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TEC prediction with neural network for equatorial latitude station in Thailand
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This paper describes the neural network (NN) application for the prediction of the total electron content (TEC)
over Chumphon, an equatorial latitude station in Thailand. The studied period is based on the available data
during the low-solar-activity period from 2005 to 2009. The single hidden layer feed-forward network with a
back propagation algorithm is applied in this work. The input space of the NN includes the day number, hour
number and sunspot number. An analysis was made by comparing the TEC from the neural network prediction
(NN TEC), the TEC from an observation (GPS TEC) and the TEC from the IRI-2007 model (IRI-2007 TEC).
To obtain the optimum NN for the TEC prediction, the root-mean-square error (RMSE) is taken into account. In
order to measure the effectiveness of the NN, the normalized RMSE of the NN TEC computed from the difference
between the NN TEC and the GPS TEC is investigated. The RMSE, and normalized RMSE, comparisons for
both the NN model and the IRI-2007 model are described. Even with the constraint of a limited amount of
available data, the results show that the proposed NN can predict the GPS TEC quite well over the equatorial
latitude station.
Key words: Neural network, total electron content, low solar activity period, IRI-2007 model, GPS.

1. Introduction
The variation of electron density in the ionosphere has

significant effects on a radio signal propagating through the
Earth’s atmosphere. The total electron content (TEC) is
one of the quantities which can describe the ionospheric
ionization content. The equatorial region is an anomaly
area where the most significant discrepancy of experimental
and modeled data has been observed (Yasukevich, 2008).
At present, there exist several ionosphere models includ-
ing IRI-2001 and IRI-2007, which allow calculations of the
electron density profile and the TEC. The IRI-2007 is the
new release of the IRI model and has many new features.
IRI-2007 now offers various options to compute the elec-
tron density in the topside ionosphere, the region above the
F2 maximum, which is an improvement over the limitations
in previous versions of the model (Bilitza, 2004; Coisson et
al., 2009).

TEC derived from GPS data has been collected to con-
struct empirical models. Neural network (NN) techniques
have been applied to various topics in the study of the up-
per atmosphere. A number of works employ the NN to
predict atmospheric parameters and determine the optimum
parameters for modeling, such as the temporal and spa-
tial forecasting of the fo F2 values up to twenty-four hours
in advance and near-real time prediction (Tulunay et al.,
2000; Oyeyemi et al., 2006), to make operational fore-
casts of ionospheric variations (Nakamura et al., 2007), the
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topside ionospheric variability and electron-density mod-
elling (McKinnell and Poole, 2001; Maruyama, 2002), so-
lar proxies pertaining to an empirical model (McKinnell,
2008; Maruyama, 2010), and regional TEC modeling
with the NN (Leandro and Santos, 2004; Tulunay et al.,
2004b; Maruyama, 2007; Habarulema et al., 2007, 2009b;
Watthanasangmechai et al., 2010).

Recently, TEC data have become available in Thailand
and some neighboring countries as a result of the SEALION
project. This provides the opportunity to study the TEC pre-
diction. Moreover, the availability of historic TEC data is
important for the development of the IRI model (Mosert,
2007), as well as the NN model which can learn from prior
data (Watthanasangmechai et al., 2010). Better representa-
tions of the region above the F peak are of critical impor-
tance for many investigations that require TEC predictions
(Bilitza, 1997). Thus, we hope that this research will not
only lead to a prediction of the TEC over Thailand, but also
will contribute to the data pool for this area as well. In this
paper, the TEC is measured by the JAVAD-GPS receiver
installed at the GPS receiver station, namely; Chumphon
(10.72◦N, 99.37◦E, dip latitude 3◦), equatorial latitude sta-
tion, Thailand. To predict the TEC value, a neural net-
work (NN) was applied in this work. The results of the NN
are compared with the observed value (GPS TEC) for NN
efficiency testing. In addition, we employ the TEC from
the IRI-2007 model, the widely-used ionosphere model for
comparison as well.

