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Neutral wind effects on ion outflow at Mars
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This paper evaluates the influence of neutral winds on ions using the CAPIT (Combined Atmospheric Pho-
tochemistry and Ion Tracking) code, which includes ionospheric photochemistry and plasma wave energization.
Based on two different wind profiles, ion outflow is, to first order, not sensitive to neutral winds. However, the
ion density profiles are clearly affected by neutral winds at the exobase. For example, the direction of a strong
neutral wind will dramatically change the location of the highest ion densities. This finding suggests that strongly
varying neutral winds at the exobase complicate the analysis of in-situ observations. To evaluate dynamic effects
of the different magnetic field configurations, crustal fields are included in the simulation domain. The outflow of
O2

+ ions is the most dynamic, partly because the photochemical production is almost a factor of two larger than
the photochemical loss so loss to space is important (for other ions, this ratio is closer to one and loss to space
is small compared to photochemical production). Since the photochemical production rate of O2

+ is relatively
slow, it takes time to replenish O2

+ that is lost to space, so loss to space over long periods should be relatively
constant.
Key words: Double layer, aurora, acceleration.

1. Introduction/Background
Understanding how surface water was lost at Mars is still

an important unsolved problem. One possibility is that
water retracted into the ground, but this loss mechanism
is yet to be demonstrated. It is therefore of interest to
understand how water (i.e. O and H) in the atmosphere can
be lost to the solar wind. Once in the solar wind, ions and
neutrals (neutral which will eventually be ionized by solar
EUV) are transported away from the planet. Therefore the
transport of both ions and neutrals from the top-side of the
ionosphere to the solar wind is an important regulator of
the outflow rate. In this paper the focus is on ion transport
between the top-side of the atmosphere to higher altitudes.

A number of studies have invoked atmospheric codes,
which have modeled Mars’s ionosphere and ion production
well (such as Nair et al., 1994; Haider, 1995; Fox, 1997;
Fox and Yeager, 2006; Lammer et al., 2003). However,
most of these studies rely on the only electron temperature
profile we have from Mars, the Viking Landers measure-
ments, and often do not include any energy source from the
local plasma (solar wind/plasma waves). These codes rep-
resent the ion production to some degree but ultimately do
not include important processes that energize the ions and
lead to escape.

There also have been a high number of studies on how
ions, once generated close to the exobase, are transported
into the solar wind (such as Ma et al., 2004; Modolo et
al., 2005; Brecht and Ledvina, 2006; Ma and Nagy, 2007;
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Terada et al., 2009; Kallio et al., 2010). Many of these stud-
ies assign the ion densities and the temperatures close to the
exobase. However, the limiting processes of ion outflow
may be ion production and ion energization, which these
codes often do not include. Therefore, in earlier work by
Andersson et al. (2009), the Combined Atmospheric Pho-
tochemistry and Ion Tracing (CAPIT) code was developed
to understand how the ion production and ion energization
controls the total ion outflow. The CAPIT code includes ion
production due to photochemical production and ion heat-
ing through plasma waves heating.

The best in-situ observations of the Mars ionosphere
come from the Viking Landers density and electron tem-
perature profiles (Hanson et al., 1977; Hanson and Mantas,
1988). An understanding of the composition of the out
flowing ions and the total ion outflow can be derived from
observation by several satellite missions (Nairn et al., 1991;
Carlsson et al., 2006; Dubinin et al., 2006; Lundin et al.,
2009). Observations have demonstrated that ion outflow
is modulated by solar wind forcing (Nilsson et al., 2010)
and that particle fluxes are modulated at ion cyclotron fre-
quencies down at altitudes of ∼300 km (Winningham et
al., 2006) and at longer time frames (Duru et al., 2008).
At ∼300 km altitudes, strong fluxes of energetic ion con-
ics have been observed (Lundin et al., 2006). Lastly, mag-
netic fluctuations near the O+ cyclotron frequency close to
300 km have been observed (Espley et al., 2004), but elec-
tric field measurements at these frequencies have not been
made in the low-altitude ionosphere.

