = 80m . However, when grouping, the steepness of 
the terrain at some locations and the large drop in ele-
vation causes the distance along the track for a group 
to become less than 50  m at ha = 80m . The number 
of points in this group is low, which leads to an accu-
racy of less than 0.5 for this group, which can result in 
missing ground points so ha = 50m is set to group the 
original data.

For the grouped data, the Eps parameter is separately 
calculated in each group. Using the third ground of 
data in the Daxing’anling experimental area, the dis-
tance along the track is 300 to 416  m, encompassing 
a total of 441 points. For the determination of Eps of 
DBSCAN, by counting the distance between any point 
cloud data, the highest number of occurrences in an 
interval is chosen as the Eps. According to the statis-
tics, the maximum distance between any two points 
is 285.4  m, and the minimum distance between any 
two points is 0.1  m. The statistical interval value is 
set to 3 m, and the distance between the point clouds 
counted as shown in Fig. 7. It can be seen that the dis-
tance between point clouds is the greatest at the inter-
vals of 0 to 3  m. Therefore, the Eps of this group of 

Fig. 7  Histogram of distance statistics. (Taking the third group data 
of the Daxing’anling experimental area as an example.)
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Fig. 8  Comparison of denoising results in the Daxing’anling area. a Denoising results using classical DBSCAN, b denoising results using improved 
DBSCAN, and c verification results from visual interpretation
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data is 3 m, and MinPts is typically determined as an 
empirical threshold.

3.2 � Evaluation of denoising results
3.2.1 � A case study in Daxing’anling, China
As shown in Fig.  8, in the Daxing’anling area, the 
denoising effect of the improved DBSCAN algorithm 
is better than that of the classical DBSCAN algorithm 
and is basically consistent with the verified result. 
Most of the noise points far from the ground can be 
removed by the classical DBSCAN algorithm, but in 
the Daxing’anling area, which contains primitive for-
est areas, the vegetation near the ground is identified 
as signal points and not filtered out. However, the 
improved DBCSAN algorithm can not only remove 
the noise points far from the ground points, but also 
filter out the vegetation points near the ground, leav-
ing only surface elevation. The surface morphology of 
the experimental area is clearly visible, but there are 
a few noise points that are not filtered out. Table  2 
establishes the confusion matrix between the denois-
ing results of the classic and improved algorithms 
and the verified results of the Daxing’anling area. The 
number of points identified as true signals after pro-
cessing by the improved DBSCAN clustering algo-
rithm is 7,623, of which the number of noise points 
identified as signals is 197. After processing with the 
classical DBSCAN clustering algorithm, the number 
of points identified as signals is 7,669, but the num-
ber of noise points identified as signals is 2,365, and 
the number of noises among signal points is reduced 
by 2,168. This indicates that the improved DBSCAN 
clustering algorithm effectively reduces the number 
of noise points. The improved DBSCAN obtained 
a denoising accuracy is 95.49% and the sensitivity is 
97.42%.

3.2.2 � A case study in Laoshan, China
As shown in Fig.  9, the improved DBSCAN algo-
rithm produces an obvious clustering effect on point 
cloud data in the Laoshan experimental area, and can 
remove more than 90% of noise points. In the classi-
cal DBSCAN clustering algorithm, some of the signal 
points are misclassified as noise points, resulting in 
thin, discontinuous ground points. The vegetation in 
this area is mostly low shrubs, so some near-surface 
vegetation points are confused with ground points, 
thus affecting the noise classification accuracy. How-
ever, according to the confusion matrix of the denois-
ing results and the verified results of the two algorithms 
established in Table 3, the improved DBSCAN cluster-
ing algorithm correctly identifies 3,703 signal points, 
with 92 signal points misclassified as noise points. 
Compared to the classical algorithm, 3,399 signal 
points were correctly identified after processing, while 
396 signal points were misclassified as noise points. 
This indicates that the improved algorithm has shown a 
significant enhancement in the correct identification of 
signal points. The improved accuracy is 94.22% and the 
sensitivity is 97.58%.

