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Seafloor magnetotelluric (MT) observations using ocean bottom electromagnetometers (OBEMs) provide
information on the electrical conductivity structure of the oceanic mantle. A three-dimensional (3-D) analysis
is particularly important for marine MT data because the electric and magnetic fields observed on the seafloor
are distorted by the rugged seafloor topography and the distribution of land and ocean. Incorporating topography
into 3-D models is crucial to making accurate estimates of the oceanic mantle’s conductivity structure. Here
we propose an approximate treatment of seafloor topography to accurately incorporate the effect of topography
without significantly increasing the computational burden. First, the topography (lateral variation in water depth)
is converted to lateral variation in effective conductivity by volumetric averaging. Second, we compute the
electric and magnetic field components used to calculate the MT responses at arbitrary points from the electric
field components on staggered grids, using a modified interpolation and extrapolation scheme. To verify the
performance of this approximate treatment of seafloor topography in 3-D inversions, we tested the method using
synthetic seafloor datasets and both 3-D forward modeling and inversion. The results of the synthetic inversions
show that a given conductivity anomaly in the oceanic upper mantle can be recovered with sufficient accuracy
after several iterations.
Key words: Marine magnetotellurics, topographic effects, 3-D inversion, electrical conductivity.

1. Introduction
Magnetotelluric (MT) sounding is a powerful geophys-

ical method to explore the Earth’s interior structure using
its electrical conductivity. The electrical conductivity of
Earth materials is known to be strongly dependent on phys-
ical conditions such as temperature, water content, and de-
gree of partial melting (e.g., Yoshino, 2010; Yoshino et al.,
2010) which control their mechanical properties. Especially
in oceanic areas, therefore, a number of efforts have been
made to obtain accurate images of the electrical conductiv-
ity distribution in the upper mantle since Filloux’s (1973)
pioneering work was published.

In earlier times, one-dimensional (1-D) interpretation
was the only way to infer the electrical conductivity dis-
tribution below the ocean bottom due to limits on either
the number of observation sites or inversion techniques in
higher dimensions (e.g., Filloux, 1981; Oldenburg, 1981).
The number of instruments employed in each experiment
has increased in recent years allowing researchers to at-
tempt two-dimensional (2-D) inversions (e.g., Evans et al.,
1999; Matsuno et al., 2010) or 1-D inversions assuming the
presence of 3-D heterogeneity (e.g., Baba et al., 2010).
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However, several technological difficulties that hamper
inversion of seafloor MT data must be overcome to ob-
tain accurate 3-D electrical conductivity images at a re-
gional mantle scale. This paper deals with one such dif-
ficulty, the so-called topographic effect (e.g., Nolasco et al.,
1998; Baba and Seama, 2002). The electric and magnetic
(EM) fields observed on the seafloor are generally distorted
in any direction by rugged seafloor topography, which is
more significant than the effect such topography has on
land MT data (e.g., Nam et al., 2008) because of seawa-
ter’s extremely high conductivity, which produces strong
contrast at the seafloor (Schwalenberg and Edwards, 2004).
In recent years, several works have attempted to solve the
problem of topographic effects on seafloor MT data. Baba
and Chave (2005) proposed a scheme to correct 3-D to-
pographic effects, which was applied to 2-D inversion of
seafloor MT results on a regional scale (Baba et al., 2006).
Li et al. (2008) pointed out that such an approach might
be effective for exploring large-scale structures but not for
studying fine-scale subsea structures, and suggested another
approach in which topography is explicitly incorporated
into 2-D inversion using finite-difference approximations.

For an accurate estimation of deep mantle conductivity
distributions in 3-D, these topographic effects have to be
properly and accurately taken into account in the inversion.
In reality, topography variations occur over a wide range of
horizontal scales from local (∼100 m) to regional (∼1000
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Fig. 1. Principle behind the incorporation of seafloor topography. (a) Example topography in rectangular blocks for numerical modeling. Seawater
(white region) and crustal rock (dark region) have constant electrical conductivities σs and σc , and volumes Vs and Vc , respectively in the bold block.
(b) The conductivities of the blocks that include both seawater and crustal rock portions, like the bold block, are calculated by conserving horizontal
conductance within each block. For example, the conductivity of the bold block is calculated using Eq. (2) and is estimated to be σh .

km) with amplitudes of only a few kilometers. We can
generally expect more accurate solutions by using the in-
corporation approach described in Li et al. (2008), because
inversion solutions obtained using the correction approach
depend on the accuracy of the approximation of the sub-
seafloor structure. It is, however, neither efficient nor prac-
tical to incorporate topographic variations into one forward
calculation using finer grid cells, especially when focusing
on heterogeneous conductivity structures in the oceanic up-
per mantle and deeper parts with that are typically on a scale
of 100 km or more both in the horizontal and vertical direc-
tions.

The aim of this paper is to propose an approximate
treatment of topography that can be incorporated into 3-
D seafloor MT inversion codes to study regional-scale
mantle structure. In this study, new techniques are in-
corporated into the 3-D inversion code, WSINV3DMT
(Siripunvaraporn et al., 2005), which is, at present, one of
the practical inversions applied to land MT data.

We introduce a general treatment for incorporating to-
pography and bathymetry into the model in Section 2. In
Section 3, methods for calculating MT responses at arbi-
trary points on the undulating seafloor are introduced. The

accuracy of the methods described in Sections 2 and 3 is
tested in Section 4. In Section 5, a method for calculating
sensitivity during inversion is derived. Finally, we apply
the method to three kinds of synthetic datasets to verify its
performance and then discuss the results in Section 6.