The work presented here differs from other studies in
that the primary energy input into the ions is assumed to
come from plasma waves. Induced electric fields from the
solar wind are not included because, to first order, they act
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uniformly on all ions (lift all ions up on one hemisphere
and suppress them on the other). Furthermore, the size of
the induced fields are not precisely known, but expected to
be less than the electric field associated with the waves.
There are no other electric fields other than the waves in
this work. For example, an ambipolar electric field is not
included in this work. The heating rates of the plasma
waves are assumed to be those of ion cyclotron waves since
such waves have been seen in the magnetic signatures.

In recent work by Valeille et al. (2009), the magnitude
and direction of the neutral winds are studied with the Mars
Thermospheric General Circulation Model (MTGCM). The
formulation of this model, along with some of its applica-
tions and validation studies are summarized in Bougher et
al. (2008). The neutral winds used in this paper are based
on the peak speeds and directions suggested by Valeille et
al. (2009).

The paper presents the CAPIT code in Section 2 and the
simulation set up. The simulation result is presented in
Section 3 and a summary is given in Section 4.

2. Simulation Setup
The analysis of the neutral wind’s effect on ion outflow

is analyzed with the CAPIT code (Andersson et al., 2009).
The code is two-dimensional. Photochemical reactions oc-
cur on a grid. Ions are created on a statistical basis based on
reaction rates. After ions are created, they are individually
traced as macro-particles under electromagnetic and gravity
forces. The macro-ions are heated by waves imposed from
the top of the simulation domain and cooled down by col-
lisions in the dense atmosphere at lower altitudes. The ion
species that are followed are N2

+, O2
+, O+, and CO2

+.
The simulation domain is ±45 degrees from the subsolar

point along the equator (Fig. 1). The altitude range is from
160 km to 460 km, such that the exobase is within the
simulation domain. The location of the so-called ionopause
at Mars varies; often observed between 300–500 km of
altitude (Mitchell et al., 2001). This boundary is assumed
to be just outside the simulation domain.

The photochemical reactions are based on fixed neu-
tral density profiles (versus altitude), that is, the change of
the neutral densities by the photochemical reactions is as-
sumed to be negligible. The neutral profiles are derived
from the dusk measurements from the Viking Landers (Nier
and McElroy, 1977). The observed neutral densities by the
Viking Landers at the flanks is expected to be lower than
the densities at noon due to solar zenith angle effects. In
the simulation domain, the neutral densities at ±45◦ are as-
sumed to be the same as the Viking observations. The den-
sity increases toward noon as function of the solar zenith
angle (1/ cos). More sophisticated neutral profiles, as func-
tion of solar zenith angle, are not needed for the questions
addressed in this paper. The chemical reaction rates are
given in Andersson et al. (2009) and the ionization are rates
assumed for quiet sun conditions.

Ionospheres are quasi-neutral, so the electron density is
derived from the sum of the ion densities. An ion, when
created, is initially at the same temperature as the neutral
species. The ion temperatures are re-calculated in the sim-
ulation as the ions are heated by waves and/or cooled by

Fig. 1. An Illustration of the draped magnetic field ±45◦ along the Mars
surface and two crustal magnetic fields. One crustal field is directed
with (same) the same direction as the draped magnetic field; the second
crustal field is directed one against (opposite). The arrow indicates the
rotation direction of Mars as seen from north pole.

collisions. The electron temperature is not directly calcu-
lated. It is assigned a value the value of the average ion
temperature 20 km below in altitude, making them slightly
cooler.

In the code, collisions are based on cross sections with
the neutrals. In an ion-neutral collision, the momentum of
the ion is transferred with random impact parameter and
velocities so that the ion temperatures and drifts approaches
the neutral atmosphere values. The atmosphere is drifting
at the neutral wind velocity. Zero neutral wind corresponds
to the sub-solar point (i.e. not co-rotating with the planet).

