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Geomagnetic secular variation violating the frozen-flux condition
at the core surface
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We consider a method to extract the part of a given geomagnetic secular variation (SV) model that is not
consistent with a frozen-flux condition. This condition is usually derived from the diffusionless radial induction
equation at the core-mantle boundary (CMB), and is defined explicitly in the spatial domain: radial flux changes
within closed null-flux curves at the core surface are not allowed at any instant. We study here this condition
in the spherical harmonic (SH) domain, relying on the SH expansion of the diffusionless equation. SV models
at a certain epoch are separated into advective and non-advective parts. The advective (resp. non-advective)
part satisfies (resp. does not satisfy) the frozen-flux condition redefined in the SH domain. We show that this
separation is not unique. In this work, we achieve a unique separation by assuming the orthogonality of the two
parts in terms of the radial SV energy at the CMB. From the recent geomagnetic models, GRIMM and CM4,
we find that the non-advective part shows up mainly in the small reverse patches of the radial magnetic field at
the CMB. However, non-advective behaviors are also observed outside these patches. As far as no restriction is
imposed on core flow configuration, time variations of the non-advective part are not correlated to those of the
SV models. However, if the flow is restricted to be tangentially geostrophic, time variations of the SV models
have to be partly non-advective. Furthermore, for this flow configuration, the secular decrease of the axial dipole
has to be largely non-advective.
Key words: Geomagnetic secular variation, core-mantle boundary.

1. Introduction
The temporal evolution of the Earth’s core field, gener-

ally known as main field (MF), occurs as a result of two
different processes taking place in the electrically conduct-
ing fluid outer core: advection and diffusion. The advec-
tion allows the field to grow by converting kinetic energy
of the core fluid flow into electromagnetic energy; the field
is reorganized such that magnetic lines of force are fixed to
the fluid material (frozen-flux (FF) theorem). The diffusion
decays the field through Ohmic dissipation, and magnetic
lines of force travel relatively to the material. The field evo-
lution is described by the induction equation (Gubbins and
Roberts, 1987)

Ḃ = ∇ × (v × B) + ηc∇2B ,

where B is the magnetic field, v the flow velocity and ηc

the magnetic diffusivity of the core fluid (ηc ≡ 1/µσc, with
µ being the magnetic permeability of the free space and
σc the electric conductivity of the core fluid). The overdot
stands for the temporal derivative, and Ḃ represents the
geomagnetic secular variation (SV). The first and second
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terms on the right hand side (RHS) of the above equation
correspond to the advection and diffusion, respectively.

Timescales of these two processes vary with their spa-
tial scales, the flow velocity and the conductivity. Their
relative importance at a given timescale is measured by a
set of these three parameters. On timescales from 1 year
to some hundred years, typical parameter estimates for the
Earth’s fluid core suggest that the observed field variation
arises mostly from advective processes near the core sur-
face (Roberts and Scott, 1965). Therefore, the outer core
fluid may be reasonably considered as a perfect conductor,
and the process generating field variations is described by
the induction equation without the diffusion term. The ra-
dial component of the diffusionless equation at the spherical
core surface (mean radius c = 3485.0 km) is then written
as

Ḃr = −∇H · (Br vH ) . (1)

The subscripts r and H denote the radial and horizontal
components, respectively. The above equation describes
the assumption that the decadal field variations Ḃr at the
core-mantle boundary (CMB) are totally attributed to the
advection of the field Br by the horizontal core flow vH at
the top of the core (we hereafter refer to it as ‘FF assump-
tion’). This is indeed a good approximation of the decadal
SV generation process, as long as its spatial scale is no less
than ∼103 km in both the radial and horizontal directions
(Braginsky and Le Mouël, 1993).

The assumption can be examined on the basis of geomag-
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netic field models downward continued to the core surface.
Equation (1) leads to various necessary conditions (we here-
after refer to them as ‘FF conditions’) that have to be satis-
fied by radial MF and SV at the CMB (Backus, 1968). First,
a set of surface integral conditions

∫
Ci

Ḃr d S = 0, ∀Ci , (2)

can be deduced from Eq. (1) (Backus, 1968). These condi-
tions require that, at every instant, no radial magnetic flux
changes occur through every core surface patch Ci closed
by a null-flux curve (contour of Br = 0 on the CMB). This
condition, particularly referred to as the Backus’ FF con-
dition hereafter, is only necessary and not sufficient for Ḃr

to be exclusively generated by advection (Gubbins, 1984).
Combining the integrals for all Ci , one can also derive a
single necessary condition


̇ = 0, with 
 =
∫

r=c
|Br | d S , (3)

where the integral is over the whole spherical surface of the
core with the radius c. This condition describes temporal in-
variance of the ‘total unsigned flux’ 
, or the total number
of magnetic line of force across the CMB (Bondi and Gold,
1950; Holme and Olsen, 2006). The other useful form
of the necessary condition is obtained by time-integrating
Eq. (2) for each Ci . It then follows that, under the tempo-
rally continuous FF assumption, magnetic flux for each Ci

must be conserved in time. This condition has been used to
test magnetic models, showing that they are not consistent
with the FF assumption (Bloxham and Gubbins, 1985).

If a given SV model contains elements violating the
above conditions, they must be attributed to either or both of
two other possible origins. First, the modelled SV at large
spatial scales can result from the advection of unmodelled
MF at small spatial scales (Eymin and Hulot, 2005; Pais and
Jault, 2008). The second origin is diffusion. It has been ar-
gued that this is possibly associated with a phenomenon of-
ten referred to as flux expulsion, which arises from toroidal
field and upwelling core flow below the CMB (Bloxham,
1986; Gubbins, 1996, 2007). The diffusion can even be im-
portant for the quasi-steady part of the SV at large scales in
space (Love, 1999).

In this study, we propose a method to specify the part of a
SV model inconsistent with the FF condition. The method
is applied to given magnetic field models for recent years.
We do not intend to provide a test of the FF condition, but
rather probe the spatial distribution, and time evolution, of
a possible diffusion contribution to the model. Indeed, it
seems very difficult to perform a conclusive test against
the condition, as magnetic models mapped at the CMB
are subject to considerable ambiguity. Their morphology
at the CMB always has errors due to model variances and
truncation of unresolvable components. In particular, both
MF and SV models have spectra at the CMB that do not
converge, and the integral conditions are sensitive to the
truncation level (Holme and Olsen, 2006). Despite this
difficulty, there is practically no other way to assess the FF
assumption than using or building truncated field models

(Gubbins, 1984; Bloxham and Gubbins, 1986; Benton and
Celaya, 1991; Constable et al., 1993; O’Brien et al., 1997;
Whaler and Holme, 2007; Jackson et al., 2007). Here, we
also start with existing truncated field models to extract a
SV part not satisfying the FF condition. Again we stress
that this part is unexplained by the advection associated
with the MF and core flow below their truncation levels.
It can still result from the advection associated with the
unmodelled MF and core flow at small scales.

Instead of the spatial domain approach investigating the
SV flux through each Ci , we adopt a spherical harmonic
(SH) domain approach to assess SV models. An expression
corresponding to Eq. (1) can be derived in SH domain by
expanding the relevant quantities Br , Ḃr and vH (all defined
on the spherical surface of the CMB) in a truncated series of
the spherical harmonics. The obtained equations are the ob-
servation equations often used in estimating core flow mod-
els based on magnetic models (Bloxham and Jackson, 1991;
Holme, 2007). By making use of these equations, one may
be able to find the part of the SV which cannot be related to
the core flow for a given truncated MF. This approach re-
quires only an algebraic procedure, without any geometric
concern about the domain of integration, such as the null-
flux patches Ci . Moreover, the FF condition redefined in
the SH domain is likely to be stronger than the Backus’ FF
condition, as it turns out in this study. Another technical ad-
vantage of the SH domain approach is the facility to incor-
porate assumptions needed for treating the non-uniqueness
issue, when separating the SV parts satisfying and not sat-
isfying the FF condition. We thus consider the SH domain
approach worth an investigation, particularly when dealing
with magnetic models given in SH coefficients.