2. Expression of Seafloor Topography
The present problem is how to accurately express

seafloor topography (the conductivity boundary) without
significantly increasing the computational burden. To avoid
using fine grids in the vertical direction, we propose apply-
ing a volumetric average of the conductivity for a block that
includes the boundary (seafloor), as shown in Fig. 1. When
fine topography is available in each block with a horizon-
tal areal resolution of �S, the average conductivity of the
block is obtained to conserve the horizontal conductance

σ̄ =

∑
�S

∫ z−

z+
σ

(i)
1D(z)dz

V
. (1)

Here z+ and z− are the top and bottom depths of the block,
respectively, σ

(i)
1D(z) is the 1-D profile of the i th column,

and V is the total volume of the block. If the conductivities
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Fig. 2. Electric field components defined on a three-dimensional staggered grid.

of seawater and crust are both assumed to be uniform, the
average electrical conductivity σh in a block including the
seafloor can be calculated as

σh = σs Vs + σcVc

Vs + Vc
, (2)

where σs and σc are the electrical conductivities of seawater
and crustal rock, and Vs and Vc are the volumes occupied
by seawater and crust in the block, respectively. This treat-
ment allows us to easily design a mesh, regardless of the
seafloor topography. It also does not increase the number of
blocks in the vertical direction, thus restraining the number
of model parameters, which is essential for compact for-
ward calculation and for practical 3-D inversion.

The horizontal length scale of the topography included
in a model is dependent on its horizontal mesh dimensions,
which are usually set to be fine enough to resolve the ob-
servation arrays and target structure. Topography with a
length scale larger than the horizontal mesh, and having var-
ious amplitudes, is efficiently incorporated by the method
proposed above. If smaller scale topographic changes ex-
ist and their effect is not negligible, we have to divide the
horizontal mesh into a finer grid although it increases com-
putational costs. The alternative is an indirect approach, in
which such small-scale topographic effects are treated sep-
arately and removed from observed EM responses as has
been done, for example, by Baba and Chave (2005) for
2-D target structures. Hereinafter, we assume that the re-
sponses input to our 3-D inversions are free from the effects
of small-scale topography, either because the effect is sepa-
rately corrected or because it is negligible.

3. Calculation of MT Responses at Arbitrary
Points

When we make forward calculations using coarse grids,
the location of an observation site does not necessarily co-
incide with a grid point or an edge. We propose to calculate

electromagnetic fields to estimate theoretical MT responses
at each observation site using spatial interpolation and ex-
trapolation. The mathematical formulation is described in
this section, and its accuracy is tested in the next section.

In the forward calculations done in the WSINV3DMT, a
second-order Maxwell’s equation is solved for the electric
field assuming time dependence e−iωt as

∇ × ∇ × E(ω; r) = iωμσE(ω; r), r = (x, y, z), (3)

where μ is the magnetic permeability, ω is the angular fre-
quency (ω = 2π/T ; T is the period), σ is the conductivity,

and E(ω; r) =
⎧⎨
⎩

Ex (ω; r)
Ey(ω; r)
Ez(ω; r)

is the electric field at frequency

ω and position r. The dependence of the EM field on ω

and r is sometimes treated as implicit in the equations that
follow. With a staggered grid finite difference numerical ap-
proximation to (3), we obtain the discrete system of equa-
tions

AE = b. (4)

Where b = b(ω; r) represent the posed boundary con-
ditions for the electric field, and A = A(ω; r) are the
symmetric coefficient matrix. For a model consisting of
Nx × Ny × Nz blocks, b is a column vector with Np =
Nx ×(Ny +1)×(Nz +1)+(Nx +1)×Ny ×(Nz +1)+(Nx +
1)×(Ny +1)×Nz elements and A is a Np ×Np square com-
plex matrix because the electric field defined at the edges of
a block as shown in Fig. 2. The auxiliary fields (the mag-
netic field H = H(ω; r) in this case) are then computed
directly from a first order Maxwell’s equation or Faraday’s
law:

∇ × E = iωμH. (5)

Two source polarizations, Ex − Hy and Ey − Hx , are as-
sumed, and (3) is solved via a forward modeling algo-
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Fig. 3. Electric field components in the three-dimensional calculation blocks used for the MT impedance calculation. Gray arrows indicate electric field
components on three-dimensional staggered grids. E1

x (xs , ys , zs) is computed at an arbitrary point using eight electric fields at the block edges.

rithm to calculate the electric fields. The horizontal com-
ponents of the fields from both polarizations are related by
the impedance tensor Z = Z(ω; r)[

E1
x E2

x
E1

y E2
y

]
=

[
Zxx Zxy

Z yx Z yy

] [
H 1

x H 2
x

H 1
y H 2

y

]
. (6)

Here E1
x and E2

x are the x-components of the electric field
for the Ex − Hy and Ey − Hx source polarizations, respec-
tively. The notation is similar for the other field compo-
nents, so that the superscripts 1 and 2 denote the source
polarization and the subscripts x and y denote components
of the observed field, respectively.

On a staggered grid, the electric field components,
Ex |i, j,k , Ey|i, j,k , and Ez|i, j,k , computed by solving (4) nu-
merically, are defined at the centers of the edges of each
block (Fig. 2), where i = 1, . . . , Nx , j = 1, . . . , Ny , and
k = 1, . . . , Nz for Nx × Ny × Nz blocks. The position of
a grid node is denoted by ri, j,k = (xi , y j , zk) in a Cartesian
coordinate system. The EM field components used for cal-
culating the MT response at a site rs = (xs, ys, zs), where
there may be an arbitrary point in a calculation block are
computed by spatially interpolating the electric fields on the
staggered grid:

E p
x (ω; rs) = aT

p Ep

E p
y (ω; rs) = bT

p Ep

H p
x (ω; rs) = cT

p Ep

H p
y (ω; rs) = dT

p Ep, p = 1, 2.

(7)

Here, a1,2, b1,2, c1,2, and d1,2 are vectors used to transform
the electric fields on the staggered grid to the x- and y-
components of the horizontal EM fields at the site for the
first (p = 1) and second source (p = 2) polarizations.
In this study, the site location on the seafloor can be at
any arbitrary position within a block, not just on the block
boundaries, because topography is expressed by converting
the conductivity as described above. Consequently, the
conversion should be considered in the calculation of the
transform vectors.