3.2.3 � A case study in Changbaishan, China
In the Changbaishan area shown in Fig.  10, due to the 
large amount of data at this area, the classical DBSCAN 
algorithm misclassifies the noise points into signal points 
when encountering dense noise. From the confusion 
matrix of the denoising results established in Table 4, the 
number of misclassified points of the classical DBSCAN 
algorithm is 10228, and the number of misclassified 
points of the improved algorithm is 3063, indicating that 
the proposed DBSCAN algorithm improved the cluster-
ing of signal points and noise points (Table 4). The clas-
sification effect is effectively improved. The improved 

Table 2  Confusion matrix of point cloud denoising results

Number of 
signal points 
(7785)

Number of noise 
points (4558)

Accuracy (%) Sensitivity (%)

Classical DBSCAN clustering algorithm Number of signal points (7669) 5304 2365 60.73 69.16

Number of noise points (4674) 2481 2193

Improved DBSCAN clustering algorithm Number of signal points (7623) 7426 197 95.49 97.42

Number of noise points (4720) 359 4361
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Fig. 9  Comparison of denoising results in the Laoshan area. a Denoising results using classical DBSCAN, b denoising results using improved 
DBSCAN, c verification results from visual interpretation
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classification accuracy is 94.89% and the sensitivity is 
96.50%.

4 � Discussion
In the classical DBSCAN clustering algorithm, the 
threshold setting is limited by the terrain which is 
prone to excessive denoising (Zhang et al. 2021). Due 
to the single threshold setting, the noise points near 
the ground will be incorrectly recognized as signal 
points. The improved DBSCAN clustering algorithm 
solves the single threshold problem. By setting the 
grouping parameters appropriately and applying the 
automatic radius search, the parameters’ adaptabil-
ity is improved, thus enhancing the ability to extract 
signals from the ground. In the experiment of the 
Daxing’anling area, the difference between the two 
algorithms is more evident because the experimental 
area has a large virgin forest coverage. The classical 
DBSCAN clustering algorithm can only remove more 
obvious noise points away from the ground, and the 
vegetation points above the ground are misclassified 
as ground points. In the experiment of the Laoshan 
area, because the vegetation in the experimental area 
is mostly composed of low bushes and shrubs, the 
classical DBSCAN clustering algorithm has the prob-
lem of classifying low vegetation as ground points.. 
Due to the large amount of data in the Changbaishan 
area, the improved DBSCAN clustering algorithm can 
enhance the denoising effect in the area with dense 
noise points through the adaptive parameters. It has 
strong adaptability to single photon laser point cloud 
data similar to ICESat-2 data type, and can quickly 
and efficiently filter out noise points in point cloud 
data.

In our study, we found that the height difference 
parameter ha in the improved algorithm contributes 
more to the improvement of the denoising accuracy. 
Because after setting the height difference parameter 
grouping, the data can be grouped according to the 

terrain characteristics. Also different terrain areas 
can be avoided to have the same single threshold and 
result in low denoising accuracy. The distance param-
eter la is set mainly to avoid long distances along the 
trajectory of the grouping and a large amount of data 
for a single group in areas with gentle terrain. And 
a small la will result in more groups and lower work 
efficiency.

As a satellite with a global observation range, ICE-
Sat-2 can collect global ground elevation information 
(Xing et al. 2020). However, the global terrain is com-
plex and changeable. For areas with large undulating 
terrain, point cloud denoising has low accuracy. In the 
follow-up study, the slope parameters in the ICESat-2 
data should be used to improve the denoising method 
so that complex terrain can be processed (Hao et  al. 
2022). The improved DBSCAN clustering algorithm 
can filter out most of the noise points, but there is still 
confusion between the near-surface vegetation noise 
and the ground point signal since these are difficult to 
denoise via geometry alone. If the point cloud data are 
forcefully denoised under these conditions, the result-
ing point cloud data will be sparse, thus affecting the 
further application.