It is also of interest, while easy to perform in the SH do-
main, to extend the condition so as to incorporate a further
condition derived from tangential geostrophy (TG) assump-
tion. This assumption restricts the flow vH only to those in
horizontal geostrophic balance (Le Mouël, 1984). The TG
flow vH satisfies a constraint

∇H · (cos θ vH ) = 0 (4)

all over the core surface, where θ is the colatitude. The TG
assumption has been considered plausible for the Earth’s
core surface flow, and often adopted in the flow inversions,
either strictly (e.g. Gire and Le Mouël, 1990; Jackson,
1997; Le Huy et al., 2000) or with a small relaxation (Pais
et al., 2004). In this paper, we refer to the combined con-
dition of the FF and the strict TG as the ‘FF+TG condi-
tion’. Especially, we refer to the integral condition in the
spatial domain given by Chulliat and Hulot (2001) as CH’s
FF+TG condition. The vorticity constraint, which holds
when the mantle is electrically insulating (Gubbins, 1991),
is deduced from the CH’s FF+TG condition. It has already
been shown that a magnetic model compatible with the FF
condition and vorticity constraint can be derived (Jackson et
al., 2007). Yet, the compatibility of a given magnetic model
with the CH’S FF+TG condition has not been studied with
the aim to assess the TG assumption. The SV violating the
FF+TG condition can be attributed to either the advection
due to the ageostrophic flow (Hulot and Chulliat, 2003) or
the diffusion. It can also arise from the advection associated
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Table 1. Notations of the fields in the spatial domain and their radial component, as well as in the SH domain.

Spatial domain Radial component SH domain

MF B Br b
Starting MF model Bo (Br )o bo

SV Ḃ Ḃr ḃ
Starting SV model Ḃo (Ḃr )o ḃo

Non-advective SV Ḃna (Ḃr )na ḃna

Advective SV Ḃad (Ḃr )ad ḃad

Non-geostrophic SV Ḃng (Ḃr )ng ḃng

Geostrophic SV Ḃge (Ḃr )ge ḃge

with the unmodelled MF and the TG flow at small scales,
when truncated models are considered.

In the next section we introduce the advective and non-
advective SV parts and then the essential non-uniqueness
of decomposing a given SV into these parts. In Section 3
we outline the SH domain expression of the FF induction
equation (1) and describe our method to specify each SV
part. We present the magnetic models to be examined in
Section 4, and the computation results in Section 5. Geo-
physical interpretation of the results are discussed in Sec-
tion 6, and conclusions follow in the last section.

2. Advective and Non-advective SV Contributions
and Non-uniqueness of Their Separation

Let us first define the advective and non-advective parts
of a given model of the SV Ḃo. Here, the MF model Bo

as well as its time variation Ḃo are estimated from ob-
servations above the Earth’s surface, with its mean radius
a = 6371.2 km. We assume that the mantle behaves as an
electric insulator on the timescales of decades and longer
(Mandea Alexandrescu et al., 1999; Pinheiro and Jackson,
2008); then the models Bo and Ḃo can be downward con-
tinued through the mantle to the CMB, corresponding by
one-to-one to distributions of the radial MF, (Bo)r , and the
radial SV, (Ḃo)r over the CMB (r = c), respectively. The
part of Ḃo which can result from the core flow vH through
Eq. (1) for a given (Bo)r is referred to as ‘advective SV’,
and we denote it by Ḃad. The radial advective SV, (Ḃad)r ,
at the CMB necessarily satisfies the Backus’ FF condition
(2). On the contrary, the SV part, Ḃna, which does not
satisfy the condition (2) and hence cannot be attributed to
the advection is referred to as ‘non-advective SV’. We con-
sider that a given SV model Ḃo consists of these two SV
parts, Ḃo = Ḃad + Ḃna, above the CMB. A similar parti-
tion of Ḃo can be made when the core flow vH is limited
to the strict TG flow satisfying the constraint (4). The SV
parts, Ḃge and Ḃng, which can and cannot be generated by
the TG flow through Eq. (1) are designated as ‘geostrophic
SV’ and ‘non-geostrophic SV’, respectively. The FF+TG
condition is thus necessarily met only by the geostrophic
SV. The given SV model above the CMB is expressed as
Ḃo = Ḃge + Ḃng as well. See Table 1 for the summary of the
notations introduced here.

The above decompositions of Ḃo are not unique. There
are necessary conditions only, but no sufficient conditions
for Ḃo to be Ḃad or Ḃge. On the other hand, there are only
sufficient conditions (i.e. violating the FF or FF+TG con-

dition), but no necessary conditions for Ḃo to be Ḃna or Ḃng.
It follows that one can always have another decomposition,
for example, Ḃo = Ḃ

∗
ad + Ḃ

∗
na, where Ḃ

∗
ad = Ḃad + Ḃ

′
ad and

Ḃ
∗
na = Ḃna − Ḃ

′
ad, with Ḃ

′
ad being an arbitrary advective SV.

It is even possible that Ḃo is totally due to Ḃna or Ḃng.
A criterion is required to extract Ḃna or Ḃng uniquely

from Ḃo. This can be provided by defining a scalar product
〈Ḃ1

, Ḃ
2〉 of two potential fields, and the associated norm

‖ Ḃ
1 ‖≡ (〈Ḃ1

, Ḃ
1〉)1/2. Then one can uniquely separate Ḃo

into two parts Ḃad and Ḃna, or Ḃge and Ḃng, such that

1) they are orthogonal with regard to the scalar product:〈
Ḃad , Ḃna

〉 = 0 , (5)〈
Ḃge , Ḃng

〉 = 0 , (6)

2) the square norm ‖ Ḃna ‖2 or ‖ Ḃng ‖2 is minimum.

The criterion given by Eq. (5) (resp. Eq. (6)) thus equal-
izes the square norm of Ḃo and the sum of those of Ḃad and
Ḃna (resp. Ḃge and Ḃng), i.e. ‖ Ḃo ‖2= ‖ Ḃad ‖2 + ‖ Ḃna ‖2

(resp. ‖ Ḃo ‖2= ‖ Ḃge ‖2 + ‖ Ḃng ‖2).
For the definition of the scalar product, we select here

〈
Ḃ

1
, Ḃ

2
〉
≡

∫
r=c

Ḃ1
r Ḃ2

r d S (7)

(Ḃ
1

and Ḃ
2

are arbitrary potential SVs for r ≥ c). The
square norm ‖ Ḃ

1 ‖2 then represents the energy of the radial
SV, Ḃ1

r , integrated over the CMB. We thus specify Ḃna

(resp. Ḃng) whose radial component (Ḃna)r (resp. (Ḃng)r ) at
the CMB has minimum energy and simultaneously makes
no energy cancellation with (Ḃad)r (resp. (Ḃge)r ). In the
core, however, it is possible that the diffusion and advection
cancel each other to a certain extent in generating the SV.
In this case, the scalar products in Eqs. (5) and (6) are not
zero. Voorhies (1993) suggests that these products are likely
to be negative. It is unknown, however, to what extent this
cancellation occurs. Here, we simply regard Ḃna or Ḃng

obtained this way as the smallest SV part, possibly due to
the non-advective contribution.

The definitions of the SV parts, the non-uniqueness issue
and the orthogonal decomposition are made even clearer by
introducing a linear space of the general potential SV and
its linear subsets (see Appendix A).

3. SH Domain Approach
In this section we describe our method to extract the non-

advective or non-geostrophic SV for certain MF and SV
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Table 2. Total number NMF of the MF coefficients, and the dimensions of the matrices A (NSV × NFL) and Atg (NSV × N tg
FL).