The magnetic field is assumed to have a flared topology
(as in Andersson et al., 2009) with the addition of crustal
fields. A crustal field is modeled as dipole field rotating
with the surface of the planet. The crustal fields can be
orientated with or against the draped magnetic field as il-
lustrated in Fig. 1.

Wave energy flux is introduced at the high-altitude
boundary of the simulation domain. The initial magnitude
of the wave power is the same for all simulations in this
paper. As the wave energy flux propagates downward, the
ions are heated and the wave energy flux decreases. With
the set levels of wave power, nearly all energy is deposited
into the ions. A significant part of the wave energy is de-
posited into the neutrals due to ion-neutral collisions. The
collision rate at the low-altitude boundary of the simulation
domain is such that the ions have the same temperature and
drift as the neutrals.

The ion loss is quantified using two methods: (1) all the
particles leaving the simulation domain above a selected
altitude and (2) a subset of those particles that have reached
escape velocity. In the first method, particles leaving the
simulation domain are assumed to be lost since they are
magnetized and the draped magnetic field will guide them
into the tail away from the planet where plasma processes
can energize them further. With the second method, the
particles with speeds above escape velocity will be lost as
long as they have a component of their velocity that is away
from the planet. In addition to recording the number of
particles leaving, the age of the individual macro particles
in the simulation domain is also stored.

Two different neutral wind profiles are evaluated (Fig. 2).
The peak speed of the winds are based on the Valeille et
al. (2009) results while the altitude profile is varied for un-
derstanding at which altitude the neutral winds have the
strongest influence on the ion distributions. Wind A repre-
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Fig. 2. The two wind profiles used in this paper (thick black solid line). Wind A (panel a) is the result of winds canceling the co-rotation drift (dashed
line at ∼ −350 m/s) resulting in almost no wind at 150 km and co-rotation at high altitudes. Wind B (panel b) has strong winds peaking around 200
km resulting in an opposite and slightly stronger drift compared to the co-rotation speed at that altitude. The dotted-lines represent different drift
profiles (as a function of position along surface) for O+ ions when the simulation has reach steady state.

sents a stagnant flow at low altitudes (0 km/s with respect to
subsolar point) and co-rotation at high (moving with the sur-
face, ∼−0.2 km/s). The magnitude of Wind B is stronger
than that of Wind A and oppositely directed with respect to
the planet’s rotation near the exobase. Below and above the
exobase Wind B flow is set to co-rotation speed. This partic-
ular profile may be unrealistic, but the results reveal that the
winds at the exobase have the strongest influence on the ion
distributions. At high altitudes (well above the exobase),
the ion production rate and collision rate is low resulting in
little effect from neutral winds. At low altitudes (below the
exobase), the collision frequency is high, so the ions move
with the neutral wind and few escaping ions. Neutral winds
well below the exobase have less influence on ion outflow.

In previous work, the impacts of wave power and ion
production rate (ionization rates) on ion outflow rates were
studied (Andersson et al., 2009). The ion outflow rate was
fairly linear in response to the amount of available wave
power until the ions started to lose their energy to the neu-
trals at lower altitudes, i.e. wave power ended up in the
neutrals. The optimum location at which to heat the ions
is where the ion density is high but the ion-neutral colli-
sion frequency is small enough that significant energy is not
transferred to the neutrals. If the energy deposition is con-
centrated at this location, the ion heating and subsequent
outflow is efficient. To the contrary, if the energy deposi-
tion is spread out, ion heating is less efficient. For strong
outflow, enough energy must be deposited into the same ion
and result in the loss of that ion rather than at less efficient
altitudes where the energy deposition is evenly spread out
such that all ions gain some energy but not enough to es-
cape. It was concluded that both wave power and ionization
rates are important for today’s outflow rates. Neither of the
two parameters resulted in a non-linear response in the out-
flow. It is therefore difficult, based on the present knowl-
edge of parameters, to suggest that either wave power or
ionization rates can alone explain the expected loss of wa-
ter at Mars in the past.