The x- and y-components of the electric field at an MT
site are obtained by interpolating eight electric field com-

ponents on two blocks that surround the site (Fig. 3). For
instance, E1

x (ω; rs) = E1
x (xs, ys, zs) is calculated as fol-

lows.

E1
x

(
xi + xi+1

2
, ys, zs

)

=
{

y j+1 − ys

y j+1 − y j
E1

x |i, j,k

+ ys − y j

y j+1 − y j
E1

x |i, j+1,k

}
zk+1 − zs

zk+1 − zk

+
{

y j+1 − ys

y j+1 − y j
E1

x |i, j,k+1

+ ys − y j

y j+1 − y j
E1

x |i, j+1,k+1

}
zs − zk

zk+1 − zk
(8)

E1
x

(
xi+1 + xi+2

2
, ys, zs

)

=
{

y j+1 − ys

y j+1 − y j
E1

x |i+1, j,k

+ ys − y j

y j+1 − y j
E1

x |i+1, j+1,k

}
zk+1 − zs

zk+1 − zk

+
{

y j+1 − ys

y j+1 − y j
E1

x |i+1, j,k+1

+ ys − y j

y j+1 − y j
E1

x |i+1, j+1,k+1

}
zs − zk

zk+1 − zk
. (9)

When the seafloor at the observation site is not flat, there
are averaged conductivity contrasts between the calcula-
tion blocks because of lateral bathymetry variations. Thus,
the interpolation is performed using electric current compo-
nents calculated by Ohm’s law because the normal compo-
nent of the electric current should be continuous across the
boundaries.

jx

(
xi + xi+1

2
, ys, zs

)
= E1

x

(
xi + xi+1

2
, ys, zs

)
σi, j,k

(10)
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Fig. 4. Magnetic field components in the three-dimensional calculation blocks used for the MT impedance calculation. H 1
x (xs , ys , zs) is computed at

an arbitrary point using the eight magnetic field components denoted by gray arrows at the centers of the block surfaces.

jx

(
xi+1 + xi+2

2
, ys, zs

)

= E1
x

(
xi+1 + xi+2

2
, ys, zs

)
σi+1, j,k (11)

jx (xs, ys, zs) = xi+2 + xi+1 − 2xs

xi+2 − xi
jx

(
xi + xi+1

2
, ys, zs

)

+ 2xs − xi − xi+1

xi+2 − xi

× jx

(
xi+1 + xi+2

2
, ys, zs

)
. (12)

Thus, we have

E1
x (xs, ys, zs) = jx (xs, ys, zs)/σ (xs, ys, zs). (13)

In the equations above, E1
x |i, j,k , E1

x |i+1, j,k , E1
x |i, j+1,k ,

E1
x |i+1, j+1,k , E1

x |i, j,k+1, E1
x |i+1, j,k+1, E1

x |i, j+1,k+1, and
E1

x |i+1, j+1,k+1 are electric field components on the staggered
grids. The first four of these components are in the sea-
water, and the others are in the seabed. E1

x (
xi +xi+1

2 , ys, zs)

and E1
x (

xi+1+xi+2

2 , ys, zs) are calculated by bi-linearly inter-
polating the electric field components on the staggered grids
((8) and (9)). jx (

xi +xi+1

2 , ys, zs) and jx (
xi+1+xi+2

2 , ys, zs)

are converted respectively from E1
x (

xi +xi+1

2 , ys, zs) and
E1

x (
xi+1+xi+2

2 , ys, zs) using Ohm’s law ((10) and (11)). σi, j,k

is the conductivity of a block, and σ(xs, ys, zs) is the
conductivity of the block at the observation site, i.e.,
σ(xs, ys, zs) = σi, j,k if xi +xi+1

2 ≤ xs < xi+1, while
σ(xs, ys, zs) = σi+1, j,k if xi+1 ≤ xs <

xi+1+xi+2

2 .
The coefficients of the electric field components are in-
cluded in the transform vector aT

1 . The transform vec-
tors aT

2 for E2
x (xs, ys, zs), bT

1 for E1
y(xs, ys, zs), and bT

2

for E2
y(xs, ys, zs) are calculated in the same manner as

for E1
x (xs, ys, zs). Two blocks adjacent to each other in

the y-direction area used to calculate E1
y(xs, ys, zs) and

E2
y(xs, ys, zs).
The magnetic field at the MT site is calculated as follows.

Here an example is shown for the case of the x-component
for the first polarization, and the coefficients of E1 con-
stitute cT

1 . For observation sites on the seafloor, the mag-
netic field, H 1

x (ω; rs) = H 1
x (xs, ys, zs), used to calculate

the MT response is computed from the x-components of the
magnetic field at eight points in the seawater, H 1

x (
xi +xi+1

2 ,
y j +y j+1

2 , zk), H 1
x (

xi +xi+1

2 , y j+1+y j+2

2 , zk), H 1
x (

xi+1+xi+2

2 , y j +y j+1

2 ,
zk), H 1

x (
xi+1+xi+2

2 , y j+1+y j+2

2 , zk), H 1
x (

xi +xi+1

2 , y j +y j+1

2 , zk−1),
H 1

x (
xi +xi+1

2 , y j+1+y j+2

2 , zk−1), H 1
x (

xi+1+xi+2

2 , y j +y j+1

2 , zk−1),
and H 1

x (
xi+1+xi+2

2 , y j+1+y j+2

2 , zk−1), as illustrated by the gray
arrows in Fig. 4. Each magnetic component at the center
of the top/bottom surface of each block is computed using
Ampere’s and Faraday’s laws and 24 electric fields on the
staggered grids as shown in Appendix A. First, four mag-
netic field components are linearly interpolated in the hori-
zontal directions at each level as

H 1
x (xs, ys, zk)

= xi+2 + xi+1 − 2xs

xi+2 − xi

{
y j+2 + y j+1 − 2ys

y j+2 − y j

× H 1
x

(
xi + xi+1

2
,

y j + y j+1

2
, zk

)

+2ys − y j+1 − y j

y j+2 − y j
H 1

x

(
xi + xi+1

2
,

y j+1 + y j+2

2
, zk

)}

+ 2xs − xi+1 − xi

xi+2 − xi

{
y j+2 + y j+1 − 2ys

y j+2 − y j

× H 1
x

(
xi+1 + xi+2

2
,

y j + y j+1

2
, zk

)

+2ys − y j+1 − y j

y j+2 − y j
H 1

x

(
xi+1 + xi+2

2
,

y j+1 + y j+2

2
, zk

)}
(14)
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Fig. 5. |E | and |H | normalized by seafloor values versus depth for T = 3000. Open circles indicate the values of the EM field components calculated
on the top/bottom surfaces of the blocks. Solid circles indicate the values of the EM field components on the seafloor, which is just bounded by the
block surface when using mesh A. Diamonds and crosses indicate the values of the EM field components on the seafloor calculated by extrapolation
and interpolation, respectively, using mesh B.