Number GRIMM (LMF = 12) CM4 (LMF = 13)

NMF = LMF(LMF + 2) 168 195

NFL = 2LFL(LFL + 2) = 8LMF(LMF + 1) 1248 1456

NSV = LSV(LSV + 2) = 3LMF(3LMF + 2) 1368 1599

N tg
FL = L2

FL = 4L2
MF 576 676

models given at a certain epoch. In the SH domain, we find
Ḃna by making an algebraic analysis of the FF induction
equation expanded in spherical harmonics. A modification
of this equation allows us to find Ḃng in the same way.
3.1 FF induction equation in the SH domain

Models of the MF and SV are usually represented in
terms of the Gauss coefficients (MF and SV coefficients)
truncated at certain degrees. Let LMF and LSV denote their
truncation degrees, respectively. Because of the assump-
tion of the insulating mantle, their radial components, Br

and Ḃr , at the CMB can be written as a linear combina-
tion of these Gauss coefficients. Also, the core flow vH is
parameterized with the SH coefficients of the toroidal and
poloidal scalars defined on the spherical surface of the CMB
(Bloxham and Jackson, 1991). Then, the truncated expres-
sion of Eq. (1) in the SH domain can be written as

ḃ = A m , (8)

where ḃ = (ġ0
1, ġ1

1, ḣ1
1, · · · )T (with the superscript T de-

noting the transpose) are the column vectors of the Gauss
coefficients for SV. Elements of the matrix A are lin-
ear functions of the Gauss coefficients for MF b =
(g0

1, g1
1, h1

1, · · · )T , and m is the vector of the flow coeffi-
cients (Bloxham, 1988). According to the selection rule of
the Gaunt and Elsasser integrals in A (Moon, 1979), the
highest degree of the flow that can interact with MF in gen-
erating SV up to SH degree LMF is LFL = 2LMF. Then, the
SV on the left hand side of Eq. (8) has possibly non-zero
coefficients up to degree LSV = 3LMF (= LFL + LMF). For
a given number of MF coefficients, NMF (= LMF(LMF+2)),
Eq. (8) has the coefficient vectors, m and ḃ, with their di-
mensions NFL (= 2LFL(LFL + 2) = 8LMF(LMF + 1)) and
NSV (= LSV(LSV + 2) = 3LMF(3LMF + 2)), respectively
(Table 2). Note that NSV > NFL for LMF > 2.

The TG assumption can easily be incorporated into
Eq. (1) in the SH domain. The TG flow is represented
by a combination of the toroidal and poloidal flow basis
functions, or the TG basis (Backus and Le Mouël, 1986).
The vector w of TG flow coefficients is then related to m as
m = Qw, where Q is the matrix with its elements described
in Gire and Le Mouël (1990). Substituting this relation into
Eq. (8) yields

ḃ = Atg w , (9)

where Atg = AQ. The dimension of w is reduced to L2
FL.

In the case with the flow truncation degree LFL = 2LMF,
Eq. (9) should have N tg

FL (= L2
FL = 4L2

MF) TG flow coeffi-
cients (Table 2). Note that NSV > N tg

FL for any LMF > 0.
In order to take criteria (5) and (6) into consideration, we

renormalize the SV coefficients as ˜̇b = W1/2ḃ. The change-
of-basis matrix W1/2 is selected so that the scalar product in

the SH domain, ˜̇b1T ˜̇b2, may become identical to that in the
spatial domain, 〈Ḃ1

, Ḃ
2〉, defined by Eq. (7), i.e.

W = diag

[
4π

(a

c

)2l+4 (l + 1)2

2l + 1

]
(10)

with l denoting the SH degree. Equations (8) and (9) are

transformed respectively as ˜̇b = Ã m and ˜̇b = Ãtgw, where
Ã = W1/2A and Ãtg = W1/2Atg. The choice of the weight
Eq. (10) corresponds to the choice of the scalar product
(Eq. (7)). Indeed, a different choice of scalar product is
associated with a different weight, leading ultimately to a
different decomposition into advective and non-advective
SVs. As described in the next subsection, the renormal-
ized equations are indeed useful for the orthogonal decom-
position with respect to our preferred definition of 〈Ḃ1

, Ḃ
2〉

given by Eq. (7). In the remaining of this paper, the symbol
tilde (˜) is omitted, whereas the SV coefficient vectors and
matrices are all based on the modified basis, unless other-
wise noted.
3.2 Specifying the non-advective and non-geostrophic

SVs
The FF and FF+TG conditions in the SH domain are

not directly linked to the usual integral conditions in the
spatial domain (the Backus’ FF condition or CH’s FF+TG
condition). Here, we derive the FF condition by analyzing
the matrix A.

A singular value decomposition of A is given by

A = U�VT ,

where U and V are the orthogonal matrices with their di-
mensions NSV and NFL, respectively. � is the diago-
nal matrix of the singular values of A with its dimension
NSV × NFL. We order these values λ j = (�) j j such
that λ1 ≥ · · · ≥ λNFL ≥ 0. The set of orthonormal
column vectors u j ( j = 1, · · · , NSV) constituting U (i.e.
U = [u1, · · · , uNSV ] and ui

T u j = δi j ) forms a complete
basis for an arbitrary SV coefficient vector ḃ. Hence, it is
expanded uniquely as ḃ = ∑NSV

j=1 β j u j . The scalar coeffi-

cients β j are obtained by β j = uT
j ḃ. Similarly, a flow co-

efficient vector m is expanded as m = ∑NFL
j=1 α j v j , where

vi is the orthonormal column vector of dimension NFL con-
stituting V (i.e. V = [v1, · · · , vNFL ] and vi

T v j = δi j ). The
scalar coefficients α j are obtained by α j = vT

j m. Substitut-

ing these expansions into ḃ = Am yields a set of scalar re-
lations β j = λ jα j for j = 1, · · · , NFL. If p (1 ≤ p ≤ NFL)

is the rank of A, i.e. the largest value of j for which λ j is
non-zero (λ j �= 0 only for 1 ≤ j ≤ p), the bases u j for
j = 1, · · · , p (resp. u j for j = p + 1, · · · , NSV) repre-
sent the SV elements related (resp. not related) to m. We
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refer to u j for j = p + 1, · · · , NSV as the null-space SV
eigenvectors.

Now we can state the FF condition in the SH domain: it
is necessary for the advective SV to be independent from
all of the null-space SV eigenvectors. On the other hand, it
is sufficient for the non-advective SV to be dependent on at
least one of the null-space SV eigenvectors. The FF condi-
tion in the SH domain does not allow a unique separation of
a given SV into the advective and non-advective parts. All
of the components of the null-space SV eigenvectors have
to be assigned to the non-advective part, but the rest of the
components can be assigned to either part.

Taking into account the criteria raised in Section 2 for
a unique separation, we analyze the input models of MF,
Bo, and SV, Ḃo, with their coefficient vectors denoted by bo

and ḃo, respectively. While ḃo itself is an NSV-dimensional
vector, we allow it here to have non-zero SV coefficients
only up to degree LMF for the sake of its consistency, with
bo evolving in time. Let ḃad and ḃna denote the NSV-
dimensional coefficient vectors of Ḃad and Ḃna, respec-
tively. Then the decomposition Ḃo = Ḃad + Ḃna is given
by ḃo = ḃad + ḃna in the SH domain. We obtain ḃad and ḃna

uniquely by minimizing the square norm ‖ Ḃna ‖2, yielding
the SV parts

ḃad =
p∑

j=1

β j u j ,

ḃna =
NSV∑

j=p+1

β j u j ,

(11)

where β j = uT
j ḃo. Here, the non-advective SV ḃna consists

exclusively of components of the null-space SV eigenvec-
tors. Thus, once both bo and ḃo are given at a certain epoch,
the non-advective SV coefficients ḃna can always be deter-
mined, whatever the flow is like. Note that this procedure
enables the isolation of Ḃna while ensuring the criterion (5).
Indeed, the orthonormality of u j allows the orthogonality

ḃ
T
ad ḃna = 0, which is equivalent to the criterion (5). The

square norm of Ḃna is given by ‖ Ḃna ‖2= ∑NSV
j=p+1 β2

j .

The decomposition Ḃo = Ḃge + Ḃng (or ḃo = ḃge + ḃng

in the SH domain) under the criterion (6) can be made with
the same procedure described above, but with Atg (with the
dimension NSV × N tg

FL) in place of A (with the dimension
NSV × NFL).

The process of finding Ḃna and Ḃng described in this
section is a practical implementation of the projection of
a given SV onto its specific subspaces (see Appendix A).

4. Core Field Models
We use GRIMM (Lesur et al., 2008) and CM4 (Sabaka

et al., 2004) as the input field models providing the coeffi-
cients bo and ḃo. These recent field models deserve to be
investigated, as we believe that they achieve a very high ac-
curacy, particularly in depicting the core field and its time
variation. The FF condition is not imposed on either of the
two models through their construction. They are both con-
tinuous in time, expanded in B-spline function, though with
a different order and knot interval of the interpolating func-

tions. One can derive snapshots of MF and SV at any epoch
within their supporting time periods.

