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Low-frequency and trend compensation of broadband seismograms
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The present paper proposes a technique for low-frequency and trend compensation of broadband seismograms,
which involves frequency-band broadening using digital filtering and background-trend compensation based on
a Heaviside-type tilt signal estimated using a stochastic trend model. Applying this method to the east-west
component of broadband seismograms, recorded using VSE355G3 broadband seismometers at the KSN site of
F-net for the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0), allowed a sharpened velocity waveform
to be obtained and the static displacement associated with the earthquake to be determined.
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1. Introduction

Since broadband seismograms are useful in earthquake
source studies, many broadband networks, such as F-
net (http://www.fnet.bosai.go.jp/) in Japan, are operated
throughout the world. The recent development of the In-
ternet enables published data to be analyzed soon after the
occurrence of large earthquakes such as the 2011 off the
Pacific coast of Tohoku Earthquake (hereafter, referred to
as the 2011 Tohoku Earthquake). The standard frequency
band of broadband seismometers is from 0.01 (or 0.003) to
approximately 100 Hz. Thus, we have to compensate for the
low-frequency components in order to fully understand the
seismic behavior associated with such large earthquakes. In
addition, the background trend caused by tilt motion must
be removed in order to analyze the low-frequency compo-
nents of broadband seismograms.

GEONET, the Global Positioning System (GPS) estab-
lished by the Geographical Survey Institute (GSI), recorded
land deformation up to approximately 5 meters on the
Pacific coast of eastern Honshu (http://terras.gsi.go.jp/ja/
index.html) following the 2011 Tohoku Earthquake: an
east-southeast deformation of 5.3 meters and a downward
deformation of 1.2 meters were measured at the Ojika GPS
site. Such a permanent coseismic displacement, i.e., a near-
field static displacement, and its spatial distribution can lead
to a tilt step in near-field acceleration signals as shown by
Pillet and Virieux (2007). An estimation of static coseis-
mic displacements using strong-motion accelerograms, was
conducted by Boore (2001) and Wu and Wu (2007) for
the 1999 Chi-Chi, Taiwan Earthquake, and Javelaud et al.
(2011) for the 2007 Niigata-ken Chuetsu-Oki Earthquake.
Kinoshita and Takagishi (2011) also demonstrated the gen-
eration and propagation of static displacement during the
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2011 Tohoku Earthquake, using KiK-net borehole record-
ings (http://www.kik.bosai.go.jp/), and showed that the re-
sulting static displacements were in good agreement with
land deformations determined from GPS data. The KiK-
net borehole recordings were measured using negative feed-
back accelerometers with a frequency band of 0 to approx-
imately 30 Hz, so estimation of the static displacement is
possible without any frequency compensation.

Although broadband seismometers have no sensitivity at
zero frequency, estimation of the static displacement may
be possible by compensating for the low-frequency compo-
nents. Of course, the estimated static displacement is co-
seismic behavior in the analyzed data window. To verify
that such an estimation is possible using broadband seismo-
grams, this paper proposes a technique for implementing
low-frequency and trend compensation of broadband seis-
mograms.

2. VSE355G3 Broadband Seismogram and
Frequency-Compensation Filter

Broadband seismometer networks are equipped with neg-
ative feedback seismometers, as represented by the block
diagram shown in Fig. 1. The two built-in feedback transfer
functions, Gy(s) and G (s), are the main differentiation
and auxiliary integration circuit elements, respectively, and
s is a Laplace variable. In high-sensitivity broadband seis-
mometers, such as an STS-2, the main feedback circuit uses
passive elements; whereas in low-sensitivity seismometers
such as a VSE355G3, active elements are used. F-net sta-
tions are equipped with both kinds of seismometers. The
overall transfer function of the seismometer represented in
Fig. 1 is given by

sGol(s)
1+ Go(s) [Gm(s) + Ga(s)]

against the input velocity signal, where G (s) is the transfer
function of the mass-spring system with a position detector
for mass movement. This article deals only with seismo-
grams measured by VSE355G3 broadband seismometers