H 1
x (xs, ys, zk−1)

= xi+2 + xi+1 − 2xs

xi+2 − xi

{
y j+2 + y j+1 − 2ys

y j+2 − y j

× H 1
x

(
xi + xi+1

2
,

y j + y j+1

2
, zk−1

)

+2ys − y j+1 − y j

y j+2 − y j
H 1

x

(
xi + xi+1

2
,

y j+1 + y j+2

2
, zk−1

)}

+ 2xs − xi+1 − xi

xi+2 − xi

{
y j+2 + y j+1 − 2ys

y j+2 − y j

× H 1
x

(
xi+1 + xi+2

2
,

y j + y j+1

2
, zk−1

)

+ 2ys − y j+1 − y j

y j+2 − y j

×H 1
x

(
xi+1 + xi+2

2
,

y j+1 + y j+2

2
, zk−1

)}
. (15)

Then, H 1
x (xs, ys, zk) and H 1

x (xs, ys, zk−1) are linearly ex-
trapolated in the vertical direction as

H 1
x (xs, ys, zs) = zs − zk−1

zk − zk−1
H 1

x (xs, ys, zk)

− zs − zk

zk − zk−1
H 1

x (xs, ys, zk−1). (16)

H 2
x (xs, ys, zs), H 1

y (xs, ys, zs), and H 2
y (xs, ys, zs) are calcu-

lated in the same manner as H 1
x (xs, ys, zs). c1,2 and d1,2 are

based on the above calculations.
The horizontal EM field components at an arbitrary point

in a block are calculated based on linear interpolation of the
components surrounding the point, as described above. The
only exception is the magnetic field in the vertical direction,
which we extrapolate. Figure 5 shows the vertical variations
in the horizontal EM field components normalized by each
value on the seafloor for a period of 3000 seconds. They are
simulated by a 1-D conductivity model consisting of a sea-

water layer (3.2 S m−1) and a half-space (0.01 S m−1). The
EM field is simulated using two mesh designs. In the first
(A), the seafloor is just bounded by the block interface. In
the second mesh design (B), the seafloor is located within a
block. The block size in the vertical direction is 700 m. The
conductivity of the block is obtained from (2), and the hor-
izontal EM field components on the seafloor are calculated
using the approximating treatment. Solid circles indicate
the EM field component values on the seafloor obtained us-
ing mesh A. Diamonds and crosses indicate the EM field
component values on the seafloor calculated by extrapolat-
ing and interpolating, respectively, the values given by the
black circles, using mesh B. For the electric field, the dia-
mond and cross both agree well with the solid circle. This is
because the attenuation of the horizontal electric field with
depth is smaller than that of the magnetic field. For the mag-
netic field, the diamond is nearly identical to the solid circle,
but the cross is significantly different, as can be expected
from the difference in conductivity between the seawater
and crust. This contrast causes a discontinuity in the verti-
cal gradient of the horizontal magnetic field at the seafloor
by (5). Thus, the interpolation produces a large error when
mesh B is used. Because of this, we adopted the extrapo-
lation method for calculating the horizontal magnetic field
components at MT sites. We extrapolate from above the
seafloor because the conductivity of seawater is fixed as a
known parameter throughout the inversion process.

This approximate treatment of topography (hereinafter
called ATT) includes expressing the ocean bottom conduc-
tivity by volumetric averaging and using interpolation and
extrapolation methods to calculate the EM fields at arbitrary
observation sites.

4. Synthetic Test of the Accuracy of Forward Cal-
culations Using ATT

We tested the accuracy of MT responses calculated us-
ing the WSINV3DMT with ATT by comparing them with
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Fig. 6. Three-dimensional view (left) and plan view (right) of the synthetic seafloor topography model. The crosses with labels are the positions where
synthetic MT responses were calculated. Sites A, B, and C are located on the flank of a seamount, on the flank of a dip, and on the flank between two
seamounts and two dips, respectively.

Fig. 7. Synthetic apparent resistivity and phase at the three locations shown in Fig. 6. Circles, diamonds, and triangles show the responses calculated by
the forward part of the WSINV3DMT with approximate treatment of topography (ATT) for sites A, B, and C, respectively. Solid, broken, and dotted
lines are the responses calculated by the FS3D algorithm (Baba and Seama, 2002) for sites A, B, and C, respectively.

responses calculated using the FS3D algorithm (Baba and
Seama, 2002) and a synthetic seafloor topography model
over a 0.01 S m−1 half-space (Fig. 6). The horizontal dis-
cretizations used for the WSINV3DMT with ATT and the
FS3D algorithm were the same, while the mesh size in the
vertical direction for the WSINV3DMT with ATT model
was half of the mesh size for the FS3D algorithm. The
WSINV3DMT with ATT model applies the volumetric av-
erage of the conductivity for blocks including the seafloor,
and MT responses are calculated at the depths where the
seafloor lies in the blocks, while the FS3D method converts
the topographic change into changes in electrical conduc-
tivity and magnetic permeability in two layers bounding a

flattened seafloor so that MT responses are calculated on
block surfaces that express the flattened seafloor (Baba and
Seama, 2002). The synthetic seafloor topography is de-
scribed by