GRIMM is a model constructed with vector magnetic
data from the satellite CHAMP and ground-based observa-
tories for the period 2001.0–2006.8. For the present study,
we restrict the analysis to the period 2002.0–2005.0 in or-
der to avoid the edge parts of this model, as they can be
subject to degraded robustness. The short time span does
not necessarily matter, because the test is done epoch by
epoch against the FF condition using snapshots of MF and
SV. Even for that short duration, the model seems to show
remarkable variations, possibly regarded as geomagnetic
jerks. It provides SV coefficients up to degree 14, but we
consider them reliable only up to SH degree 12. The SV co-
efficients at degrees 13 and 14 have excessive powers with
reference to the trend of the SV power spectrum, and are
possibly contaminated by considerable noise. Therefore,
we take LMF = 12 as the truncation degree of input models
of MF and SV from GRIMM.

The comprehensive model CM4 is a model for a longer
period, 1960.0–2002.0. This model is estimated using mag-
netic data primarily from ground-based observatories, sup-
plemented by satellite measurements. Its accuracy may not
compare with that of GRIMM due to the limited quan-
tity and quality of data, but it features the well-known
geomagnetic jerks which occurred succesively around the
years 1969, 1978, 1991 and 1999 (Sabaka et al., 2004;
Chambodut and Mandea, 2005). In our analysis we pay
particular attention to the jerks, because we think of these
abrupt events as special among all other SVs with respect
that they are the core’s magnetic signals observed at the
shortest timescale. The core field of CM4 is represented
by its coefficients up to degree 14. Unlike GRIMM, the SV
model of CM4 is damped at higher degrees. Yet, we take
LMF = 13 as the truncation degree of input models of MF
and SV from CM4, as the MF model may be affected by the
lithospheric contribution at degree 14.

In Table 2, the dimensions of the matrices A and Atg are
listed for both GRIMM and CM4 models.

5. Results
In this section, after the singular values of the matrices A

and Atg, we present the non-advective and non-geostrophic
SVs actually computed with our method. These two SV
parts are extracted for the same epochs, at intervals of
0.5 year for GRIMM (2002.0–2005.0) and 1.0 year for CM4
(1960.0–2002.0).
5.1 Non-advective SV

The singular values λ j of A for GRIMM at 2003.5 and
CM4 at 1980.0 are shown in Fig. 1. We plot only the
non-zero singular values λ j for j ≤ rank(A) = NFL −
No, where No is the degree of freedom of the flow and
equal to (LMF + 1)2. In the present analysis, we are not
so much interested in the trend of λ j with j . Instead,
it is required to make sure whether these singular values
λ j ( j ≤ NFL − N0) are significantly different from zero
in order to appropriately determine the value of p. For
this purpose, the variances σ 2

λ j
of λ j due to those of the

input MF coefficients bo are estimated. The derivation of
σ 2

λ j
from the covariance matrix Cbo

of bo is described in
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Fig. 1. Singular values λ j (black dots) and their standard deviations σλ j (gray dots) of the matrix A for the MF models from (a) GRIMM (LMF = 12)

at 2003.5 and (b) CM4 (LMF = 13) at 1980.0. The maximum number p (= 7L2
MF + 6LMF − 1) of non-zero singular values is 1079 and 1260 for

GRIMM and CM4, respectively.
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Fig. 2. Maps of radial SV at the CMB, for (top) the input SV (Ḃo)r and (bottom) the non-advective SV (Ḃna)r , each from (a) GRIMM (LMF = 12) at
2003.5 and (b) CM4 (LMF = 13) at 1980.0. The null-flux curves (black curve) are also plotted.

Appendix B. Here, Cbo
is assumed to be diagonal. Its

elements are given by �P(l)/((l +1)(2l +1)) [nT2], where
�P(l) is the difference between the powers of two MF
models at degree l. As the MF spectra of GRIMM and
xCHAOS (Olsen and Mandea, 2008) show the difference
somewhat independent of the degree l (Lesur et al., 2008),
we let �P(l) = 1.0 [nT2] in the computation of σλ j for
GRIMM. Similarly, we let �P(l) = 5.0 [nT2] for CM4;
this is an ad hoc choice, considering the data set for CM4 as
described in Section 4. We find that λ j are all significantly
greater than the computed singular value errors σλ j (Fig. 1)
and, hence, that they are significantly different from zero.

This is confirmed with regard to any of the other epochs for
bo from both GRIMM and CM4. We thus let p = NFL − N0

for calculating the non-advective SV (Eq. (11)).

Figure 2 illustrates the snapshots of (Ḃo)r and (Ḃna)r at
the CMB for GRIMM at 2003.5 and CM4 at 1980.0. The
maps of (Ḃna)r have features with spatial scales smaller
than those of (Ḃo)r , as Ḃna has non-zero coefficients up to
the degree LSV, three times as high as the truncation de-
gree LMF of Ḃo. Of course, from observational point of
view, there is no resolution of SVs on such small scales
and hence no point to discussing them. Therefore, we limit
ourselves to arguing the location and intensity of the out-
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Fig. 3. (a) The vertical downward component of the input SV (black curve) and non-advective SV (gray curve) from GRIMM (2002.0–2005.0) at 34◦N,
77◦E and 17◦S, 107◦E, both at 400 km altitude. (b) The eastward component of the input SV (black curve) and non-advective SV (gray curve) from
CM4 (1960.0–2002.0) at NGK (52◦N, 13◦E, 0 km) and HER (34◦S, 19◦E, 0 km).

standing (Ḃna)r spots. This limitation also applies to the
spatial domain studies (e.g. Jackson et al. (2007) use 812
gridding points on the CMB, which are beyond the SV res-
olution). As is expected from the FF condition, (Ḃna)r is
apparently pronounced in some of the patches Ci , with sin-
gle signed flux density changes over each of them. For ex-
ample, (Ḃna)r from both models in Fig. 2 is predominantly
negative within the smaller reverse patch below the South
Atlantic, nearby the Brazilic coast. (Ḃo)r and (Ḃna)r inte-
grated over each Ci are of course the same because their
difference (Ḃo)r − (Ḃna)r , which is equal to (Ḃad)r , satisfies
the FF condition (2).

A rather complex configuration of (Ḃna)r is also seen
in these results. We find the flux density changes with
inhomogeneous distribution, or even with different signs
within single patches covering a large area. For exam-
ple, the maps of (Ḃna)r for both GRIMM and CM4 indi-
cate that the northern hemispheric patch has an outstanding
area of non-zero (Ḃna)r localized below Indonesia, where
the equatorial null-flux curve is particularly winding. This
could not be revealed by allowing for the Backus’ FF con-

dition. It is seen here because the FF condition used in the
present work is stronger. It reduces the degree of freedom
of Ḃad by NSV − p = 288, while the Backus’ FF condi-
tion by NCi − 1 = 8 where NCi is the number of the null-
flux patches Ci (the numbers are for the case with GRIMM
at 2003.5). No matter what the flow configuration is (up
to degree LFL), (Ḃo)r in the winding null-flux curve be-
low Indonesia cannot be attributed to the advection of the
given MF model, though the curve is not locally closed
to give a particular integral condition. In fact, the actual
flow models have a difficulty in explaining downward con-
tinued SV models in this specific region, even if they are
consistent with SV observations above the Earth’s surface
(Wardinski et al., 2008). The computed (Ḃna)r thus implies
that SV models can possibly contain non-advective spots at
the CMB which do not violate the Backus’ FF condition (2)
locally, in addition to those identified as simple flux density
changes within the smaller reverse patches.