3. Simulation Results
The predicted O+ and O2

+ densities in draped magnetic
field topology for the two different wind profiles are pre-
sented in Fig. 3. The density is represented by the color, the
x-axis is distance along surface and altitude is represented
by the y-axis. The title on the y-axis indicates which wind

and which time each row represents. Time 0 h 0 min starts
with a draped magnetic field (panels a to d). Times 10 h 50
min and 21 h 45 min (panels e to l) include crustal fields
with the draped magnetic field and are discussed later.

It is clear from the figures that the ion density altitude
profiles is affected by exobase (∼250 km in altitude) neutral
winds. The ion densities at higher altitudes show the least
change with dramatically differing wind patterns. From
multiple runs with different wind profiles, we find that neu-
tral winds well below and well above the exobase are less
important. The ion production and heating near the exobase
is most sensitive to the neutral wind velocity. Below the
exobase, the high collision rates cause a rapid loss before
the plasma waves cause any significant heating. Near the
exobase, the ion heating has time to effect the ion tempera-
ture and loss rate on a time scale that is faster than the re-
absorption time. Above the exobase, ion production rates
are small. With the parameters used in the simulations, the
wind strength and direction are mainly important in the al-
titude range of 180–240 km.

The ion distribution functions also are influenced by the
neutral winds. This effect is shown in the ion velocity-
velocity distributions that are presented in Fig. 4. At loca-
tions with high densities the ion distributions are cold (i.e.
mainly at low altitudes and on the flank which the neutral
wind is blowing towards, such as panel b and g). Heated
ion distribution in the form of ion conics can be found in
low-density regions and where the magnetic mirror force is
important (i.e. high altitudes such as panel d and j). The
draped magnetic field is such that the magnetic gradient is
strong enough to direct the heated ions away from the sub-
solar point at altitudes above the exobase. This high alti-
tude outflow is mostly independent of the neutral wind pat-
tern (the doted lines for the morning flank flows in Fig. 2
has positive flow at high altitude compare to evening flows
which is negative).

The average age of the particles in the simulation can be
inferred by looking at distributions presented in Fig. 4. Near
the exobase the lifetime of O+ and O2

+ is short, <15 min-
utes, whereas ∼50 km above the exobase the average life-
time can be long, >40 minutes. It is in the older populations
that the heating clearly is visible. At low latitudes, since the
particles are younger and have not been heated significantly
the ion drift speeds can be used to infer the neutral wind
speed and direction around the exobase.
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Fig. 3. O+ and O2
+ density maps for two different winds and three different magnetic field configurations. The density maps (color) are presented

as function of distance along surface (x-axis) and altitude (y-axis). Left y-title indicates which wind profile and which time are plotted. Time 0 h 0
min (panels a to d) represent a static magnetic field with only draped magnetic field present. Times 10 h 50 min and 21 h 45 min (panels e to l) are
associated with the times given in Fig. 5 and explained in Section 3. In the right column the location of the crustal fields are indicated by the black
contour lines.
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Fig. 4. O+ velocity-velocity distributions for five different altitudes at two different surface locations as indicated by the panel labels located in the
white boxes in the density map panel k. Also in panel k is the wind direction identified with flow vectors (the start of the vector is located at the dot).
At the low density location the velocity direction is less reliable. In the example presented here Wind B is used.

The main pattern that emerges from analyzing several
simulations with different wind profiles is that the ion dis-
tributions at high densities are cold. That is, it is at the high
altitudes, where the low-density regions are located, heated
flowing ions are observed. This same behavior has been ob-
served at Earth. The low density regions have the strongest
ion outflows flows and the main energization region is at the
boundary between the high density regions and low density
regions.

The crustal fields play an important role since they can
lift ions to high altitudes where they can experience longer
heating times, or lower the ions where they can be re-
absorbed. The simulation was run for long periods during
which three regions of crustal magnetic field crossed the
simulation domain (mimicking Mars’ rotation) as indicated
in Fig. 1. The three regions of crustal fields were separated
far enough that at most one crustal field was within the sim-
ulation domain at any given time (with a co-rotation speed
of ∼0.2 km/s a crustal field moves across simulation do-
main in ∼20 minutes but the effect of the field is noticeable
much longer).