473



474 K. WATTHANASANGMECHAI et al.: TEC PREDICTION WITH NN FOR EQUATORIAL LATITUDE STATION

Fig. 1. Schematic diagram of the artificial neural network for TEC
prediction.

2. Artificial Neural Network
2.1 Neural Network

Neural Networks (NN) is an information processing sys-
tem consisting of nodes or neurons. A neuron is an in-
formation processing unit which consists of a connecting
link, adder and activation function. The neuron patterns
are similar to biological neural nets and are modeled af-
ter the human brain (Tulunay et al., 2004a). NN is an im-
portant tool for nonlinear approximation when it is trained
with sufficient historic data (Habarulema et al., 2007). TEC
is one of the nonlinear ionospheric parameters which have
been previously predicted by using NN (Habarulema et al.,
2007, 2009a; Maruyama, 2007; Watthanasangmechai et al.,
2010). Among the various NN structures, we have used
a basic structure known as a feed-forward network with a
back propagation algorithm, the well-known algorithm, for
our model. In order to achieve the optimum NN, a com-
parison of the Root-Mean-Square Error (RMSE) was used.
RMSE is defined as:

RMSE =
√√√√ 1

N

N∑
i=1

(TECpred − TECmeas)2, (1)

where N is the number of data points, TECpred is TEC pre-
dicted by a model and TECmeas is the vertical TEC (VTEC)
estimated from GPS observations by using the technique
described in Otsuka et al. (2002).

This NN composes of one input layer, one hidden layer
and one output layer. Figure 1 presents a schematic diagram
of the proposed NN for this work. The input layer consists
of five nodes, or neurons, corresponding to five input pa-
rameters each with 32,112 data points, while the hidden,
and the output, layers consists, respectively, of nine and
one nodes, or neurons. The expositions about NN and its
algorithms are well described in Tulunay et al. (2004a) and
Watthanasangmechai et al. (2010). In this paper, we will
only focus on the NN application for predicting the TEC
over the Thailand equatorial latitude station. On the other
hand, the main purpose is to model the NN and compare the
NN TEC with GPS TEC and IRI-2007 TEC, so as to val-
idate the NN model. The data set is divided into training,
validating and testing sets. The training and validating sets
are the TEC data in 2005, 2006, 2008 and 2009 while the

TEC data in 2007 are reserved for the testing process. The
performance of our NN model is also considered from the
RMSE as well.
2.2 NN inputs and output

The input space was collected from the parameters that
have an impact on the TEC data such as the hour number
(HR, diurnal variation), the day number (DN, seasonal vari-
ation) and the sunspot number (SSN, measure of solar activ-
ity). To make the data continuous, the first two parameters
were each split into sine and cosine components, two cyclic
components (McKinnell and Poole, 2000; Habarulema et
al., 2007, 2009a; McKinnell, 2008) as follows:

DNS = sin
(

2πDN
365.25

)
, DNC = cos

(
2πDN
365.25

)

HRS = sin
(

2πHR
24

)
, HRC = cos

(
2πHR

24

), (2)

where DNS, DNC, HRS and HRC are the sine and cosine
components of DN and HR, respectively. The studied years
include the leap year, a year having 366 days, thus the
quantity 0.25 appears in Eq. (2).

The daily SSN, which indicates the solar activity, is col-
lected from the site: ftp.ngdc.noaa.gov. It is considered
as one of the input parameters for the first neural network
(NN1). Since the amplitude of short-term solar-proxy vari-
ations are induced by solar rotation, one solar rotation is
equal to 27 days, and the long-term variations follow the
11-year solar activity period (Maruyama, 2010), we choose
the 27-day mean SSN as one of the input parameters for the
second neural network (NN2) to represent the solar activ-
ity. Besides, the sunspot number is more effective for peri-
ods longer than 27 days (Maruyama, 2010) for training the
neural network, thus we also choose an 81-day mean SSN,
three solar rotation periods, as another input parameter for
the third neural network (NN3). All of the input parame-
ters are fed into the input space for the TEC prediction. The
output of each NN is VTEC. The RMSE values of which
are investigated to achieve the optimum NN.