G(s) = [V/Im/s)] (1)
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Fig. 1. Block diagram of VSE355G3 broadband seismometer; output
velocity Vour(s) against input acceleration Ay (s) in units of V/m/s2.
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Fig. 2. Frequency response characteristics of VSE355G3 broadband seis-
mometer and compensation filter used in this study; relative velocity
response of VSE355G3 seismometer against input acceleration (dotted
red line), that against input velocity (dotted black line), inverse fre-
quency response of VSE355G3 seismometer (red line), 144 dB level
(blue line) and frequency response of digital compensation filter used in
this study (black line) with a sampling time of 1/AT = 0.05 s.

(Hutt et al., 2008), since the seismic signals from the high-
sensitivity seismometers exceeded the clipping level of the
instruments during the 2011 Tohoku Earthquake.

The numerical values in Fig. 1 correspond to the
VSE355G3 seismometers used by F-net. The frequency
characteristics of these seismometers are shown by the dot-
ted black line in Fig. 2. Broadband recordings measured by
the seismometers are published on the Internet by F-net at a
sampling frequency of 20 Hz (http://www.fnet.bosai.go.jp).
The high-frequency components of the recordings are char-
acterized by a low-pass decimation filter with a pass-band
corner frequency of approximately 9 Hz, and a stop-band
corner frequency of exactly 9.7 Hz. These corner frequen-
cies are easily recognized using the published data in the
Fourier domain. Since the Nyquist frequency is 10 Hz,
no high-frequency compensation is required when analyz-
ing VSE355G3 seismograms. The low-frequency compo-
nents of the recordings are characterized by a corner fre-
quency of approximately 0.01 Hz, as shown by the dotted
black line in Fig. 2. Thus, in the case of a 24-bit acquisi-
tion system, it may be possible to compensate for the low-
frequency components until the inverse frequency response
of the VSE355G3 becomes 144 dB relative to the gain level

in the flat frequency response of the seismometer. This low-
est possible compensation frequency is indicated by the in-
tersection of the red and blue lines in Fig. 2: the red line
represents the inverse frequency characteristics and the blue
line is the 144 dB level.

Thus, the frequency band whose in-band frequencies are
lower than the lowest compensation frequency is the so-
called “Don’t care region”, and we can arbitrarily alter the
inverse response of the VSE355G3 seismometer to imple-
ment stable compensation of the seismograms. We there-
fore propose the use of a digital compensation filter whose
frequency characteristics are shown by the black line in
Fig. 2. This is the default compensation filter. In this study,
the digital filter given by Eq. (2), that is designed by slightly
modifying the inverse characteristics of a VSER355G3 seis-
mometer, is used with a sampling frequency of 20 Hz for
low-frequency compensation. Of course, the zeros and
poles of this digital compensation filter are inside the unit
circle in the z-plane.

4
Z aka

H(2) = ==

1+Zbkzk

k=1

do 1.00177927805847

a —0.12272121268339
where | a, | = | —1.87452571371945 | and

as 0.12254024864872

as 0.87295766147310
by —0.12755928712526
b, _ —1.87182784134148 ?)
b3 0.12633369387852
In 0.87305343458823

3. Trend Estimation

Kinoshita and Takagishi (2011) demonstrated the gener-
ation and propagation of static displacement, using KiK-
net borehole recordings, for the 2011 Tohoku Earthquake,
by compensating for the trend produced in velocity seis-
mograms calculated from the original KiK-net accelero-
grams. In their study, the trend was assumed to be due to
tilt motion during earthquake faulting. Thus, the evaluation
of broadband seismograms requires a trend-compensation
process for velocity signals output from a digital compen-
sation filter. Moving average or polynomial fitting meth-
ods are frequently used for compensating for trend signals,
which correspond to long-term movement of random sig-
nals. In recent trend-estimation studies, a popular signal-
processing approach has been time-series modeling of trend
signals, since such stochastic models are highly flexible and
can address trend signals more objectively (Kitagawa and
Gersch, 1996; Kitagawa, 2010). Thus, in the present study,
a stochastic trend model based on linear fitting is used. This
method is implemented using a state space representation of
the trend signal (Kitagawa, 2010):