Depth(x, y)

= 4900 + 250 sin(2πx/500000) sin(2πy/500000), (17)

where the unit of length is meter. The topography model
is discretized every 60 km in the horizontal directions. We
calculated MT responses for 11 periods (from 177 to 56,234
seconds) at three points: Site A is located on the flank of a
seamount, site B on the flank of a dip, and site C on the
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Fig. 8. Synthetic model for Case I. (a) Plan view at z = 100 km and (b) cross-section at x = 0 km. The seafloor is flat in this model. Crosses indicate
the site locations.

flank between two seamounts and two dips. The calculated
apparent resistivities and phases are plotted in Fig. 7. The
amplitudes of the diagonal components of the impedance
tensor are only produced by topographic variations in this
test because the conductivity below the seafloor is assumed
to be constant and therefore the values of the diagonal el-
ements should be zero when the seafloor is flat. The re-
sponses from the two calculations agree within 0.04 on a
logarithmic scale of apparent resistivity and 2.9 degrees in
the phase of the off-diagonal components, particularly for
periods longer than 500 seconds. MT responses at shorter
periods show less agreement than those at longer periods
since shorter periods are more influenced by the differences
between the topographic treatments because the volumetric
averaging approximation used in the ATT is less accurate
for shorter periods. Although more accurate results can be
expected using finer meshes in the vertical direction, in ex-
change for increased computational cost, this limitation for
short periods is not serious, because real marine data deeper
than about 5000 m below sea level usually provide good MT
responses at periods longer than 500 seconds (Baba et al.,
2010). The relatively low accuracy of diagonal elements

will not cause a serious problem because their amplitudes
are much smaller than those of the off-diagonal elements.
In addition, the observation errors in the diagonal elements
are typically of the same order as in the off-diagonal ele-
ments, and much larger than the differences in Fig. 7. If a
3% relative numerical error is acceptable, one can use MT
responses for periods longer than 500 s. If a 10% relative
numerical error can be accepted, MT responses at all pe-
riods longer than 100 s may be used for inversion. Other-
wise, a finer mesh in the vertical direction can be used to
get more accurate results, but with increased computational
costs. Therefore, we may conclude that incorporating the
ATT in the forward calculation of the WSINV3DMT is ac-
curate enough for 3-D inversion.

5. Calculation of Sensitivity
The ATT process described above must also be applied to

calculate sensitivities in order to be effective in inversion.
Sensitivity is a measure of the amount of change in the
MT impedances caused by variations in a model parameter
(the log of the electrical resistivity). According to Newman
and Alumbaugh (2000), for the kth model parameter mk ,
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Fig. 9. (a) Relative errors of real MT responses obtained from 25 ocean bottom electromagnetometers (OBEMs) deployed in and around the Philippine
Sea (Baba et al., 2010). Circles and stars indicate the errors for each OBEM’s data and their averages, respectively. Dashed lines in the xy- and
yx-components indicate 3% error levels. (b) Absolute errors of the MT responses. Circles and stars indicate the errors for the OBEM data and their
averages, respectively.

components of the sensitivity for each site in each period
are

∂ Zxx (ω; rs)

∂mk
= g1

xx (ω; rs)
T ∂E1

∂mk
+ g2

xx (ω; rs)
T ∂E2

∂mk

+ ∂g1
xx (ω; rs)

T

∂mk
E1 + ∂g2

xx (ω; rs)
T

∂mk
E2,

∂ Zxy(ω; rs)

∂mk
= g1

xy(ω; rs)
T ∂E1

∂mk
+ g2

xy(ω; rs)
T ∂E2

∂mk

+ ∂g1
xy(ω; rs)

T

∂mk
E1 + ∂g2

xy(ω; rs)
T

∂mk
E2,

∂ Z yx (ω; rs)

∂mk
= g1

yx (ω; rs)
T ∂E1

∂mk
+ g2

yx (ω; rs)
T ∂E2

∂mk

+ ∂g1
yx (ω; rs)

T

∂mk
E1 + ∂g2

yx (ω; rs)
T

∂mk
E2,

∂ Z yy(ω; rs)

∂mk
= g1

yy(ω; rs)
T ∂E1

∂mk
+ g2

yy(ω; rs)
T ∂E2

∂mk

+ ∂g1
yy(ω; rs)

T

∂mk
E1 + ∂g2

yy(ω; rs)
T

∂mk
E2.

(18)

The electric fields, E1 and E2, in (18) are the forward so-
lutions of (4) for the first and second source polarizations.
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Fig. 10. RMSd misfit versus iteration number for the three inversions of the synthetic data. Triangles, circles, and squares are for Case I, Case II, and
Case III, respectively.

For simplicity, the dependence of impedance and the eight
vectors g1

xx , g2
xx , g1

xy , g2
xy , g1

yx , g2
yx , g1

yy , and g2
yy on ω and

r is again treated as implicit in the equations that follow.
The eight vectors are expressed by linear combinations of
the transform vectors in (7) that interpolate the electric field
components and interpolate and extrapolate the magnetic
field components for the two source polarizations in the for-
ward part. Combining the derivative of (4) with respect to
the model parameter and (18), for the xx-component we
have

∂ Zxx

∂mk
= − g1

xx
T

A−1 ∂A
∂mk

E1 − g2
xx

T
A−1 ∂A

∂mk
E2

+ ∂g1
xx

T

∂mk
E1 + ∂g2

xx
T

∂mk
E2. (19)

For example, g1
xx in (19) can be written as

g1
xx = H 2

y (rs)aT
1 + (−E2

x (rs) + Zxx H 2
x (rs))dT

1 − Zxx H 2
y (rs)cT

1

H 1
x (rs)H 2

y (rs) − H 2
x (rs)H 1

y (rs)
.