3. Results and Discussions
In this work, the NN model is developed for Chumphon

as a single-station model near the magnetic equator in Thai-
land. The daily SSN, as shown in Fig. 2, is applied for NN1,
while the 27-day mean SSN, as shown in Fig. 3, and the 81-
day mean SSN, as shown in Fig. 4, are applied for NN2
and NN3, respectively. To achieve the optimum NN, the
RMSE comparison of NN1, NN2 and NN3, each with 6 to
12 cells in the hidden layer, is made as shown in Fig. 5. All
data used in NN processes are the data from 2005 to 2009.
Since the achievement of the trained network depends not
only on the selection of input parameters but also on the ini-
tial weights (Maruyama, 2010), the initial random weights
are used for this work, thus we run each NN ten times to
choose the best NN for the best result. From Fig. 5, we
found that NN3 with nine hidden cells performs as the best
NN for Chumphon station for the studied period with the
RMSE 2.269 TECU and the normalized RMSE 0.161 from
the testing process. We will henceforth refer to NN3 as the
proposed NN.
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Fig. 2. The daily SSN during 2005 to 2009 which is applied for NN1.

Fig. 3. The 27-day mean SSN during 2005 to 2009 which is applied for NN2.

Fig. 4. The 81-day mean SSN during 2005 to 2009 which is applied for NN3.

The proposed NN (NN3) is the feed-forward network
with a back propagation algorithm. It consists of five nodes
or neurons in the input layer, nine nodes in the hidden layer,
and one output node in the output layer, as shown in Fig. 1.
The input layer is fed with the sine and cosine components
of the day number and the hour number, and the 81-day
mean SSN. The initial weight and biases for the train-
ing process are set to be random values. The Levenberg-
Marquardt algorithm is applied as the training function. The

output of the proposed NN is compared with GPS TEC and
IRI-2007 TEC. We take the normalized RMSE into account
for the result comparison. The normalized RMSE is the
RMSE value divided by the background TEC to avoid the
effect from the TEC background.

In this work, we set the upper boundary height for the
IRI-2007 model to be 20,000 km, the maximum value
which the IRI-2007 model allows, to include not only the
electrons in the ionosphere, but also in the plasmasphere as
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Fig. 5. RMSE values computed for an NN model with 6 to 12 neurons in a single hidden layer.

Fig. 6. GPS TEC, NN TEC and IRI TEC over the 5-year period, 2005 to 2009, at 1230 LT for Chumphon station.

well. The results in the years 2005, 2006, 2007, the last
period of the solar cycle 23, and in the years 2008, 2009,
the start period of solar cycle 24, from the NN processes
are plotted versus the GPS TEC and the IRI-2007 TEC at
1230 LT as shown in Fig. 6. Hereafter, we introduce seven
comparison results which are hourly comparison, seasonal
comparison, 0030 LT comparison, 0630 LT comparison,
1230 LT comparison, 1830 LT comparison and TEC com-
parison on an individual day, respectively.
3.1 Hourly comparison

To evaluate the performance of NN, the hourly model
is constructed. The data set for the learning process
comprises TEC in 2005, 2006, 2008 and 2009. Fol-
lowing the learning process, NN output is compared
with GPS TEC and IRI-2007 TEC on equinox and sol-
stice days in 2007. In 2007, equinox days occur on
March 20 and September 23, while solstice days oc-
cur on June 21 and December 22 (U.S. Naval Observa-
tory; http://www.erh.noaa.gov/box/equinox.html), respec-
tively. However, we compare the results on December 25
for the solstice day due to a loss of data on December 22.