Our next steps involve conducting a more thor-
ough exploration of signal classification within point 
cloud data. The goal is to improve the identification of 
near-ground noise points and ground points, thereby 
enhancing denoising accuracy. To achieve this, we plan 
to employ advanced machine learning and deep learn-
ing techniques, creating more intelligent and adaptive 
point cloud classification models (W. Li., et al., 2020). By 
conducting finer feature extraction and analysis of point 
cloud data, we aim to enhance the accuracy of identify-
ing various ground features, such as buildings, vegeta-
tion, and terrain. Utilizing deep learning algorithms, we 
will seek to train models on large and diverse datasets 
to enhance their adaptability and generalization capa-
bilities across different environmental conditions (Meng 

Table 3  Confusion matrix of point cloud denoising results in the Laoshan area

Number of 
signal points 
(3624)

Number of noise 
points (1477)

Accuracy (%) Sensitivity (%)

Classical DBSCAN clustering algorithm Number of signal points (3795) 3399 396 87.83 89.57

Number of noise points (1306) 225 1081

Improved DBSCAN clustering algorithm Number of signal points (3795) 3703 92 94.22 97.58

Number of noise points (1306) 203 1103
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Fig. 10  Comparison of denoising results the Changbaishan area. a Denoising results using classical DBSCAN, b denoising results using improved 
DBSCAN, c verification results from visual interpretation
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et  al. 2022). Additionally, we will optimize preprocess-
ing steps for point cloud data to better eliminate near-
ground noise points. This optimization may involve 
more sophisticated denoising techniques, consideration 
of spatiotemporal features, and a more accurate mod-
eling of laser beam propagation paths (Kui et al. 2023). 
We plan to integrate these optimization methods with 
the previously proposed improved DBSCAN clustering 
algorithm, forming a more comprehensive and efficient 
denoising framework (You et  al. 2023). Furthermore, 
we will focus on addressing challenges in point cloud 
data processing in complex terrains and densely veg-
etated areas. Through an in-depth study of point cloud 
characteristics in these complex scenes, we will design 
targeted algorithms and strategies to effectively differ-
entiate vegetation, ground surfaces, and other features, 
thereby enhancing classification accuracy and reliabil-
ity (Liu et al. 2021). Finally, emphasis will be placed on 
integrating and comparing the proposed classification 
and denoising methods with ground validation data. In 
this paper, the results obtained from visual judgement 
reading are used as a validation data comparison, which 
still has some limitations. Through comparison with 
field observations, we can comprehensively evaluate the 
algorithm’s performance and provide robust guidance 
for future improvements.

5 � Conclusions
The improved DBSCAN algorithm proposed in this 
paper is aimed at the problem that the manual single 
threshold selection of DBSCAN clustering algorithm, 
which causes the algorithm to struggle with difficult 
terrain changes. The algorithm improves a grouping 
method based on elevation and distance statistics and 
an automatic radius search method. The improved 
algorithm reduces the number of manual attempts, 
enhances the automation of the denoising framework, 
and significantly enhances the efficiency of the cluster-
ing process. The improved algorithm is used to denoise 
the data in the experimental area, and good results 
with great improvements over the classical DBSCAN 
are achieved. The accuracy of the improved DBSCAN 
clustering algorithm can reach 95.49%, 94.22% and 

94.89% in three experimental areas, respectively. 
These are 34.76%, 6.39% and 11.96% higher than the 
classical DBSCAN clustering algorithm, respectively. 
This indicates that the improved DBSCAN clustering 
algorithm has higher denoising accuracy. The sensi-
tivity of the improved DBSCAN clustering algorithm 
can reach more than 96% in those experimental areas, 
indicating that the method is better for positive clas-
sification. For the problem of confusing the signals 
of near-surface vegetation points and ground points 
found in the experiments, considering the feasibility of 
different algorithms under different conditions and the 
accuracy of the results, various denoising algorithms 
can be used in combination to denoise various ter-
rains. Multi-source data fusion processing can be con-
sidered as part of the denoising framework to improve 
the classification of point cloud signals, providing 
more valuable data support for the scientific applica-
tion of ICESat-2 data.
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