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Crustal thickness recovery using an isostatic model and GOCE data
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One of the GOCE satellite mission goals is to study the Earth’s interior structure including its crustal thickness.
A gravimetric-isostatic Moho model, based on the Vening Meinesz-Moritz (VMM) theory and GOCE gradiomet-
ric data, is determined beneath Iran’s continental shelf and surrounding seas. The terrestrial gravimetric data of
Iran are also used in a nonlinear inversion for a recovering-Moho model applying the VMM model. The newly-
computed Moho models are compared with the Moho data taken from CRUST2.0. The root-mean-square (RMS)
of differences between the CRUST2.0 Moho model and the recovered model from GOCE and that from the
terrestrial gravimetric data are 3.8 km and 4.6 km, respectively.
Key words: Isostasy, Tikhonov regularization, Moho, nonlinear ill-posed problem, gradiometry.

1. Introduction
The Mohorovičić discontinuity, usually called the Moho,

is the boundary between the Earth’s crust and mantle. This
boundary can be determined by isostatic/gravimetric and
seismic methods. Several isostatic hypotheses and seis-
mic models exist for estimating the crustal thickness/Moho.
The isostatic models are well-known from the literature (see
e.g. Heiskanen and Moritz, 1967, p. 133; Moritz, 1990,
chapter 8; Sjöberg, 2009; Bagherbandi, 2011). A com-
parison between different classical Moho models, and a
Moho model determined from seismic data, was presented
in Bagherbandi (2011). The advantage of using an iso-
static/gravimetric model to determine the crustal thickness
is the uniform coverage and relatively-detailed resolution
of the currently-available global geopotential models and
satellite data, especially over large areas of the world where
seismic data are not available or their spatial coverage is not
sufficient.

According to our knowledge, there exist few studies,
based on satellite data, to determine the crustal thickness.
In Shin et al. (2007), a recovery of the Moho depth us-
ing a geopotential model obtained from a Gravity Recov-
ery and Climate Experiments (GRACE) satellite mission
(Tapley et al., 2005) was presented to determine the Moho
depth beneath Tibet. Sampietro (2009) considered the lo-
cal inversion of Satellite Gravity Gradiometry (SGG) data
by simulating a Moho surface and generating the SGG data
based on that. Bagherbandi (2011) studied a Moho model
obtained from the Vening Meinesz-Moritz (VMM) model
(Sjöberg, 2009) and simulated SGG data by EGM08 (Pavlis
et al., 2008) in the presence of a white noise of 10 mE
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(1 mE = 0.0001 mGal/km).
The Gravity field and steady-state Ocean Circulation Ex-

plorer (GOCE) (see ESA, 1999) could deliver Earth’s grav-
ity fields to degree and order 250 in its spherical harmonic
expression. Here, our purpose is to use real GOCE data di-
rectly for determining a regional Moho model, and not their
products as the geopotential models. The downward con-
tinuation of the GOCE gradiometric data and the regional
recovery of the Moho depth is performed simultaneously
using the VMM model (Sjöberg, 2009) through a nonlinear
integral inversion procedure.

2. Development of the Vening Meinesz-Moritz
Method for GOCE Data

The principle of the VMM theory is the same as that of
Vening Meinesz which assumes that the Bouguer gravity
anomaly, �gB , at any point P , is compensated by an attrac-
tion of AC so that the isostatic gravity anomaly, �gI , van-
ishes. Mathematically this idea is described by (Sjöberg,
2009):

�gI (P) = �gB (P) + AC (P) = 0. (1)

Sjöberg (2009) presented some solutions to determine AC

by dividing it into two parts: a mean depth and fluctuations
of the Moho surface around it; see Sjöberg (2009, equation
53b) for the mathematical derivations.

In a similar manner, Bagherbandi (2011) modified Eq. (1)
to recover the second-order radial derivative of the compen-
sation potential instead of the compensation attraction:

T ∗
rr (P)−V t

rr (P)+{[
VC0 (P)

]
rr

+ [dVC (P)]rr

} ∼= 0, (2)

where T ∗
rr (P) is the second-order radial derivative of the

disturbing potential T ∗ (P) at a point P and V t
rr (P) stands

for its topographic effect (see e.g. Wild and Heck, 2004a, b;
Eshagh and Sjöberg, 2008; Bagherbandi, 2011, chap. 4).[
VC0 (P)

]
rr and [dVC (P)]rr are the second-order radial

1053



1054 M. BAGHERBANDI AND M. ESHAGH: CRUSTAL THICKNESS RECOVERY USING AN ISOSTATIC MODEL AND GOCE

derivatives of the potentials of the shell with thickness of
the mean depth of Moho, and its variable part, respectively.
Equation (2) can easily be developed to other types of gradi-
ents depending on their describing frame (cf. Bagherbandi,
2011, chap. 5). However, since T ∗

rr (P) has the strongest
signal and the simplest mathematical form with respect to
the other gradients, it is used in this study.