Comparing the time series of Ḃo and Ḃna, we notice that
their evolutions do not seem to be well correlated. In fact,
Ḃna tends to show no sign of geomagnetic jerks, which
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Fig. 4. Degrees 1 and 2 of the Gauss coefficients (not renormalized), ġm
l and ḣm

l , for the input SV ḃo (black curve) and non-advective SV ḃna (gray
curve) from CM4 for 1960.0–2002.0.

are seen in Ḃo above the Earth’s surface at various epochs
(Fig. 3); particularly, the eastward component of Ḃna is not
at all correlated with the well-specified geomagnetic jerks
at the Niemegk (NGK) and Hermanus (HER) observatories
around the epochs 1970, 1980 and 1991. This suggests that
the observed geomagnetic jerks are almost consistent with
the FF assumption and that they do not have to be attributed
to either the advection of unknown smaller-scale MF or the
diffusion. Considering that Ḃna at the CMB consists of field
changes that are very localized (Fig. 2), it may be natural
that its upward continuation fails to explain the global-scale
geomagnetic jerks above the Earth’s surface. Indeed, little
correlation is acknowledged between the individual SV co-
efficients from ḃo and ḃna at lower degrees (Fig. 4). The

1969 geomagnetic jerk appears relatively explicitly in the
time series of ḣ1

2-component of ḃo, but not at all in that
component of ḃna. The secular decay of the axial dipole in-
tensity, represented by the positive offset of ġ0

1-component
of ḃo, is partly assigned to the non-advective SV, but not
persistently for the whole period covered by CM4 model.
5.2 Non-geostrophic SV

The singular values λ j of Atg for GRIMM at 2003.5 and
CM4 at 1980.0 are shown in Fig. 5. We confirm that all
of them are non-zero up to number N tg

FL, for both GRIMM
and CM4 models and all epochs. The estimated errors of
λ j assure that they are unaffected by the variances of bo

defined as in the previous subsection. Hence, calculation
of the non-geostrophic SV coefficients ḃng is done using
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Fig. 5. Singular values λ j (black dots) and their standard deviations σλ j (gray dots) of the matrix Atg for the MF models from (a) GRIMM (LMF = 12)

and (b) CM4 (LMF = 13). The maximum number p (= NFL = 4L2
MF) of non-zero singular values is 576 and 676 for GRIMM and CM4, respectively.
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Fig. 6. Maps of radial SV at the CMB, for (top) the input SV (Ḃo)r and (bottom) the non-geostrophic SV (Ḃng)r , each from (a) GRIMM (LMF = 12)
at 2003.5 and (b) CM4 (LMF = 13) at 1980.0. The null-flux curves (black curve) are also plotted.

Eq. (11) with p = N tg
FL.

The snapshots of radial components of input SV (Ḃo)r

and non-geostrophic SV (Ḃng)r at the CMB are displayed
in Fig. 6. They indicate that (Ḃng)r has a power noticeably
greater than (Ḃna)r . It is especially notable that (Ḃng)r and
(Ḃo)r have a similar magnitude below Eurasia and Central
America, where (Ḃna)r has little power (Fig. 2). This is ba-
sically due to the number of the bases u j for ḃng, which is
by far larger than that for ḃna. Indeed, the FF+TG condi-
tion used here reduces the degree of freedom of Ḃge (and
accordingly increases the dimension of Ḃng) by as many as
NSV − p = 792 (for the case with GRIMM). Note that

the CH’s FF+TG condition is even stronger, consisting of
an infinite number of integrals defined throughout the CMB
(Chulliat and Hulot, 2001).

At some areas above the Earth’s surface, the temporal
evolution of Ḃng has a correlation with Ḃo, which is signif-
icantly higher than that shown by the evolution of Ḃna. At
NGK, the eastward component of Ḃng shows fluctuations in
phase with the geomagnetic jerks of Ḃo (Fig. 7), whereas no
such fluctuations are seen for that of Ḃna (Fig. 3). Similarly,
at HER, the fluctuations of the eastward component of Ḃo

is correlated more highly with that of Ḃng than that of Ḃna,
though no geomagnetic jerk is recognizable for either one
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Fig. 7. (a) The vertical downward component of the input SV (black curve) and non-geostrophic SV (gray curve) from GRIMM (2002.0–2005.0) at
34◦N, 77◦E and 17◦S, 107◦E, both at 400 km altitude. (b) The eastward component of the input SV (black curve) and non-geostrophic SV (gray
curve) from CM4 (1960.0–2002.0) at NGK (52◦N, 13◦E, 0 km) and HER (34◦S, 19◦E, 0 km).

around 1970. Thus, the geomagnetic jerks of the input SV
models partly require a contribution of non-geostrophic SV.
The globalness of this non-geostrophic SV contribution can
be confirmed in the individual coefficients of ḃng at low de-
grees; some components of ḃng and ḃo at degrees 1 and 2
are apparently in phase (Fig. 8).

The ġ0
1-component of ḃng shows a remarkable fit to that

of ḃo. This indicates that the secular decay of the axial
dipole intensity is mostly inconsistent with the FF+TG con-
dition at the CMB, forming the part of observed SV that
is unpredictable by the TG flow. Indeed, TG flow inver-
sions tend to result in models that underfit the ġ0

1 coefficient
(Jackson, 1997). Note that these TG flow models can still
explain the axial dipole decay to within its error, though
our analysis indicates the significant incompatibility of the
decay and the FF+TG condition. This comes from the fact
that the inversions simply minimize SV misfit only up to the
truncation degree of a given SV model, while we consider
the FF+TG condition, including all possible SV prediction
at the CMB.

5.3 Robustness of results
Here, we address questions regarding the robustness of

our results before interpreting them in the next section.
While no ambiguity has been discovered in selecting p at
any epoch and, consequently, in the number of the SV co-
efficient bases u j forming Ḃna or Ḃng, several factors still
remain in our approach that can subsequently alter our re-
sults, including the definition of the scalar product in the
spatial domain and the truncation degree LMF of input MF
and SV models. Indeed, the results in the previous subsec-
tions can be flawed by artifacts, if the assumptions for the
choices of the scalar product or the truncation degree are
inappropriate for the true core. It is therefore worth inves-
tigating alternative choices to identify robust or unrealistic
features of the various results.

The SV coefficients ḃ have been defined such that the
two squared norms, ḃ

T
ḃ and ‖ Ḃ‖2, are both equal to the

energy of Ḃr integrated over the core surface r = c, ac-
cording to our choice of the scalar product (7). Mathemat-
ically, it is possible to take any other kind of scalar quan-
tity for ‖ Ḃ ‖2. For example, one may take 〈Ḃ1

, Ḃ
2〉 ≡
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Fig. 8. Degrees 1 and 2 of the Gauss coefficients (not renormalized), ġm
l and ḣm

l , for the input SV ḃo (black curve) and non-geostrophic SV ḃng (gray
curve) from CM4 for 1960.0–2002.0.

∫
r=c Ḃ

1 · Ḃ
2

d S as an alternative definition for Eq. (7), in
which case ‖ Ḃ ‖2 represents the total field energy of Ḃ in-
tegrated over r = c. We have checked, nevertheless, that
the results are not significantly changed; the non-advective
or non-geostrophic SV are still very similar to those shown
in the previous subsections. This is simply because
the new weight matrix W = diag[4π(a/c)2l+4(l + 1)],
to be used instead of Eq. (10), has elements that dif-
fer only by a factor of 1.5 to 2.0 from those given by
Eq. (10). We have also made a test with the heat norm

using W = diag[4π(a/c)2l+4(l + 1)(2l + 1)(2l + 3)/ l]
(Gubbins, 1975; Bloxham and Jackson, 1992). The sub-
sequent non-advective SV still shows no siginificant differ-
ences, though it has slightly higher (resp. lower) powers at
low (resp. high) SH degrees.

The weight matrix W1/2 is much more sensitive to the
radius r of spherical surface for which the scalar product
〈Ḃ1

, Ḃ
2〉 is defined, as it is proportional to r raised to the

power of (l + 2). We have actually found that the results
are seriously affected by the radius r defining the scalar
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Fig. 9. Time-averaged spectra of the input SV Ḃo from GRIMM
(2002.0–2005.0) (black curve), and the non-advective SVs Ḃna (light
gray curve) and Ḃ

∗
na (dark gray curve) computed with the definitions of

scalar products (7) and (12), respectively. Each spectrum is plotted with
respect to the mean core radius (solid) and 400 km altitude (dashed).

product. If it is defined as

〈
Ḃ

1
, Ḃ

2
〉
≡

∫
r=a′

Ḃ1
r Ḃ2

r d S , (12)

with the radius r = a′ of 400 km altitude (i.e. around satel-
lite altitude), the resulting non-advective SV Ḃ

∗
na (and non-

geostrophic SV Ḃ
∗
ng) has a very small magnitude compared

with Ḃo at r = a′. To show the variability of the results,
we plot in Fig. 9 the time-averaged power spectra (with re-
spect to r = c and a′) of the two non-advective SVs Ḃna

and Ḃ
∗
na, computed with the scalar products (7) and (12), re-

spectively. Their spectra are very different, whereas both of
their total unsigned flux changes �̇ (Eq. (3)) are still equal
to that of Ḃo. The spectrum of Ḃ

∗
na is unrealistic, with its

power concentrated only at the very high degrees. We there-
fore prefer the definition (7) to (12), considering the spectra
of resulting non-advective SVs.