The hourly NN TEC is plotted with the GPS TEC and the
IRI-2007 TEC to see the effectiveness of the hourly model,
as shown in Fig. 7(a)–(d). The RMSE and normalized
RMSE of the NN TEC and the IRI-2007 TEC for each of
the four proposed days are shown in Table 1. The NN TEC
with the smallest RMSE (1.468 TECU) and the smallest
normalized RMSE (0.135) is on December 25, a solstice
day. The NN TEC with the largest RMSE (2.797 TECU)
and the largest normalized RMSE (0.195) is on March 20,
an equinox day. The average TEC values on December
25 and March 20 are equal to 10.805 TECU and 14.281
TECU, respectively, and are considered as the background
TEC values of December 25 and March 20.

Among various methods to predict TEC, the results prove
that the hourly model yields one of the appropriate tools for
TEC prediction purposes. Even though there is a consid-
erable difficulty for NN to learn during the TEC prediction
process on equinox days during this period due to the occur-
rence of an equatorial plasma bubble, which includes vari-
ous ionospheric irregularity scales, causing a large day-to-
night variation and a drastically-fluctuating component of
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Fig. 7. (a–d) GPS TEC, NN TEC and IRI-2007 TEC at Chumphon station (a) on 20 March 2007 (equinox day), (b) on 21 June 2007 (solstice day), (c)
on 23 September 2007 (equinox day), (d) on 25 December 2007 (solstice day).

Table 1. Background TEC, RMSE and normalized RMSE values of GPS TEC and predicted values (NN TEC and IRI-2007 TEC) for different days
(equinox and solstice days) in 2007 over Chumphon station.

Date Background TEC (TECU)
RMSE (TECU) between Normalized RMSE between

NN TEC IRI-2007 TEC NN TEC IRI-2007 TEC

March 20 14.281 2.797 4.164 0.195 0.291

June 21 10.904 1.965 2.743 0.180 0.251

September 23 14.006 2.430 3.412 0.173 0.243

December 25 10.805 1.468 2.142 0.135 0.198

4 studied-day 12.499 2.165 3.115 0.173 0.249

All year 2007 14.078 2.296 3.881 0.163 0.275

the TEC, the hourly model is still able to predict TEC quite
well. If we consider in terms of the normalized RMSE as
shown in Table 1, the normalized RMSE from the hourly
model is smaller than that from the IRI-2007 model for the
entire year over Chumphon. We do not mean to imply that
the IRI-2007 model is not appropriate to use for TEC pre-
diction, however, we presume that the IRI-2007 database
may not cover Southeast Asia data and, in particular, over
Chumphon equatorial latitude station, for example. How-
ever, our NN TEC performs well during the period studied
since the NN model learns from the local TEC value. This
is a reason why the hourly model can well predict TEC val-
ues as mentioned above.
3.2 Seasonal comparison

Since seasonal variation plays an important role in TEC
variation, we also carry out a seasonal TEC comparison
to investigate the possibility of NN to predict the seasonal
TEC. In this paper, there are four distinct seasons, which
are the March equinox, the June solstice, the September
equinox and the December solstice. Each season is rep-
resented by a monthly median value. Meaning, we take the

median to each hourly data of 31-day TEC data in March,
predicted from the method described in Fig. 1, in order to
obtain the 24-hour seasonal TEC for the March equinox,
for example. Thus the 24-hour monthly median TEC values
are cited as the seasonal TEC. For the seasonal comparison,
hereafter, we refer to the NN as the seasonal model.

For this model, the 5:9:1 architecture with a 81-day mean
SSN is still taken. TEC in 2005, 2006, 2008 and 2009 are
applied in the learning process, while the seasonal TEC in
2007 is used as the target for this seasonal model. The NN
TEC (seasonal TEC) is plotted to compare with the GPS
TEC and the IRI-2007 TEC. Figure 8 shows that the IRI
TEC values are clearly underestimated during 0430 LT to
0630 LT and 1130 LT to 1630 LT for the March equinox,
during 0530 LT to 0730 LT and 1030 LT to 1630 LT for the
June solstice, during 0230 LT to 0530 LT and 1130 LT to
1530 LT for the September equinox, and during 0330 LT to
0630 LT for the December solstice, while during 1730 LT
and 2130 LT for the June solstice, 1730 LT and 2330 LT for
the September equinox, and 1530 LT and 2330 LT for the
December solstice, IRI-2007 TEC are overestimated. From
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Fig. 8. (a–d) GPS TEC, NN TEC and IRI TEC at Chumphon station for (a) March (b) June (c) September (d) December.