(20)

Because a1 includes model parameters as shown in (8) to
(13), (20) indicates that g1

xx includes model parameters as
shown in (8) to (13). The differences in the model parame-
ters used in the eight vectors depend on the location of the
calculated MT responses. We therefore have to use suit-
able model parameters for each site where MT responses
are computed, so the sensitivities can be calculated accu-
rately. For example, the conductivities of seven blocks,
σi, j,k , σi, j+1,k , σi+1, j,k , σi, j,k−1, σi, j+1,k−1, σi+1, j,k−1, and
σi+1, j+1,k−1, except for the top and right back block, are
used when MT responses are computed at site rs in Fig. 4.
Here, xi +xi+1

2 ≤ xs < xi+1, y j +y j+1

2 ≤ ys < y j+1, and
zk ≤ zs < zk+1.

6. Synthetic Inversion and Discussion
Here the total performance of the WSINV3DMT with

ATT was tested using three synthetic datasets. The three
synthetic datasets were generated using the forward part of
the WSINV3DMT with ATT code. The first dataset was
calculated for a conductive block buried in a half-space be-
low the ocean with constant water depth. The second was

calculated for a conductive block buried in a half-space be-
low the ocean with realistic topography, and the third was
a checkerboard model below the ocean with realistic topog-
raphy. All synthetic models were discretized every 60 km
in the horizontal direction in the central part of the model
domain. The vertical meshes were discretized every 700 m
near the seafloor, and the length of the mesh increases ex-
ponentially with increasing depth. All the models included
seven air layers in the default configuration, and the con-
ductivity values of the seven air layers were fixed in all the
inversion calculations. The number of observation sites is
25 where synthetic MT responses are computed.
6.1 Case I

The first example is a very simple model (Fig. 8), con-
sisting of a conductive block of 0.1 S m−1 (1020 km ×
1020 km × 135 km) buried at a depth of 80 km beneath a
flat seafloor. The background structure is a 0.01 S m−1 half-
space beneath a 4900-m-thick seawater layer with a conduc-
tivity of 3.2 S m−1. The model consists of a 35×35×51 (+
seven air layers) grid. Synthetic data containing 3% Gaus-
sian noise were generated for 25 sites. The site locations
are shown by the crosses in Fig. 8. We inverted all four ele-
ments of the complex impedance tensor Zxx , Zxy , Z yx , and
Z yy for four periods (1000, 3000, 10,000, and 30,000 sec-
onds). To provide the error bar for each impedance, we re-
ferred to error estimates for real observations from 25 ocean
bottom magnetometers (OBEMs) deployed in the Philip-
pine Sea (Baba et al., 2010). As shown in Fig. 9(a), the
relative (%) errors of the diagonal components were much
larger than those of the off-diagonal components. However,
the absolute values of the error bars were of similar magni-
tudes (Fig. 9(b)). Therefore in the synthetic tests, the errors
in the diagonal components were calculated from the errors
in the off-diagonal components of the observed impedance
for each period as

δZon = δZoff =
√(

δZxy

2

)2

+
(

δZ yx

2

)2

, (21)

where δZon, δZoff, δZxy , and δZ yx are the average absolute
errors (stars in Fig. 9(b)) of the diagonal, the off-diagonal,
and the xy- and yx-components, respectively. The mesh de-
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Fig. 11. Inverted models for Case I and Case II. The left ((a)–(d)), center ((e)–(h)), and right ((i)–(l)) panels show the models for Case I (fourth iteration,
RMSd misfit = 0.95), Case II (fifth iteration, RMSd misfit = 1.04), and Case II using the wrong treatment of the topography (tenth iteration, RMSd

misfit = 3.47), respectively. The panels in the top three rows ((a)–(c), (e)–(g), and (i)–(k)) are plan views at 15, 125, and 300 km depth, and the
bottom panels ((d), (h), and (l)) are cross-section views cutting across the anomalous body at X = 0 km. The black dashed lines indicate the outline
of the synthetic conductive anomaly. The solutions are shown only in the central part of the model domain.
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Fig. 12. (a) Bathymetric map of Case II. The map is created by real bathymetry (2′ mesh) data from Smith and Sandwell (1994). The red crosses
indicate the sites where the synthetic MT responses were calculated. (b) Plan view of the synthetic model with bathymetry in the central area of the
model. The red crosses indicate the observation sites, and the red square indicates the region of the anomalous body.

sign used for the synthetic inversion is the same as that used
for the forward modeling. The seawater layer discretized by
seven layers, and the conductivity of each block represent-
ing seawater is 3.2 S m−1 and is treated as a fixed parameter
in the inversion. In this simple test, the total number of data
points (N ) is 800, and the total number of model parame-
ters to be solved (M) is 53,900. The inversion started from
an initial model consisting of a 0.01 S m−1 half-space be-
low the flat seafloor, which was also used as the prior model
(Siripunvaraporn et al., 2005). The inversion code searches
the model around this prior.

The root mean square misfit of the data (hereinafter
called the RMSd misfit) was defined as

RMSd =
√√√√(

Nd∑
i=1

|di − F[m]i |2
δ2

i

) /
Nd , (22)

where Nd is the number of data points and δ is the error
of the synthetic data. The RMSd misfits for all compo-
nents of the inversion iteration are indicated by triangles
in Fig. 10, and the fourth iteration of the inverted model is
shown in Figs. 11(a)–(d). We set the target RMSd misfit at
one, and the inversion converged at the fourth iteration with
an RMSd misfit of 0.95. In this inversion, the goal is to find
the minimum norm model subject to this RMSd (see details
in Siripunvaraporn et al., 2005). Figures 11(a)–(c) show the
plan views at respective depths of 15 km, 125 km (including
the anomalous body), and 300 km, while Fig. 11(d) shows
a cross-section through the middle of the anomalous body
at X = 0 km. Figures 11(a)–(d) show that the inversion re-
covered the conductivity and the position of the anomalous
body with sufficient accuracy. The image is not perfect at
the top and bottom of the anomalous body, primarily due to
smoothness constraints in the inversion. However, the re-
sult indicates that the 3-D inversion is accurate enough if
the seafloor is flat.