The Moho depth fluctuations being recovered are nonlin-
ear inside [dVC (P)]rr . We have to assume that

[
VC0 (P)

]
rr

is already known from external sources. This term compen-
sates the majority of the signal of T ∗

rr (P) and the resid-
uals of this compensation are those related to the varia-
tion of Moho around its mean value. Equation (2) can be
rewritten so as to have the unknown parameters on one side
(Bagherbandi, 2011):∫∫

σ

K (rP , ψ, s)
∣∣
s=s1 �s (Q)dσ = f̄ (P) , (3a)

where σ is the unit sphere, dσ the surface integration ele-
ment, �s the corrections to the approximate value s1 con-
necting to the Moho depth T by s = (1−T/R) and R is the
radius of a sphere equal to the semi-major axis of the ref-
erence ellipsoid, ψ stands for the geocentric angle between
the computation point P and the integration (dummy) point
Q, rP is the geocentric distance of P , and

f̄ (P) = − {
T ∗

rr (P) − V t
rr (P) + [

VC0 (P)
]

rr

∣∣
s=s1

+ [dVC (P)]rr

∣∣
s=s1

}/
(G�ρ), (3b)

where G = 6.674 × 10−11 m3 kg−1 s−2 is Newton’s gravi-
tational constant, �ρ denotes the crust-mantle density con-
stant, and the integral kernel of integration can be expressed
as:

K (rP , ψ, s) = −
∞∑

n=0

(n + 1) (n + 2)

(
R

rP

)n+3

sn+2 Pn (t) ,

(3c)
where Pn (t) is the Legendre polynomial of degree n for
the argument t = cos ψ . The closed analytical form of the
kernel in Eq. (3c) was presented by Bagherbandi (2011).

As observed, the unknown parameter s is inside the ker-
nel function of the integral equations. Therefore, Eq. (3a)
is categorized in the nonlinear integral equations requiring
the approximate values of s. In fact, the Moho undula-
tions will be added to these approximate values by iterat-
ing the inversion. This is the reason for the appearance of
[dVC (P)]rr

∣∣
s=s1 in the right-hand side of Eq. (3a), if the

integral equation was linear, this term would not appear.
Equation (3a) can be written in the following matrix

form:
A�s = L − ε, (4)

where A stands for the coefficient matrix obtained by the
discrete form of the integral, �s is the vector of the un-
known containing the increments of the Moho depths. L is
the vector obtained from Eq. (3b) and ε stands for errors.

Equation (4) is not an ordinary system because it was de-
rived from discretising integral formulas. It is well-known
that such a system is ill-conditioned and its solution is
highly dependent on the error of the data. Even small er-
rors in input data can significantly change the results. In

order to control the stability of the inversion process, the
system should be regularised and a smooth solution should
be sought. Tikhonov (1963) was one of the first to suggest
the idea of adding a small positive number to the diagonal
elements of the coefficients matrix of the normal equations
for the purpose of stabilisation. The consequence of this ac-
tion is to have a biased solution, which is the penalty of the
stabilisation. The regularised solution of Eq. (4) is:

�ŝi = (
AT

i Ai + α2I
)−1

AT
i Li , (5a)

where α2 is the so-called regularization parameter and I
denotes the identity matrix. The subscript i stands for the
iteration and updating the vectors and matrices. Now, if
we assume that �ŝi is the solution of Eq. (4), then the
updated value of s2 is obtained by s2 = s1 + �ŝ1 and the
computations are repeated using Eqs. (3a) and (3b) with
the new value of s2. This procedure is repeated until the
difference between the last two solutions is smaller than a
level of convergence. The bias of regularized solution can
be estimated by (Bouman, 1998, p. 27; Xu, 1998; Eshagh,
2009):

Bias {�ŝi } = −α2
(
AT

i Ai + α2I
)−1

�si . (5b)

One important issue in the Tikhonov regularization is the
proper selection of the regularization parameter α2. There
are methods for computing it, such as the L-curve, gener-
alized cross-validation, and the quasi-optimality methods
(Hansen, 1998, 2008).