Changing the truncation degree LMF of input models has
an impact on the mapping of the geomagnetic field at the
CMB, because the higher degree components are more am-
plified when downward continued. Indeed, it has been esti-
mated that at the CMB the SV power increases with degrees
(Voorhies, 2004; Holme and Olsen, 2006). The results of
the present analysis should vary considerably with LMF. To
reveal the dependence of our analysis on the selection of
LMF, we perform the same analyses of CM4 with differ-
ent LMF. First, Ḃna and Ḃng are computed from CM4 trun-

cated at degree LMF = 8 (they are here denoted by Ḃ
(8)

na and

Ḃ
(8)

ng , respectively). We then find similar features between

the time evolutions of Ḃ
(8)

na and Ḃ
(13)

na . For example, Ḃ
(8)

na
fails to reproduce the geomagnetic jerk signals at NGK, as

is the case with Ḃ
(13)

na (Fig. 10(a)). Further, time evolutions

of the low degree components of Ḃ
(8)

na are similar to those

of the corresponding components of Ḃ
(13)

na . All of them are
uncorrelated with those of Ḃo; for example, the ġ0

1 and ḣ1
2

components of Ḃ
(8)

na are shown in Fig. 11(a). The time evolu-

tions of Ḃ
(8)

ng and Ḃ
(13)

ng are also similar, in that they basically
show most of the geomagnetic jerk signals. For example,

Ḃ
(8)

ng has geomagnetic jerk signals at NGK except in 1991

(Fig. 10(b)). Moreover, the g0
1 components of Ḃo and Ḃ

(8)

ng
agree well (Fig. 11(b)).

The same analysis is done with LMF larger than 13. Since
CM4 has zero core field coefficients above degree 13, we
supplement the model with synthetic coefficients at those
degrees. They are synthesized as

bm
l (t) =

(
2R(l)

(l + 1)(2l + 1)

) 1
2

sin
(
(S(l))

1
2 t + φm

l

)
(13)

ḃm
l (t) =

(
2R(l)S(l)

(l + 1)(2l + 1)

) 1
2

cos
(
(S(l))

1
2 t + φm

l

)
, (14)

where bm
l represents the conventional Gauss coefficient gm

l
or hm

l for the core field with l > 13 (not renormalized
with W1/2), and t is the time in year. R(l) (≡ (l +
1)

∑l
m=0((g

m
l )2 + (hm

l )2) ) is the power spectrum of MF at
r = a, S(l) ( ≡ ∑l

m=0 ((ġm
l )2 + (ḣm

l )2)/
∑l

m=0((g
m
l )2 +

(hm
l )2) ) is the power ratio of SV to MF as a function of de-

gree l, and φm
l is an arbitrary phase parameter. This formu-

lation of synthetic coefficients is such that they vary around
zero mean with a time constant of (S(l))−1/2 year. The def-
initions of R(l) and S(l) are consistent with the synthetic
coefficients averaged in time; their time-averaged squares,
(bm

l )2 = R(l)/((l + 1)(2l + 1)), give statistical expected
variances of bm

l in accordance with the power spectrum R(l)
(they are assumed to be uncorrelated to one another). For
the computation of the synthetic coefficients, we use

R(l) = R0

(
r ′

a

)2l+4

[nT2]

with (R0, r ′) = (14 × 109 [nT2], 3.39 × 103 [km]) after
Pais and Jault (2008),

S(l) = 1.47 × 10−6 l2.75 [yr−2]

as suggested by Lesur et al. (2008), and φm
l randomly set

for each coefficient.
Figures 10(a) and 11(a) show three results of non-

advective SV Ḃ
(18)

na obtained using three different sets of MF

B(18)
o and SV Ḃ

(18)

o consisting of CM4 and synthetic coeffi-
cients up to degree LMF = 18. Their time variations are
not really correlated with the geomagnetic jerks, but have

amplitudes larger than those of Ḃ
(8)

na and Ḃ
(13)

na . It is implied
that advection on the unresolved scales may contribute to
the non-advective SV. Furthermore, the increased ampli-

tude of Ḃ
(18)

na is not just due to the energy of Ḃ
(18)

o increased

by adding the synthetic SV. We linearly decompose Ḃ
(18)

na

into its parts, each resulting from the original CM4 SV Ḃ
(13)

o

(up to SH degree 13) and the synthetic SV Ḃ
(18)

o − Ḃ
(13)

o ,
to find that the increased amplitude is associated with both

parts of Ḃ
(18)

o . This means that even when the SV model
only up to degree 13 is used as an input SV, the amplitude
of non-advective SV is increased by the complexity of the
radial field map of B(18)

o at the CMB due to an inclusion of
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Fig. 10. The eastward component of the input SV (black solid curve) and (a) the non-advective SVs and (b) the non-geostrophic SVs from CM4
(1960.0–2002.0) at NGK. The non-advective and non-geostrophic SVs are computed with the truncation degrees LMF = 8 (light gray curve), 13
(dark gray curve), and 18 (dashed, dotted and dot-dashed curves). For LMF = 18, three results are plotted in accordance with different sets of the
synthetic coefficients bm

l and ḃm
l (14 ≤ l ≤ 18) generated using Eqs. (13) and (14), with phase parameters φm

l selected three times randomly.

synthetic MF. This seems in contrast with the findings of
Gillet et al. (2009), who investigate the source of FF viola-
tion using CM4 MF and SV up to degree 13 and synthetic
MF at higher degrees. They discuss that the small-scale MF
is not the main cause of the FF violation. Their argument is
derived from the analysis based on the flow models which
are built using a damping of the higher degree components.
Our incompatible statement might come from the absence
of limitation with regard to the flow. We examine only field
models; even flows with physically unacceptable behaviors
are considered in our analysis. In addition, our FF condition
is stronger in reducing the degree of freedom of Ḃad than the
ones they study, i.e. the temporal change of flux in a single
patch and the temporal change of the total unsigned flux.

We also compute non-advective SVs Ḃ
(26)

na obtained with
LMF = 26, and again confirm that their time variations,
which are all out of phase with the geomagnetic jerks,

have amplitudes similar to those of Ḃ
(18)

na as presented in
Figs. 10(a) and 11(a). Gillet et al. (2009) introduce an ex-
ponential law fit to S(l) (as opposed to the power law fit
by Lesur et al. (2008)) for extraporating the time constant
to the unresolved scales. In such a case, both S(l) and the
SV power spectrum at the CMB increase even more rapidly
with l above degree 13, with the SV power at these degrees
becoming significantly larger than the power of the synthe-
sized SV in this study. Subsequent Ḃna may even have a
larger amplitude varying with shorter timescales. It seems
unlikely, nevertheless, that Ḃna happens to gain a correla-
tion with the successive geomagnetic jerks. We can at least
regard it as robust that Ḃna does not have to be correlated
with the geomagnetic jerks.

On the other hand, non-geostrophic SVs Ḃ
(18)

ng obtained
with LMF = 18 evolve in phase with Ḃo (Figs. 10(b) and
11(b)). They clearly exhibit the features of the geomagnetic
jerks. Furthermore, there is again a persistent agreement of

the ġ0
1 components of Ḃ

(18)

o and Ḃ
(18)

ng (Fig. 11(b)). These

findings are also seen in Ḃ
(26)

ng obtained with LMF = 26.
This indicates that the typical behavior of Ḃng at the lowest

SH degrees is not so sensitive to the unresolved small-scale
interactions between the MF and flow, as far as the R(l)
and S(l) used here are considered, and MF and SV models
have the same truncation degree (at least up to 26). We con-
clude that the characteristics of Ḃng shown in the previous
subsection appear to be robust, in a qualitative sense.