The first crustal field region contained one single dipole
field directed with the draped magnetic field direction. The
second region contained two dipoles next to each other. The
first dipole was stronger than the second and the first was di-
rected with the draped field while the second against. The
third region contained two dipoles with the first directed
against the draped field followed by the second directed
with the draped magnetic field. The O+ and O2

+ density
maps from two times during this 24-hour period and from
two different wind profiles are presented in the four lowest
rows in Fig. 3. Panels e to h are from a time when the second
crustal field region is passing (time 10 h and 50 min) and
panels i to l are from the third crustal field region passing
(time 21 h and 45 min). Comparing all three different mag-
netic field scenarios presented in Fig. 3 it is clear that neutral

winds can redistribute the ions so much that the high/low
density regions in longitudinal direction are completely in
different locations for different winds, most clearly observ-
able in O2

+ as a result of their long lifetime. The location
of the crustal fields is marked with black contours in the
panels for O2

+ densities.
The history of the respective outflows as a function of

time is presented in Fig. 5. The first six panels (a through
f) are for wind A and the same information for wind B is
in the lower six panels (g through l). For each panel, an
outflow quantity as a function of time is presented for O+,
O2

+, CO2
+, and N2

+ (blue, green, red, and yellow lines
respectively). The six panels represent the following: (a
and g) the ion outflow based on all particles above a fixed
altitude, (b and h) the ion outflow using only particles above
the escape velocity above a fixed altitude, (c and i) the ratio
between the ion production and loss within the simulation
domain from photochemical reactions, (d and j) the relative
outflow based on the O+ outflow rate using all particles, (e
and k) the relative outflow based on the O+ outflow rate
using only particles above escape velocity, and (f and l) the
fraction of escaping particles for each ion species that has
reached escape velocity.

In contrast to the altitude profile differences for the two
winds presented in Fig. 3, the ion outflow differences in
Fig. 5 (panels a and g and b and h) are not significant. The
outflow varies by a factor of 2–3 as the three crustal field
regions move through the simulation domain. The direc-
tion of the leading crustal field with respect to the draped
magnetic field affects the temporal evolution of the ion out-
flow. The conclusion is therefore that, while neutral winds
and crustal fields can produce strong, short-period, local-
ized fluctuations in ion density and ion outflow, the neutral
wind and crustal fields are not important for long-term ion
outflow to first order. For time scales longer than the Mars
rotation period, the crustal fields effect are unimportant.
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Fig. 5. The ion outflow characteristics as function of time for O+, O2
+, CO2

+, and N2
+ (blue, green, red, and yellow lines respectively). The six

upper panels are from simulation run using Wind A and the six lower panels are from Wind B and all outflows are derived above a fixed altitude. The
six pairs of panels represent, (a and g) outflow of all particles, (b and h) out flowing particle above escape velocity, (c and i) the ratio between the
ion production and loss within the simulation domain from photo-chemical reactions only, (d and j) the relative outflow of all particles normalized
to O+, (e and k) the relative out flowing particles above escape velocity normalized to O+, and (f and l) the fraction of out flowing particles that has
velocities above escaping velocity. All quantities are presented on log-scale except in panels f and l where linear scale is used.

Fig. 6. Example of the O+ density, drift and temperature for time 21:45 using Wind B. The selected time is when the third crustal field region is within
the simulations domain as indicated by the contour lines in the first panel of the total magnetic field. The color scale represent in the three panels
density (log-scale), drift speed (linear-scale), and temperature (linear-scale, white area saturated). The drift and temperature numbers at high altitudes
have large error bars due to low counting statistics.