Once the solution ŝ is found, the computation of the
Moho depth T is straightforward from:

T (P) = R
[
1 − ŝ (P)

]
, (5c)

Due to the nonlinear nature of the problem the solution
should be iterated and the Moho depths should be updated
iteratively. For details about the convergence of the solu-
tion, the effect of the spatial truncation error, and other prac-
tical issues concerning the nonlinear inversion of Eq. (3a),
we refer readers to Bagherbandi (2011).

3. Numerical Realization
Here, we select Iran, restricted between latitudes 19◦ and

46◦N and longitudes 19◦ and 46◦E as our study area. Values
of 650 and 430 kg m−3 were taken for the crust-mantle den-
sity contrast in land and sea areas, according to Sjöberg and
Bagherbandi (2011). Mean Moho depths of 37 km and 23
km were obtained from the spatial averaging of the 2◦ × 2◦

CRUST2.0 (Bassin et al., 2000) Moho depths for the cor-
responding areas, respectively (see, for example, the dis-
cussion concerning the seismic method and its accuracy in
Nakamura and Umedu, 2009). Our goal is to determine
2◦ × 2◦ Moho models with the same resolution as that of
CRUST2.0, from 1◦ × 1◦ GOCE and terrestrial gravimet-
ric data. Two gravimetric models for Moho beneath this
area are computed. One based on Sjöberg’s (2009, equation
53b) direct integral approach using terrestrial data, and the
other one based on solving the nonlinear inversion method
presented in the previous section. Finally, both models are
compared to each other and to that with CRUST2.0 data.
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Fig. 1. (a) Trr of GOCE [E] and (b) approximate Moho model [km] over
study area.

Here, a larger area by 5◦ is considered for the recovery
which is required to reduce the effect of the truncation error
of the integral formula in the inversion method (Eq. (4)) but
the results of the central part are selected. Due to the non-
linear nature of the problem the approximate value outside
the central area are not updated for the reduction of this
truncation error. According to Bagherbandi (2011), three
iterations are required to reach the acceptable convergence
level, i.e. 50 m, and removing the bias of regularization,
Eq. (5b), has an essential role for solving the problem.

Here, only the second-order radial derivative of the
geopotential observed by GOCE in December 2009
(GOCE.EGG.TRF 2; ESA, 2008) is used for our recovery
purpose. This product (EGG TRF 2) contains the L2 grav-
ity gradients in the LNOF (Local North Oriented Frame). In
order to change to the derivative of the disturbing potential,
the normal gravity field GRS80 was used to generate the
normal gradients at the same positions of the GOCE data
and are then subtracted from them. The results vary from
0.97E to −1.08E with the mean of 0.01E and the standard
deviation is 0.39E. The data are gridded 1◦ × 1◦ by interpo-
lation and continued downward to a level of 250 km above
sea level. The EGM08 coefficients were model (Pavlis et
al., 2008) was used for estimating the downward continua-
tion effect of the gradients to that level. Eshagh (2011) has
shown that the results of the inversion of gridded gradients
are more successful than those of an on-orbit inversion due
to the better conditionality of the coefficient matrix being

Fig. 2. (a) Recovered Moho model from GOCE data (b) Moho from
terrestrial NCC gravity data and (c) CRUST2.0. Unit: 1 km.

inverted. The map of the gradients at this level is presented
in Fig. 1(a) showing large, and positive, values for the gra-
dients over mountainous areas, and large, but negative, val-
ues above seas. The approximate Moho depths, based on
the VMM theory (Sjöberg, 2009, equation 50), which are
needed for initiating both Sjöberg’s direct solution with ter-
restrial data, and the nonlinear inversion method, are pre-
sented in Fig. 1(b). The maximum, mean, minimum and
standard deviation of the depths are 53.7, 36.3, 18.7 and 4.9
in unit of km, respectively. There are similarities between
the maps of gradients and approximate Moho depths as both
are influenced by the topographic features in Iran. The topo-
graphic effect V t

rr should be removed from Trr so that the re-
sult reflects solely the changes of the Earth’s interior includ-
ing Moho’s variations. The topographic model DMT2006
to degree/order 180 (Pavlis et al., 2007) was used to com-
pute V t

rr . The computed values of V t
rr vary from 3.46E to

−0.75E with a standard deviation of 0.91E in the territory.
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Table 1. Statistics of Moho depths and their differences, Sjöberg’s direct
solution (T NCC

Sj ), the Moho recovered from GOCE data (TGOCE) and the
seismic Moho (TCRUST2.0). Unit: 1 km.