6.2 Case II
For the next step, we tested a case with complex

bathymetry and realistic lateral variation. The model again
consists of an anomalous block of 0.1 S m−1 (1020 km ×
1020 km × 135 km) buried in a 0.01 S m−1 half-space
88 km depth beneath the sea surface with real topography
(Fig. 12). Here, the topography data are on a 2′ grid ob-
tained from Smith and Sandwell (1994). The 25 sites are
distributed uniformly in 5 × 5 grids, as shown in Fig. 12.
Synthetic data for periods of 1000, 3000, 10,000, and
30,000 seconds were generated and inverted, so N = 800.
3% Gaussian noise was added to the data. The model con-
sists of 35, 35, and 69 blocks (including seven air layers on
the top) in the x-, y-, and z-directions, respectively, and is
the same as the forward modeling that generated the syn-
thetic data. The initial model and the prior model for the
inversion have a uniform conductivity beneath the seafloor,
similar to Case I, i.e., a 0.01 S m−1 half-space. The con-
ductivity of each block representing seawater (3.2 S m−1),
including the seafloor, or above the sea surface (air and/or
land) is treated as a fixed parameter in the inversion, so that
M = 53446. The number of layers above the seafloor is
variable between 11 and 24, depending on bathymetry.

Circles show the convergence of the full components in
Fig. 10, and the fifth iteration of the inverted model is shown
in Figs. 11(e)–(h). The inversion converged at the fifth iter-
ation with an RMSd misfit of 1.04. The target RMSd misfit
was set at one as in Case I. The inversion recovers a reason-
able image of the conductive body as shown in Figs. 11(e)–
(h), though the recovery is not perfect, especially at greater
depths. Again, we confirmed that the ATT technique can be
applied to invert seafloor MT data without serious loss of
accuracy.

In order to display the importance of a proper topographi-
cal treatment, we attempted another inversion test using the
synthetic data from Case II. However in this test, we as-
sumed a priori the seafloor to be flat with a constant depth
of 5000 m, an average value for all 25 sites. This inversion
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Fig. 13. Synthetic and inverted models for Case III (checkerboard test). Panels (a) and (b) are a plan view (z = 11 km) and cross-section (x = 0 km)
of the synthetic model, respectively. The white crosses indicate the site locations. Panels (c)–(f) are the inverted model at the eighth iteration, with
RMSd misfit = 1.62. Panels (c) and (d) are plan views at 60 km and 300 km depth, and panels (e) and (f) are cross-sectional views cutting at x = 0
km and 700 km, respectively. The dashed lines denote the conductivity boundaries indicated in the synthetic models (a) and (b) and are only plotted
in the central part of the model domain.

did not achieve the target RMSd within ten iterations, and
the minimum RMSd was as large as 3.47 at the tenth iter-
ation. The tenth iteration of the inverted model is shown
in Figs. 11(i)–(l). The minimum RMSd of this inversion
is more than three times larger than that of the inversion
using ATT (Case II). As shown in Fig. 11(j), the result-
ing image of the conductivity anomaly is divided into two
anomalies lying between depths of 100 and 150 km. Both
anomalies have much higher conductivity (0.21 S m−1) than
the given value (0.1 S m−1). Furthermore, there are sev-

eral false anomalies, especially in the shallower regions
(Fig. 11(i)), producing extremely anomalous values exceed-
ing 2.0 S m−1 or as low as 0.001 S m−1. The results above
indicate that an appropriate treatment of seafloor topogra-
phy is definitely important in recovering an accurate con-
ductivity model from marine MT data.
6.3 Case III

We also tested the inversion for a more complex model.
This model consisted of blocks in a checkerboard pattern
with alternating conductivity, 0.1 S m−1 and 0.01 S m−1,
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Fig. 14. Apparent resistivity and phase for the eighth iteration of the inverted model at sites A, B, and C, as indicated in Fig. 13(a). Dots show synthetic
data, and dashed and solid lines show model responses of the starting model and inverted model (at the eighth iteration), respectively.

embedded in a 0.03 S m−1 half-space with real topography.
Figures 13(a) and (b) show only the checkerboard part. The
topography is the same as described in Fig. 12. Again,
the initial and prior models are the same, 0.03 S m−1 half-
spaces.

The convergence of the total RMS data misfit is indicated
by squares in Fig. 10. It shows that the inversion reached a
minimum RMSd misfit of about 1.62 at the eighth iteration,
and remaining relatively constant thereafter. This RMSd is
relatively high compared with those in the Case I and II.
This is probably due to the checkerboard model because an
inversion test to a flat seafloor over the same checkerboard
structure reached a minimum RMSd misfit of about 1.77 af-
ter 10 iterations (not shown). The test was conducted on
a supercomputer (SGI Altix 4700) at the Earthquake Re-
search Institute, University of Tokyo, with an actual (wall
clock) run time of about 10 minutes on 8 nodes for 10 itera-
tions. Figure 14 shows the apparent resistivities and phases
calculated from the initial model and from the eighth itera-
tion of the inverted model for sites A, B, and C, as indicated
in Fig. 13(a). The MT responses calculated in the eighth
iteration fit the synthetic responses within the error bars,
while a significant discrepancy is found between observed
responses and those calculated for the initial model.