6. Discussion
The non-advective and non-geostrophic SVs extracted

from the GRIMM and CM4 models can be indicative of
some different core processes. As the potential contribution
of unresolved scale advection to the large-scale SV is not
negligible (Pais and Jault, 2008), this contribution to the
computed non-advective and non-geostrophic SVs cannot
be ruled out. Nevertheless, we are here most interested in
discussing the possible diffusion contribution to our com-
putation results. The following discussions rely on Ḃna and
Ḃng computed with LMF = 13, whose time variations and
spatial distributions are presented in Subsections 5.1 and
5.2.

The computed Ḃna suggests that the non-advective SV is
localized and makes up only a minor fraction of the whole
SV. The local intensive spots of (Ḃna)r at the CMB, evolv-
ing gradually as the null-flux curves nearby change their
configuration, may indicate the area of diffusion associated
with the flux expulsion (Bloxham, 1986; Gubbins, 2007).
The rapid fluctuations of the large-scale components (ex-
cluding the axial dipole component) of Ḃo, such as the
global geomagnetic jerks, are not attributed to those of Ḃna,
which vary rather slowly in time (Fig. 4). This is more
or less consistent with the arguments of steady diffusion
(Voorhies, 1993; Love, 1999) as well as with the arguments
for the primary contribution of the advection to the geomag-
netic jerks (Bloxham et al., 2002; Olsen and Mandea, 2008;
Wardinski et al., 2008).

The axial dipole component of Ḃna behaves in a different
way than other components of Ḃna at low SH degrees, ex-
hibiting relatively rapid variations associated with the am-
plitude of ∼20 nT/yr. This is in contrast with the same
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Fig. 11. The ġ0
1 and ḣ1

2 components of the Gauss coefficients (not renormalized) for the input SV ḃo (black solid curve) compared with the same
components for (a) the non-advective SV ḃna and (b) the non-geostrophic SV ḃng computed from CM4 for 1960.0–2002.0, with the truncation
degrees LMF = 8 (light gray curve), 13 (dark gray curve), and 18 (dashed, dotted and dot-dashed curves). For LMF = 18, three results are plotted in
accordance with different sets of the synthetic coefficients bm

l and ḃm
l (14 ≤ l ≤ 18) generated using Eqs. (13) and (14), with phase parameters φm

l
selected three times randomly.

component of Ḃo representing the secular decay of the ax-
ial dipole intensity. The decay is at least of centennial
timescales (Finlay, 2008), which apparently applies to the
arguments of steady diffusion. However, considering the
FF condition alone does not necessarily require that the sec-
ular decay be totally due to diffusion (at least for the pe-
riod of CM4). The decay may be due to both the diffusive
process, i.e. the growth of reverse patches in the Southern
Hemisphere, and the advective process, i.e. the poleward
migration of the reverse patches (Gubbins et al., 2006).

The computed Ḃng suggests that the input models Ḃo are
poorly consistent with the FF+TG condition (as shown in
Fig. 6), indicating that (Ḃo)r substantially involves (Ḃng)r

throughout the CMB. The non-geostrophic SV can be due
to the advection by the ageostrophic flow in the equatorial
regions where TG assumption tends to fail. Most regions
at mid- and high latitudes are covered by the ‘geostrophic
region’ (Chulliat and Hulot, 2001), so (Ḃng)r should not
arise from the ageostrophic flow. It then follows that, in

such regions, Ḃng more probably originates in the diffusion
processes. It seems physically difficult, nevertheless, to at-
tribute the computed Ḃng entirely to diffusion. According
to the time-series map of (Ḃng)r over the CMB, its local
intensive patterns do not hold for a long duration. They
vary on timescales no longer than a decade, possibly in cor-
respondence to the geomagnetic jerk occurences. If these
rapid processes are due to diffusion, the field fluctuations
should be generated in a thin region close to the core sur-
face, with a thickness equivalent to the skin depth of the
order ∼104 m. Braginsky and Le Mouël (1993) and Jault
and Le Mouël (1994) have examined the effect of such a
thin layer in which the flow is driven by a dynamics dis-
tinct from that within the underlying volume of the core
and claimed that a significant diffusion occurs in response
to fluctuations of horizontal flow therein. They have also
argued that the resulting SV can still be consistent with the
FF condition, if the flow at the very surface of the core is
replaced by an averaged flow in the layer. This type of dif-
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fusion could thus contribute to Ḃge. It is unlikely that the
rapidly fluctuating Ḃng is explained by the diffusion of the
flux expulsion type, unless a turbulence with significant ki-
netic and magnetic energies is assumed in the thin layer.

Unlike other components of Ḃng, its axial dipole com-
ponent does not fluctuate significantly in time. In fact, it
agrees very well with the secular decay of the axial dipole
(Fig. 8). If the decay arises from the poleward advection
of reverse patches (Gubbins et al., 2006), then it has to be
caused by the ageostrophic flow. It is not plausible, how-
ever, that the ageostrophic flow prevails at higher latitudes.
We therefore would attribute the secular decay to the growth
of reverse patches, rather than to the poleward migration of
the patches.

Our study has focused on investigating the given geo-
magnetic models, but there is still a possibility of modifying
them so that the FF and TG assumptions may hold though-
out the CMB. Once a SV model is allowed to have a certain
amount of power due to the non-zero coefficients above de-
gree LMF, there is little difficulty to render the SV model
subject to the FF+TG condition. This has already been
indicated by Ḃ

∗
na and Ḃ

∗
ng obtained with the scalar product

(12). Because of their insignificance at all degrees at the
Earth’s surface or at 400 km altitude (r = a′) (see Fig. 9
for the case with Ḃ

∗
na at r = a′), the residual parts Ḃ

∗
ad

(= Ḃo − Ḃ
∗
na) and Ḃ

∗
ge (= Ḃo − Ḃ

∗
ng) fit to Ḃo very well

there, each still satisfying the FF and FF+TG conditions
at the CMB. As a matter of fact, the Gauss coefficients of
Ḃ

∗
ad and Ḃ

∗
ge are almost identical to those of Ḃo. The time-

averaged rms magnitude of Ḃ
∗
ng, i.e. rms misfit between

Ḃ
∗
ge and Ḃo, from GRIMM at r = a′ is only as much as

6.0 × 10−4 nT yr−1. This is by far smaller than the accuracy
of GRIMM. Of course, Ḃ

∗
ge is an extreme example of the

geostrophic SV, having the unrealistic spectrum with very
high powers concentrated at degrees above LMF. Neverthe-
less, one may be able to create a magnetic model consisting
exclusively of the geostrophic SV, by allowing for the ‘un-
known SV’ above its truncation degree of the given models,
which is associated with significant power at r = c, but
observationally insignificant above the Earth’s surface.

7. Conclusions
With the SH domain approach, a snapshot of the part of

SV violating the necessary condition of FF or FF+TG as-
sumption can be built over the CMB. We have avoided the
non-uniqueness in decomposing the SV into two parts vio-
lating and satisfying the necessary condition, by assuming
the orthogonality of the two parts in terms of radial SV en-
ergy integrated over the CMB. This approach is advanta-
geous in that geometric and topologic constraints, such as
number and morphology of the null-flux curves, do not have
to be considered for the necessary conditions.

We have revealed that the GRIMM and CM4 core field
models, when each is truncated at the same degree for both
MF and SV models, evidently involve the non-advective SV
violating the FF condition and also the non-geostrophic SV
violating the FF+TG condition. The radial component of
the non-advective SV emerges mainly within small null-
flux patches at the CMB. A local intensive area is also found

in the neighborhood of the undulating null-flux curve at the
magnetic equator. The time variation of the non-advective
SV is not correlated with the geomagnetic jerks, indicating
that these short-time events (as described by GRIMM and
CM4) do not have to involve the diffusion process. In
contrast with the non-advective SV, the radial component
of non-geostrophic SV prevails throughout the core surface,
for the two investigated models. Of particular interest is
that the non-geostrophic SV shows short-term variations
correlated with the geomagentic jerks. Further, the most
part of the secular decay of the axial dipole field is due to the
non-geostrophic SV. These findings are unlikely to depend
on the truncation degree of the input field models, as long as
both MF and SV models have the same truncation degree (at
least up to 18) and moderate trends in their power spectra.