Max Mean Min Std RMSE

TGOCE 51.46 38.15 25.94 3.67

T NCC
Sj 52.87 34.46 18.91 3.34

TCRUST2.0 48.77 39.75 23.91 3.94

TGOCE − TCRUST2.0 10.25 1.61 −13.44 3.08 3.78

TGOCE − T NCC
Sj 8.69 3.70 −8.24 2.57 4.56

T NCC
Sj − TCRUST2.0 13.6 0.00 −10.54 4.47 4.30

The terrestrial gravimetric data provided by the National
Cartographic Centre (NCC) of Iran, and Abdollahzadeh and
Najafi (2008), detected gross-errors and cleaned them for
geoid determination purposes. Here, the model recovered
using the terrestrial data and the direct method is denoted
T NCC

Sj and TGOCE, respectively. Figures 2(a), 2(b) and 2(c)
show the maps of TGOCE, T NCC

Sj and the Moho model of
CRUST2.0, TCRUST2.0. According to Figs. 2(a) and 2(b),
a smoother model of Moho is recovered from the GOCE
data than that obtained from the terrestrial gravimetric data.
However, Fig. 2(c) shows also a smooth model of Moho for
the area. The high altitude of the satellite, and regulariza-
tion as a smoothing method, could be possible reasons for
resulting in a smooth surface which is closer to the smooth
model of TCRUST2.0.

Statistics of the Moho models and their differences are
summarized in Table 1. The mean of TGOCE is larger than
that of T NCC

Sj , which means that TGOCE is deeper because we
think that the local topographic effects (some of which dis-
turb gravity signals) still remind on the terrestrial data and
this can affect the Moho results significantly. Therefore, the
SGG data are smoother and better than the terrestrial data,
because of the latitude of the GOCE satellite. The table
shows that TGOCE derived from the GOCE data is closer to
the CRUST2.0 Moho depths TCRUST2.0. However, it should
be mentioned that the gravimetric and seismic Moho depths
are not necessarily the same. The unrealistic assumptions of
a constant density contrast between the crust and mantle, on
one hand, neglecting some geophysical phenomena, such
as mantle convection/thermal compensation can be possi-
ble reasons for their separation. Also, Martinec (1994) has
pointed out that other compensation mechanisms exist in
addition to the isostatic one, for unformulated phenomena
(see also Yoshida, 2004).

4. Conclusions
We have used the Vening Meinesz-Moritz theory and

GOCE data, to compute and analyze the crust thickness be-
neath Iran’s continental shelf and surrounding areas. Here,
the Vening Meinesz-Moritz theory has been further devel-
oped so that the satellite gravity gradiometry (SGG) data
can be used for recovering the Moho depth through a non-
linear integral inversion procedure. The kernels of its for-
ward and inverse problems showed that the inversion should
be performed in an area larger by 5◦ than the desired
one to reduce the effect of the spatial truncation error of
the integral formula. The results were compared with the
CRUST2.0 data. Our numerical study showed that the ef-

fect of the truncation error on the recovered Moho depths
can attain 6 km in Iran, and this is very significant. The it-
erative Tikhonov regularization in combination with either
the generalized cross-validation, or quasi-optimal, criterion
of estimating the regularization parameter seems to be suit-
able and the solution is semi-convergent up to the third it-
eration. The Moho depth recovered from GOCE data was
the same as that obtained from the terrestrial data with a
root-mean-square error of 4.56 km. The results revealed the
significant correlation of the Moho geometry with the seis-
mic model, CRUST2.0. The root-mean-square error of the
recovered Moho from GOCE with CRUST2.0 is 3.78 km.
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edited by A. Kiliçoglu and R. Forsberg, Proceedings of the 1st Inter-
national Symposium of the International Gravity Field Service (IGFS),
Harita Dergisi, Special Issue No. 18, General Command of Mapping,
Ankara, Turkey, 2007.

Pavlis, N., S. A. Holmes, S. C. Kenyon, and J. K. Factor, An Earth Grav-
itational model to degree 2160: EGM08, presented at the 2008 General



M. BAGHERBANDI AND M. ESHAGH: CRUSTAL THICKNESS RECOVERY USING AN ISOSTATIC MODEL AND GOCE 1057

Assembly of the European Geosciences Union, Vienna, Austria, April
13–18, 2008.

Sampietro, D., An inverse gravimetric problem with GOCE data, Ph.D.
thesis, Politecnico di Milano Polo regionale di Como. 2009.

Shin, Y. H., H. Xu, C. Braitenberg, J. Fang, and Y. Wang, Moho undula-
tions beneath Tibet from GRACE-integrated gravity data, Geophys. J.
Int., 170, 971–985, 2007.
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