The simulation results suggest that the fluctuations in
the ion flow quantities are more sensitive to the moving
crustal fields rather than the two wind profiles. But there
are differences such as the timing of the ion outflow changes
with respect to the different species. The relative outflows
as function of ion species (Fig. 5 panels d and j and e

and k) are to some degree influenced by the neutral wind,
especially the O2

+ to O+ ratio. The increase in the relative
fraction of the outflow is observed to start first in CO2

+ then
N2

+ and lastly O2
+ based on Fig. 5 (panels’ d and j and e

and k). The interpretation of timing and outflow rates in
Fig. 5 has to be made with caution.
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Based on Fig. 5(g), the O2
+ outflow decreases slightly

before O+, but the O+ outflow decreases much more signif-
icantly leading to an increased ratio of O2

+/O+ (Fig. 5(j)).
The ratio recovers when the O+ loss starts to increase.

Most ions (created by photochemical reactions) are reab-
sorbed by photochemical reactions, as shown in Fig. 5(c)
and 5(i). The photochemistry production to loss ratio is
close to one indicating that the number of ions lost to space
is a small fraction of the ions created within the simulation
box’s altitude region. For O2

+ this ratio is closer to 2 ex-
plaining, to some degree, why it has much sharper fluctua-
tions in the outflow rate compared to the others and why
O2

+ has a long lifetime in the simulation domain. The
reader should be reminded that Fig. 5 (panels c and i) de-
pend on which altitude range is used, as the low altitude
physics where the densities are high dominates the numbers
for this ratio. The result suggests O2

+ is more dynamic in
its outflow rate than for the other three ion species.

Lastly, the outflow fraction of escaping ions that have
speeds above the escape speed is varying as presented in
Fig. 5 (panels f and l). CO2

+ and N2
+ have low scale

heights and most of the ions leaving the simulation do-
main have speeds above the escape velocity. With increas-
ing scale height the fraction can vary significantly with the
crustal fields passing through the simulation domain. This
effect is especially true for O+ where the amplitude of this
ratio increases with time (panels f and l) but the net outflow
baseline (panels a and g and b and h) is constant. This re-
sult suggests that the velocity composition of O+ strongly
depends on the dynamics up to 10 hours prior (based on
initially studies). Even though the lifetime of the ions are
mainly less than 1 h it takes times to change the locations of
the high-density regions explaining the long time constants
in Mars ionosphere. The variations in global outflow will
be investigated in future studies.

The neutral winds seem to not be important for the over-
all long-term ion outflow (Fig. 5) if the atmosphere has time
to recover to the baseline (without crustal fields). How-
ever, neutral winds clearly affect the redistribution of the
ions (Fig. 3). The O+ density, drift, and temperature at 21 h
45 min are presented in Fig. 6. Black regions mean too low
density for any statistical significance. Crustal field (limited
to a single crustal field in the simulation domain) also seem
to be unimportant to the long-term outflow. At low lati-
tudes the drift speed reflects the neutral winds except where
strong crustal fields are located. The highest drifts are lo-
cated at high altitudes and are associated with the density
gradients (i.e. in the region where the wave power is most
efficient in heating each ion). Lastly, the ion temperature is
not always monotonically increasing with altitude. As seen
in Fig. 6 there are situations when the ion temperature is
large below the peak density.

4. Summary
Recent MTGCM simulations of the upper atmosphere

of Mars have suggested that significant neutral winds are
common (Valeille et al., 2009). This paper evaluated the
impact of neutral winds on the ion environment using the
CAPIT code.

Based on the CAPIT simulation, it is clear that neutral

winds can alter the distributions of the ions at Mars. The
impact of neutral winds on the total ion outflow is, to first
order, not important. Based on the presented simulations,
changes in the magnetic field topology are more important
for the short-term ion outflow rates than the neutral wind
profile.

With significantly different neutral wind conditions, ion
density, velocity, and temperature profiles will be signifi-
cantly altered. With a satellite measuring the same location
at two different times the ion profile can be quite different.
It is therefore important to take into consideration neutral
winds when interpreting low altitude satellite plasma obser-
vations. If the ion distribution can be measured well at low
altitudes (i.e. below ∼250 km), this can be used to infer the
neutral wind direction and magnitude in the regions where
ion-neutral collision is high.
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