Table 2. Background TEC, RMSE and normalized RMSE values of GPS TEC and predicted values (NN TEC and IRI-2007 TEC) for different seasons
which are March (representing the March equinox), June (representing the June solstice), September (representing the September equinox) and
December (representing the December solstice), respectively, in 2007 over Chumphon station.

Month Background TEC (TECU)
RMSE (TECU) Normalized RMSE

NN TEC IRI-2007 TEC NN TEC IRI-2007 TEC

March 16.923 1.385 4.025 0.081 0.237

June 12.163 1.107 2.485 0.091 0.204

September 13.639 1.208 3.513 0.088 0.257

December 11.083 1.012 2.135 0.091 0.192

this investigation, we can conclude that the IRI-2007 model
underestimates around the local pre-sunrise and the local
midday, and overestimates around after the local sunset. For
the remainder of the time, the IRI-2007 model predicts TEC
quite well. When we take the seasonal NN TEC into ac-
count, we find that the NN performs quite well for seasonal
TEC prediction. However, the NN underestimates TEC dur-
ing 1130 LT to 2030 LT for the March equinox, as well as
during 1230 LT to 1830 LT for the September equinox, and
the NN overestimates TEC during 0030 LT to 0630 LT for
the June solstice and during 1230 to 1630 LT for the De-
cember solstice. The shapes of the NN TEC and the GPS
TEC for all seasons resemble each other. The RMSE val-
ues of the NN TEC and the IRI-2007 TEC are shown in
Table 2. The best estimation for the NN occurs during the
March equinox with a normalized RMSE of 0.081 while
that for the IRI-2007 model occurs during the December
solstice with a normalized RMSE of 0.192. The worst esti-
mations occur during the December solstice for the NN and

during the September equinox for the IRI-2007 model with
normalized RMSEs of 0.091 and 0.257, respectively.
3.3 0030 LT comparison

The difference between universal time and the local
time at Chumphon is seven hours. We consider 0030 LT
(1730 UT) to be local midnight for this paper. To see if
NN is applicable for TEC prediction, the first comparison
at 0030 LT in 2007 is described. We show the comparison
of 365-day variation of the GPS TEC, the NN TEC and the
IRI-2007 TEC at local midnight in Fig. 9. It is shown that
the NN model predicts the TEC over Chumphon at 0030 LT
for the year 2007 fairly well with a RMSE of 1.996 TECU,
and a normalized RMSE of 0.334. The IRI-2007 TEC is
underestimated at local midnight during mid-year. The IRI-
2007 model predicts TEC for Chumphon station at 0030 LT
in the year 2007 with an RMSE of 2.469 TECU, and a nor-
malized RMSE of 0.413. The average TEC values of the
GPS TEC, the NN model and the IRI-2007 model, at local
midnight in 2007, are equal to 5.971 TECU, 5.612 TECU
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Fig. 9. GPS TEC, NN TEC and IRI-2007 TEC, the difference between the GPS TEC and the NN TEC (�TEC), and the difference between the daily
SSN and 81-day mean SSN (�SSN), all at 0030 LT, and the Ap index, all in 2007 over Chumphon station.

and 4.729 TECU, respectively. The comparison results for
local midnight reveal the worst estimation for both the NN
model and the IRI-2007 model. This may be a result of the
equatorial plasma bubble, which is always observed during
the night time and causes drastic TEC variation. We pre-
sume that this is the main reason why the worst estimation,
or prediction, occurs at local midnight.
3.4 0630 LT comparison