As shown in Figs. 13(c)–(f), the checkerboard patterns in
the first and the second layers, 10–200 km and 200–400 km
beneath the sea surface, respectively, were mostly recovered
beneath the assumed MT sites, while the pattern in the third
layer (400–900 km beneath the seawater) was not recovered
well in this test. Figure 15 shows a model recovery (Zhang
et al., 2012), which indicates the differences in model pa-
rameters δmk between the inverted (after i’th iteration) and
the synthetic models so that

δmik = m inv
ik − mmodel

k (k = 1, 2, . . . , M). (23)

White indicates that the inverted value of the block is close
to the value in the synthetic model. Red and blue indi-
cate that inverted values for these blocks are overestimated
and underestimated, respectively. The edge of the conduc-
tive anomaly is colored red, while the edge of the resistive
anomaly is blue. To evaluate the recovery of the conductiv-
ity structure, we calculated the RMS misfit between the syn-
thetic model and the inverted model (RMSσ misfit), which
can be defined as

RMSσ =
√√√√{

Nb∑
k=1

(δmik)2

} /
Nb, (24)

where Nb is the number of blocks used for calculating the
RMSσ , and δmik is the model recovery (23). We focused
on the RMSσ misfit within 1020 km from the origin in x-
and y-directions. Note that the RMSσ misfit is 0.50 for the
initial model because the conductivity of the initial model
differs from the synthetic model by half an order of mag-
nitude. At the eighth iteration, the first and second layers
show RMSσ misfits of 0.40 and 0.45, respectively. How-
ever, the total RMSσ misfit value for the third layer is 0.52,
suggesting that little improvement was attained in eight it-
erations, as shown in Figs. 13(e), (f), 15(c), and (d). In
the first layer (Fig. 13(c)), the conductive and resistive re-
gions have respective RMSσ values of 0.35 and 0.42 while
in the second layer (Fig. 13(d)), the conductive and resistive
regions have RMSσ values of 0.37 and 0.53. This implies
that conductive anomalies can be detected more clearly than
resistive ones. Generally a resistive region located verti-
cally between conductive regions is difficult to resolve be-
cause induction occurs mostly in conductive regions. The
checkerboard model is entirely symmetric, but the inverted
model is not. Therefore, differences in the model resolution
can be ascribed to the topography.
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Fig. 15. Image of model recovery for Case III. These are only shown from the origin to 1200 km in the x- and y-directions. The black dashed lines
denote the conductivity boundary indicated in the synthetic model (Fig. 13(a)).

7. Conclusions
In this study, we propose an approximate treatment of

topography (ATT) for seafloor MT data for use in practi-
cal inversions of 3-D conductivity structures beneath the
seafloor. It expresses conductivity using volumetric aver-
aging in order to describe seafloor topography and uses im-
proved interpolation methods to calculate MT responses at
arbitrary points. Incorporating the ATT method into the
WSINV3DMT program allowed the inversion code to be
used with marine MT data. We conducted three types of
synthetic tests and demonstrated that the ATT method be-
haves properly for marine MT datasets. We conclude that
the ATT technique is suitable for use in 3-D inversions of
seafloor MT data without causing large increases in the
computational burden.
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Appendix A.
The eight magnetic field components denoted by gray ar-

rows in Fig. 4 are calculated in the same way that magnetic
fields are calculated in the WSINV3DMT (Siripunvaraporn
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Fig. A.1. (a) Electric field components in the three-dimensional blocks used to calculate a magnetic field component in the WSINV3DMT. Gray arrows
indicate electric field components on a three-dimensional staggered grid. A black arrow indicates an x-component of the magnetic field at the center
of the block’s top surface, which is used in the linear interpolation in (14) and (15). (b) Gray arrows located at the center of the edges indicate electric
field components calculated from values on a three-dimensional staggered grid. A black arrow indicates an x-component of the magnetic field located
in the center of a block. (c) Gray and black arrows indicate electric field components on a three-dimensional staggered grid and the z-components
of the magnetic field, respectively. H1

z (xi ,
y j +y j+1

2 , zk−1) and H1
z (xi ,

y j +y j+1
2 , zk) are located at the center of the edges. (d) Black and gray arrows

indicate magnetic field components and a y-component of the electric current density, respectively.
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et al., 2005). For instance, Fig. A.1(a) shows 24 electric
field components (indicated by gray arrows) on a three-
dimensional staggered grid. These are used to calculate
H 1

x (
xi +xi+1

2 ,
y j +y j+1

2 , zk−1). First, E1
y(

xi +xi+1

2 ,
y j +y j+1

2 , zk−1),
denoted by a gray arrow in Fig. A.1(b), is calculated
by interpolating E1

y|i, j,k−1 and E1
y|i+1, j,k−1. The other

electric field components, denoted by gray arrows in
Fig. A.1(b), are calculated the same way. Second,
H 1

x (
xi +xi+1

2 ,
y j +y j+1

2 ,
zk−1+zk

2 ), denoted by a black arrow in
Fig. A.1(b), is calculated using Faraday’s law from the
four electric field components denoted by the gray arrows.
Third, H 1

z (xi ,
y j +y j+1

2 , zk−1) is calculated using Faraday’s
law with six electric field components, E1

x |i−1, j,k−1,
E1

x |i−1, j+1,k−1, E1
x |i, j,k−1, E1

x |i, j+1,k−1, E1
y|i−1, j,k−1, and

E1
y|i+1, j,k−1 in Fig. A.1(c). H 1

z (xi ,
y j +y j+1

2 , zk) is cal-

culated in the same manner, and H 1
z (xi ,

y j +y j+1

2 , zk−1)

and H 1
z (xi ,

y j +y j+1

2 , zk) are interpolated to compute

H 1
z (xi ,

y j +y j+1

2 ,
3zk−1+zk

4 ). H 1
z (xi+1,

y j +y j+1

2 ,
3zk−1+zk

4 ) is cal-

culated in the same way as H 1
z (xi ,

y j +y j+1

2 ,
3zk−1+zk

4 ). Fourth,

E1
y(

xi +xi+1

2 ,
y j +y j+1

2 ,
3zk−1+zk

4 ) is calculated by interpolating
E1

y|i, j,k−1, E1
y|i+1, j,k−1, E1

y|i, j,k , and E1
y|i+1, j,k . Then, a

y-component of the electric current density, denoted by a
gray arrow in Fig. A.1(d), jy(

xi +xi+1

2 ,
y j +y j+1

2 ,
3zk−1+zk

4 ), is

converted from E1
y(

xi +xi+1

2 ,
y j +y j+1

2 ,
3zk−1+zk

4 ) using Ohm’s

law. Finally, H 1
x (

xi +xi+1

2 ,
y j +y j+1

2 , zk−1) is calculated using
Ampere’s law with three magnetic field components and
one electric current density, as shown in Fig. A.1(d).
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