As the core flow is plausibly in the TG balance over
a large area of the core surface, a majority of the non-
geostrophic SV should not originate from the advection
of radial MF by the ageostrophic flow. The diffusion is
therefore a possible source of the steadily positive axial
dipole component of the non-geostrophic SV, as well as
its slowly evolving components which are also seen in the
non-advective SV. Yet, the diffusion is practically un-
likely to explain the non-geostrophic SV which fluctuates
rapidly, producing a part of the observed geomagnetic jerks.
This is possibly explained by the presence of fluctuating
ageostrophic flow near the geographic equator, just as re-
quired for explaining the latest secular variation fluctuations
(Olsen and Mandea, 2008). We note, nevertheless, that one
cannot discard the possibility of appropriately modifying
the SV models to meet the FF+TG condition completely.
This can be achieved by allowing the unknown SV at de-
grees above the truncation degree of the given models to
have a dominant power at the CMB.

The method of the present analysis is restricted to a
given single epoch. We have examined an instantaneous
SV model sequentially for each different epoch against the
instantaneous necessary condition for a prescribed MF. We
have not studied the MF models. Further, we have not ex-
tended our study to examine the entire span of field models
at once. The method would then require a huge computa-
tion, while it is theoretically feasible if the scalar product
we have defined for a certain epoch is somehow extended
to involve the total time span. A practical and more com-
prehensive test of the observed field against the conditions
would be to assess simultaneously the existence of reason-
able MF, SV and flow models that are temporally continu-
ous and compatible with the FF or FF+TG condition (Lesur
et al., 2010). In constructing such a comprehensive field
model, the SH domain approach would be an effective alter-
native to the modelling approaches directly allowing for the
surface integral conditions in the spatial domain (Gubbins,
1984; Bloxham and Gubbins, 1986; Constable et al., 1993;
O’Brien et al., 1997; Jackson et al., 2007).
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Appendix A. Description of the SV Parts in Terms
of Linear Sets

A radial SV distribution Ḃr over the CMB can be re-
garded as an element of a linear space M of the scalar field
over a spherical surface. In a similar manner, a horizontal
core flow distribution vH just below the CMB can be re-
garded as an element of a linear space C of the horizontal
vector field over the same spherical surface. Then, Eq. (1)
represents a linear mapping T : C → M , inherent to the
distribution of radial MF, Br , on the spherical surface. Let
Mad denote the image of T , i.e. a subset of M with its ele-
ments satisfying the FF condition (2). It is readily noticed
from Eq. (1), or the condition (2), that Mad is a linear sub-
space. All other SV elements that do not meet the condi-
tion form a subset Mna. In this paper, the elements of the
subsets Mad and Mna are referred to as ‘advective SV’ and
‘non-advective SV’, respectively.

Under the TG assumption, the flow space is limited to
its linear subspace Ctg, its elements satisfying a linear con-
straint (4). Then, T maps Ctg to a SV subset Mge (⊂ M)
which is composed of the SV elements necessarily satis-
fying the FF+TG condition (let Ttg denote this particular
mapping). The image Mge of Ttg is a linear subspace, as
indicated by the linear properties of Ḃr and vH in Eqs. (1)
and (4), as well as by the necessary condition derived by
Chulliat and Hulot (2001). All other SV elements that
do not meet the condition form a subset Mng. Note that
Mna ⊂ Mng ⊂ M , as the FF condition is deduced from
the FF+TG condition (Chulliat and Hulot, 2001; Hulot and
Chulliat, 2003). The elements of Mge and Mng are referred
to as ‘geostrophic SV’ and ‘non-geostrophic SV’, respec-
tively.

It should be noted that the total SV space M is not a di-
rect sum of either pair of the subsets, Mad and Mna, or Mge

and Mng, as obvious from the fact that only Mad and Mge

are subspaces. Accordingly, the decompositions of a given
element of M into those of the subsets Mad and Mna, or Mge

and Mng, are not unique. Nevertheless, it is possible to per-
form a unique decomposition, if one lets M be a Euclidean
space giving a certain definition of scalar product, such as
given by Eq. (7); according to the projection theorem, one
can perform an orthogonal decomposition, uniquely divid-
ing an element of a Euclidean space into two projections,
each on a certain subspace and its orthogonal complemen-
tary space. Thus, Mna (resp. Mng) can be specified as a
complement of the subspace Mad (resp. Mge) over M for
the given definition of scalar product.

Elements of infinite-dimensioned spaces M and C cannot
be expressed by a finite number of parameters. The SH
representation of elements of M , with the truncation at
degree LSV, is considered to be that of a finite-dimensioned
subspace M LSV of M . Its dimension is given by NSV (=
LSV(LSV + 2)). Likewise, the expression of elements of
C (resp. Ctg) truncated at degree LFL is regarded as that
of the subspace C LFL of C (resp. C LFL

tg of Ctg) with the

dimension NFL (= 2LFL(LFL + 2)) (resp. N tg
FL (= L2

FL)).
Now the SH domain vectors of the SV coefficient ḃ and
the flow coefficient m in Eq. (8) are the elements of finite-
dimensional real vector spaces RNSV and RNFL , which are
isomorphic to the spaces M LSV and C LFL , respectively. In

the case with the TG flow limitation, the SV coefficient
vector ḃ and TG flow coefficient vector w in Eq. (9) are the
elements of RNSV and RN tg

FL , which are isomorphic to M LSV
tg

and C LFL
tg , respectively. Here, RN is an Euclidean space with

its scalar product defined as fT
1 f2, where the superscript T

denotes the transpose (not the mapping T ) and f1, f2 ∈ RN .
The matrix A in Eq. (8) (resp. Atg in Eq. (9)) does not

represent T (resp. Ttg) completely, but only the mapping
T LMF : C LFL → M LSV (resp. T LMF

tg : C LFL
tg → M LSV

tg ) for
the finite dimensions. Of course, there can be an infinite
number of matrices representing T LMF (resp. T LMF

tg ) in accor-
dance with the choice of basis set for the spaces M LSV (resp.
M LSV

tg ) and C LFL (resp. C LFL
tg ). Nevertheless, the representa-

tion matrix A, for example, can be specified uniquely by ap-
propriately selecting the basis sets such that M LSV and RNSV

as well as C LFL and RNFL are isomorphic also as Euclidean
spaces. This relation between M LSV and RNSV or M LSV

tg and
RNSV is actually established by using the change-of-basis
matrix W1/2 defined by Eq. (10).

Appendix B. Singular Value Error from Main
Field Model Variance

Variances σ 2
λi

of the singular values λi of matrix A should
arise from those of the Gauss coefficients b, as all elements
of A are functions of b, and so are those of its subsequent
matrices U, V and �(= diag(λi )), if not described explicitly
in terms of b. As shown below, nevertheless, σ 2

λi
can be

derived simply from the variances of b, given the covariance
matrix Cb about the mean values bo.

Applying Taylor expansion about bo (e.g. A(bo + δb) =
A(bo) +δA(bo) + · · · ) to all matrices in the equation
�(b) = UT (b) A(b) V(b) and disregarding O(δ2) terms,
one has

δ� = δUT A V + UT δA V + UT A δV

= δUT U � + UT δA V + � VT δV .

The diagonal components of the first and third terms on the
RHS of above equation are always zero because � is the di-
agonal matrix and δUT U and VT δV are off-diagonal matri-
ces; note, for example, that the identity UT U = I is indepen-
dent of b, leading to δ(UT U) = δUT U+(δUT U)T = 0. The
singular value perturbations are then written as δλi (bo) =
uT

i (bo) δA(bo) vi (bo), where ui and vi are i-th column vec-
tors of U and V, respectively. Since one can write it also
as

δλi (bo) = ∂λi (bo)

∂b
δb

using the row vector

∂λi (bo)

∂b
= uT

i (bo)
∂A(bo)

∂b
vi (bo) ,

the variance of singular value λi is derived as

σ 2
λi

= E
[
(δλi )

2
] = ∂λi (bo)

∂b
E

[
δb δbT

] (
∂λi (bo)

∂b

)T

= ∂λi (bo)

∂b
Cb

(
∂λi (bo)

∂b

)T

,

where E[x] denotes the statistical expected value of x .
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Jault, D. and J.-L. Le Mouël, Does secular variation involve motions in the
deep core?, Phys. Earth Planet. Inter., 82, 185–193, 1994.

Le Huy, M., M. Mandea, J.-L. Le Mouël, and A. Pais, Time evolution of
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