The comparison between the GPS-TEC, the NN TEC and
the IRI-2007 TEC at 0630 LT is made to investigate the
TEC variation, the effectiveness of the proposed NN model
and the IRI-2007 model, at local pre-sunrise. From ob-
servations, GPS TEC values at local pre-sunrise are quite
low with an average TEC value of 5.287 TECU for all
year 2007. To see the TEC prediction performance of the
IRI-2007 and the NN model, TEC from the NN model is
plotted against GPS TEC and IRI-2007 TEC as shown in
Fig. 10. We found that the NN is still able to predict TEC
pretty well with an RMSE of 1.084 TECU and a normal-
ized RMSE of 0.205, while the IRI-2007 model also pre-
dicts TEC pretty well with an RMSE of 1.246 TECU and
a normalized RMSE of 0.235. The average TEC values of
the NN model and the IRI-2007 model at local pre-sunrise
in 2007 are equal to 5.064 TECU and 4.668 TECU, respec-
tively.
3.5 1230 LT comparison

The same procedure with two previous comparisons was
applied for 1230 LT, which is referred to as the local mid-
day. The NN TEC and the IRI-2007 TEC at 1230 LT
are compared with each other by plotting the GPS TEC as
shown in Fig. 11. One can notice that both TECs predicted
from the NN model and the IRI-2007 model have the same
trend of data at local midday for year 2007. However, we

can observe that the IRI-2007 TEC is evidently underesti-
mated by both the GPS TEC and the NN TEC, while the
NN TEC agrees with the GPS TEC with an RMSE of 2.718
TECU and a normalized RMSE of 0.114. The RMSE of the
IRI-2007 model is equal to 7.135 and the normalized RMSE
is equal to 0.299 at local midday for the entire year at this
station. The yearly average at local midday of the GPS TEC
is 23.791 TECU while those for the NN model and the IRI-
2007 model are 22.593 TECU and 17.741 TECU, respec-
tively. The best estimation of the proposed NN model can
be seen here, at local midday, among other comparisons at
0030 LT, 0630 LT, 1230 LT and 1830 LT, as described in
Table 3.
3.6 1830 LT comparison

The comparison of the NN TEC, the GPS TEC and the
IRI-2007 TEC at local pre-sunset is shown in Fig. 12. The
trends of the NN TEC from the 1830 LT model and the
IRI-2007 TEC are similar, and follow the GPS TEC at local
pre-sunset. If we consider only the RMSE value at 1830 LT,
we will find that the RMSE of the NN TEC is pretty high
with 3.300 TECU. However, this is affected by the high
background TEC value at the local pre-sunset hour, which
is equal to 20.939 TECU. To avoid this effect in the com-
parison, normalized RMSEs are considered. The IRI-2007
model also gives a high RMSE value, however, the corre-
sponding normalized RMSE is equal to 0.211, which is the
best approximation of the IRI-2007 model. The average
TEC values for the NN model and the IRI-2007 model at lo-
cal pre-sunset are equal to 18.934 TECU and 23.755 TECU,
respectively. From Fig. 12, we can notice that the IRI-2007
model distinctly overestimates TEC for the period after the
250th day at 1830 LT which may be the reason for the fairly
high RMSE value.
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Fig. 10. GPS TEC, NN TEC and IRI-2007 TEC, the difference between the GPS TEC and the NN TEC (�TEC), and the difference between the daily
SSN and 81-day mean SSN (�SSN), all at 0630 LT, and the Ap index, all in 2007 over Chumphon station.

Fig. 11. GPS TEC, NN TEC and IRI-2007 TEC, the difference between the GPS TEC and the NN TEC (�TEC), and the difference between the daily
SSN and 81-day mean SSN (�SSN), all at 1230 LT, and the Ap index, all in 2007 over Chumphon station.