Xp = Fx,_1+e&,, x, = |:TTn11|’ F = |:? _g)i| and
n—

E [46m] = 8ppolforn=1,2,..., N, 3)
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where the system noise {8,,};\’:1 is assumed to be Gaus-
sian white noise with a covariance of 052. The frequency-
compensated velocity signal {Un}nN:1 is represented using
the trend signal {T,}"_, and the observation noise {w,}"\_,,
which is assumed to be Gaussian white noise with a covari-

ance of o2, as follows:

v, =T, +w, =Hx,+w,, H=[1 0] and

E [w,wy] = 8,02 for n=1,2,...,N.

“

In this study, NAT = 400 s is the length of the data window
used for modeling the trend signal in the S-coda part and
AT is the sampling time of 0.05 s. Based on Kalman
filtering (Kalman, 1960; Lee, 1964):

Xnin—1 = Fxp_1jn—1,

Vin—1 = FV,_1p1 F' + ‘752’

Ky = Vot H' (HVyy H' + 0,)7"
Xuln = Xnin—1 + Ky vy — Hxppp—1) and

ann = (I - KnH)ann—la forn = 1, 2,..,N, (5)

a fixed-interval Kalman smoother (Lee, 1964; Rauch et al.,
1965) is implemented to produce a smoothed trend signal

{f,, = first element of vector x,,, N} as follows:
_ ryy—1
A” - "|"F Vn+1\n’
Xn|N = Xn|n + An(anrllN - xn+1|n) and
anN = ann + An(Vn+l|N - Vn-&-l\n)A:p

forn=N-1,...,2,1. (6)

In the above recursive relations, matrices X’ and X ! are the
transposed matrix of X and the inverse matrix of X, respec-
tively, and I is the identity matrix. The initial conditions for
the recursive calculations are given by

1 &
2 _ 1 Y
o =7 Z (v, — )~ (7
n=1
Although the covariance of the system noise, o2, is an un-

known parameter, a Kalman filter gives the likelihood of

the trend model for a given o2, so that the value of o2 can

be determined using an Akaike information criterion (AIC)

minimization procedure (Kitagawa, 2010). In the following

example, the value of 1/2% is assigned to 082 as a result.

Finally, by fitting a straight line to the S-coda part of the es-
N

timated {7}, , we determine a Heaviside-type tilt signal

aiie (1) = aU ’51— tonset) 1N the acceleration domain, where
U () is a unit step function. The two parameters {«, fonset}
are determined from the gradient of the fitted straight line
and the time point at which the estimated line intersects the
baseline of the frequency-compensated velocity signal, re-
spectively.

4. Example

We will now show an example of low-frequency and
trend compensation of a broadband seismogram: the east-
west component seismogram recorded by the VSE355G3
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Fig. 3. Locations of the KSN site and three GPS sites of GEONET.
The epicenter of the 2011 Tohoku Earthquake is shown by a solid star
symbol.