The normalized RMSE values of the GPS TEC and the
predicted values (NN TEC and IRI-2007 TEC) for each
of the four comparisons of Subsections 3.3 to 3.6, over
Chumphon station, are compared and shown in Table 3.
We found that our NN model can be used to predict TEC

values at different times of the year 2007 over Chumphon,
the equatorial latitude station. The minimum normalized
RMSE value is 0.114 from the 1230 LT comparison, while
the maximum over is 0.334 from the 0030 LT comparison.
We can infer that the proposed NN model can give the best



K. WATTHANASANGMECHAI et al.: TEC PREDICTION WITH NN FOR EQUATORIAL LATITUDE STATION 481

Fig. 12. GPS TEC, NN TEC and IRI-2007 TEC, the difference between the GPS TEC and the NN TEC (�TEC), and the difference between the daily
SSN and 81-day mean SSN (�SSN), all at 1830 LT, and the Ap index, all in 2007 over Chumphon station.

Fig. 13. Comparison between the daytime �TEC and Ap index in more detail (for days 1 to 100), all in 2007 over Chumphon station.

Table 3. Average TEC, RMSE and normalized RMSE values of GPS TEC and predicted values (NN TEC and IRI-2007 TEC) for different times in
2007 which are 0030 LT, 0630 LT, 1230 LT and 1830 LT, respectively, over Chumphon station.

Time (LT)
Average TEC (TECU) RMSE (TECU) Normalized RMSE

GPS TEC NN TEC IRI-2007 TEC NN TEC IRI-2007 TEC NN TEC IRI-2007 TEC

0030 5.971 5.619 4.729 1.996 2.469 0.334 0.413

0630 5.287 5.064 4.668 1.084 1.246 0.205 0.235

1230 23.791 22.593 17.741 2.718 7.135 0.114 0.299

1830 20.939 18.934 23.755 3.300 4.433 0.157 0.211

TEC approximation at local midday due to the smallest
normalized RMSE value it gives. However, the NN TEC
from the 0030 LT model needs to be leveled up to decrease
the normalized RMSE value.
3.7 TEC comparison on an individual day

For Figs. 9 to 12, each of which includes (from top to
bottom) the comparison between the GPS TEC, the NN

TEC and the IRI-2007 TEC, the difference between the
GPS TEC and the NN TEC (�TEC, the error of the NN
model), the difference between the daily SSN and 81-day
mean SSN (�SSN), and the daily geomagnetic-activity in-
dex, Ap, all in 2007. Positive errors, which are related to
the solar proxy variation represented by �SSN, are noticed
on the 35th day of the 0030 LT comparison in Fig. 9, and
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on the 195th day of the 1230 LT comparison in Fig. 11.
For the 35th day in Fig. 9, the �SSN is about 10, while
the �TEC is about 3 TECU (the background TEC is equal
to 5.971 TECU). The background TEC is an average GPS
TEC value for the whole year 2007 at any represented time.
The �SSN is about 16, while the �TEC is about 5 TECU
(the background TEC is equal to 23.791 TECU), on the
195th day in Fig. 11. The trend of the �TEC variation and
the �SSN variation resemble each other during about 10
days before, and after, the 195th day of the 1230 LT com-
parison in Fig. 11, as well. The TEC error corresponding
to the largest �SSN at around the 160th day is not promi-
nent. Generally, daily errors caused by using an 81-day
mean SSN as a solar input are not very significant.

Positive errors, which are related to the geomagnetic-
activity index represented by the daily Ap index, are noticed
on the 40th and 85th days of the 0030 LT comparison in
Fig. 9, the 140th, 185th and 190th days of the 0630 LT com-
parison in Fig. 10, the 17th, 30th, 60th, 65th, 70th, 195th,
271st and 277th days of the 1230 LT comparison in Fig. 11,
and the 30th, 72nd and 120th days of the 1830 LT compar-
ison in Fig. 12. The largest �TEC, noticed on the 85th day
in Fig. 9 and on the 120th day in Fig. 12, are clearly re-
lated to the geomagnetic activity, as well as during the 1st
and 30th days of the 1230 LT comparison in Fig. 11, with
three peaks of the �TEC and Ap variations resembling each
other. The negative errors, which are related to the solar
proxy variation, do not clearly appear in the study period
but those related to geomagnetic activity can be seen on
the 132nd, 140th, 147th, and 170th days of the 0630 LT
comparison in Fig. 10. The large positive error noticed dur-
ing the 270th and 290th days in Fig. 10, is absolutely not
related to the solar proxy variation; however, may be re-
lated to the geomagnetic activity index for some of these
days. Another large positive error on the 340th day corre-
lates to the peak of the geomagnetic-activity index and an
increase of the �SSN on this day. Figure 13 compares day-
time �TEC and Ap in more detail (for days 1 to 100). The
TEC increases occurred with a time delay of approximately
one day, which strongly suggests the effect of a disturbance
dynamo (Scherliess and Fejer, 1997). The weakened day-
time eastward electric field might suppress the fountain ef-
fect, and cause a density increase at the magnetic equator.

An error, unrelated to both the solar proxy index and the
geomagnetic-activity index, can be seen on the 270th day
of the 0030 LT comparison in Fig. 9. We presume that such
an error is attributed to other origins, such as forcing below
the ionosphere including coupling with planetary wave ac-
tivities (Lastovicka, 2006; Borries et al., 2007; Maruyama,
2010). The remaining errors are caused by the large day-
to-day variation of the TEC in the equatorial latitude region
itself.

4. Conclusions
This work investigates an NN model which has 9 neurons

in the single hidden layer for TEC prediction at Chumphon
station, Thailand. The parameters which impact the TEC
data were taken as the NN inputs. In this study, we have
considered six comparisons to show the NN TEC. To in-
vestigate the effectiveness for using the NN as a TEC pre-

diction tool, the RMSE and normalized RMSE of the NN
TEC were computed and compared with those of the IRI-
2007 TEC, as described. The result is that the proposed
NN model, in the case of all of the comparisons described
above, can well predict the TEC compared with the IRI-
2007 TEC. For some periods, even though there is a con-
siderable difficulty for the NN to learn during the TEC pre-
diction process due to large variations of TEC, not only on
equinox days, but also on solstice days, our model is still
able to predict TEC quite well. This difficulty may be at-
tributed to the occurrence of an equatorial plasma bubble
and to day-to-day TEC variations in the equatorial region.
Besides the TEC variation effect, three possible mecha-
nisms, including the geomagnetic-activity index, the solar
proxy and another effect which originated below the Earth’s
ionosphere, which contribute to the TEC prediction error
are introduced as error sources for the equatorial latitude
region. Moreover, this work adopts the method of Otsuka
(Otsuka et al., 2002) for deriving the GPS TEC. In this
method, the hourly average of the VTEC is assumed to be
uniform within the receiver surrounding area of approxi-
mately 1000 km. Since this assumption may be invalid at an
equatorial region where a steep latitudinal variation of the
TEC, caused by an equatorial anomaly, exists, it may be one
of the possible reasons for the difference between the NN
TEC and the IRI-2007 TEC. In the case of all comparisons,
the NN model underestimates the GPS TEC, which needs
to be leveled up in a newer version; however, the NN TEC
agrees overall with the GPS TEC. The IRI-2007 model un-
derestimates the GPS TEC as shown in all the comparisons,
except the estimation at 1830 LT which the IRI-2007 model
overestimates. In this research, we show that the NN is a
potentially effective method for TEC prediction in an equa-
torial region.

5. Future Works
Future works include expanding the input space in order

to include most of the impact factors of the TEC, developing
the GPS TEC database for at least one solar cycle (∼11
years), and adding TEC data from other stations within
Thailand. In addition, the study in Maruyama (2010) shows
that other solar proxies besides the sunspot number may
be more optimal, hence, we will experiment with various
options in future works.
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