seismometer at the KSN site (38.9762°N, 141.5301°N)
of F-net during the 2011 Tohoku Earthquake (Fig. 3).
The original velocity seismogram is shown in Fig. 4(a).
The frequency-compensated seismogram obtained using
the digital compensation filter described by Eq. (2) is shown
by a black line in Fig. 4(b). The red line is the smoothed
trend signal produced by the stochastic trend model for a
data window from 500 to 900 s. By differentiating the
smoothed trend signal, the velocity gradient signal is cal-
culated. Figure 4(c) is an enlarged portion of the veloc-
ity gradient signal, which reveals a stable state with an
approximately constant velocity gradient of —8.6 x 107>
m/s?. Thus, by fitting a straight line to the smoothed trend
signal in the data window from 550 to 850 s, we obtain
i) = aU(t — tonset), Where @ = —8.6 x 107> m/s?
and fonset = 159.75 s. The smoothed trend signal and
its piecewise linear trend model calculated from ay(¢) are
shown in Fig. 4(d) by red and black lines, respectively.
The frequency- and trend-compensated east-west velocity
seismogram is shown in Fig. 4(e). We find that a sharp-
ened velocity waveform is obtained by broadening the orig-
inal frequency band of the broadband seismogram. Finally,
we can calculate the displacement waveform by integrat-
ing the frequency- and trend-compensated velocity signal
as shown in Fig. 4(f). Three GEONET stations that closely
surround the KSN site (38.9762N, 141.5301E) are the
EL05841431202 (39.0121N, 141.4009E), EL05841248502
(38.9028N, 141.5726E) and EL05841452902 (39.0238N,
141.7399E) stations (Fig. 3). The horizontal displacements
measured at these GPS sites just after the earthquake were
3.30, 4.12 and 4.19 m, respectively, mostly in an easterly
direction, which are in good agreement with the estimated
horizontal static displacement of 3.62 m at the KSN site.
Of course, the estimates of the offset acceleration « and the
static displacement depend on the corner frequency of the
compensation filter. Strictly speaking, the corner frequency
must be determined by taking account of the 1/f noise be-
havior (Javelaud ef al., 2011): the noise power increases
linearly with the period. Although the low-frequency noise
model for the F-net recording system with VSE355G3 seis-
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Fig. 4.

Example of low-frequency and trend-compensated broadband seismogram and estimated displacement; (a) original east-west component

seismogram recorded at the KSN site, (b) frequency-compensated seismogram (black line) and estimated trend signal (red line), (c) derivative of
estimated trend signal shown by a red line in (b), (d) piecewise linear trend model (black line) used for trend compensation in the seismogram shown
in (b) and linear fit (red line) to the estimated trend signal shown in (b), (e) frequency- and trend-compensated seismogram, and (f) displacement

seismogram calculated from the velocity seismogram shown in (e).

mometers is unknown, the present method makes it possi-
ble to adjust the range of corner frequencies by comparison
with the coseismic displacements measured at three GPS
sites close to the KSN site. The results indicate that the
static displacements estimated using a corner frequency of
less than 5 x 10~° Hz are within the range of the three GPS-
determined coseismic displacements; the flat level of the
compensation filter at low frequencies is higher than 124 dB
in Fig. 2, and the acceleration offset estimated using a com-
pensation filter with a corner frequency of 5 x 107® Hz is
a = —8.3 x 107> m/s? for the east-west component.

5. Concluding Remarks

Low-frequency and trend compensation of broadband
seismograms is implemented using a digital filter based on
the inverse characteristics of the broadband seismometer
and by removing an estimated Heaviside-type tilt signal.
This method was applied to the east-west component of
broadband seismograms recorded using VSE355G3 broad-
band seismometers at the KSN site of F-net, during the
2011 Tohoku Earthquake (M, 9.0). A sharpened velocity
waveform could be obtained by broadening the frequency
band of the original seismogram and the static displace-
ment could be determined by removing the tilt signal from
the frequency-compensated seismogram. In addition to tilt
motion generated by earthquake faulting, trend signals in
broadband seismograms are sometimes the result of local
site effects (Kinoshita, 2008; Kinoshita et al., 2009) or non-
ideal responses of the seismometers. Broadband seismome-
ters may record effects that resemble a tilt of the pier sup-
porting the mass-spring system, but are actually due to in-
ternal temperature changes in the instrument. Nonlineari-
ties in the electrical response of the instrumentation and in
the mechanical response of the boom suspension resilience
during strong motion may also give rise to signals at fre-

quencies of less than 0.01 Hz. However, such extraneous
signals are beyond the scope of the present study.
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