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In the post-sunset tropical ionospheric F-region plasma density often exhibits depletions, which are usually
called equatorial plasma bubbles (EPBs). In this paper we give an overview of the Swarm Level 2 Ionospheric
Bubble Index (IBI), which is a standard scientific data of the Swarm mission. This product called L2-IBI is
generated from magnetic field and plasma observations onboard Swarm, and gives information as to whether a
Swarm magnetic field observation is affected by EPBs. We validate the performance of the L2-IBI product by
using magnetic field and plasma measurements from the CHAMP satellite, which provided observations similar
to those of the Swarm. The L2-IBI product is of interest not only for ionospheric studies, but also for geomagnetic
field modeling; modelers can de-select magnetic data which are affected by EPBs or other unphysical artifacts.
Key words: Plasma irregularity, equatorial ionosphere, topside ionosphere.

1. Introduction
At night-time (in particular, between sunset and mid-

night) the low-latitude (<30◦ magnetic latitude) iono-
spheric F-region (>200 km) often exhibits local plasma
density depletions. Since their first discovery using
ionosondes (Booker and Wells, 1938), the irregularities
have been observed by a variety of techniques. All the
different names currently used for the depletions are his-
torically related with the different measurement techniques.
Decameter-scale irregularities appear as diffuse echoes in
the ionograms (e.g. Abdu et al., 1983), which is related
to the name, Equatorial Spread-F (ESF). Meter-scale irreg-
ularities generate ‘backscatter plumes’ (e.g. Miller et al.,
2010) in the Very-High-Frequency (VHF) radar maps. Hec-
tometer or sub-kilometer-scale irregularities generate ‘scin-
tillation’ of radio wave signals (e.g. Paul et al., 2011).
In airglow images the irregularities are identified as band-
shaped intensity depletions (e.g. Martinis et al., 2003; Kil
et al., 2004). Abrupt drops appear in satellite measurements
of plasma density (e.g. Aggson et al., 1996; Huang et al.,
2001; Burke et al., 2004; Yokoyama et al., 2011; Xiong et
al., 2012), which are related to the name, Equatorial Plasma
Bubble (EPB).

These density irregularities can be harmful to radio com-
munication between ground and satellites (e.g. Basu et al.,
2002; Nishioka et al., 2011), for which the ionosphere acts
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as a propagation medium. With the advent of the space
communication era the climatology of plasma density de-
pletions (hereafter, we use ‘EPB’ (Equatorial Plasma Bub-
ble) as a generic name for the plasma density depletions)
has gained more and more practical relevance.

As described above, traditional EPB diagnostic methods
count on in-situ plasma density probes, optical imagers,
or radio wave sounding. However, EPBs can also be de-
tected from their diamagnetic effects. Regions of locally
depleted plasma are characterized by enhanced magnetic
field strength. It has only recently become possible to re-
cover reliably the weak magnetic signals of EPBs. Using
Flux-Gate Magnetometer (FGM) measurements on-board
the Challenging Mini-Satellite Payload (CHAMP) Stolle et
al. (2006) could reconstruct the well-known EPB climatol-
ogy obtained earlier by traditional EPB diagnostic methods.

The basic physics and underlying assumptions for inter-
preting the diamagnetic effect have been described by, for
example, Lühr et al. (2003). For local plasma irregularities
such as EPBs we can assume a linear field line geometry.
Then, the magnetic tension can be neglected in the momen-
tum balance. Lühr et al. (2003) assumed that a change in
plasma pressure has to be compensated to first order by an
adjusted magnetic pressure, which means a total pressure
balance across the irregularity walls.

�
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)
+ kB�[ ne (Te + Ti ) ] = 0, (1)

where B is the magnetic field strength, μ0 is the permeabil-
ity of free space, kB is the Boltzmann constant, ne is the
electron density, Te and Ti are electron and ion tempera-
tures, respectively. The � sign denotes the spatial gradient
of the respective ionosphereic parameters. Since the ambi-
ent field strength is larger by four orders of magnitudes than
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the field change induced by EPBs, we can linearize Eq. (1)
as follows:

B · �B

μ0
≈ −kB �[ ne(Te + Ti ) ], (2)

If we solve Eq. (2) for the field change, the result is:

�B ≈ −μ0kB

B
�[ ne(Te + Ti ) ] ≈ −μ0kB

B
(�ne) (Te + Ti ).

(3)
In the last part of Eq. (3) we assumed that the diamagnetic

effect is approximately proportional to the change in elec-
tron density. This is reasonable since the plasma tempera-
ture change across EPB walls is expected to be significantly
smaller than the density change. Using Hinotori satellite
observations at altitudes around 600 km for high solar activ-
ity, Oyama et al. (1988, figure 10) showed that the electron
temperature change across an EPB wall was mostly within
±20%. On the other hand, typical density changes across
EPBs reached almost an order of magnitude, which made
the product of electron temperature and density generally
lower inside than outside the EPB (Oyama et al., 1988, fig-
ure 4). Park et al. (2008) also have quantitatively investi-
gated the balance between magnetic and plasma pressures:
according to their figure 6 the plasma density change across
EPB walls (under the assumption of constant Te and Ti ) can
explain a dominant part (60–80%) of the magnetic pressure
change. Hence, the �B and �ne across EPB walls should
exhibit high correlation, by which plasma density irregular-
ities can be detected reliably in magnetic field data.

At 400 km altitude plasma irregularities and the corre-
sponding diamagnetic deflections occur preferentially along
two bands at about 10◦ in latitude away from the magnetic
equator (e.g. Stolle et al., 2006, figure 7). Since EPBs are
commonly associated with magnetic field enhancements,
this additional signal will contaminate global models of the
geomagnetic field; in particular those for high-degree litho-
spheric fields. For that reason it may be useful to iden-
tify EPBs from in-situ magnetic observations and de-select
EPBs in geomagnetic field modeling efforts, as has been
done by Maus et al. (2007).

Inspired by the successful EPB identification approach
using the CHAMP/FGM (Stolle et al., 2006), the European
Space Agency (ESA) decided to introduce the Ionospheric
Bubble Index (IBI) as a standard Level 2 (L2) data product
for the upcoming Swarm mission. In this paper we give a
description of the L2-IBI product and the related processing
algorithm. Subsequently the results are verified scientifi-
cally using CHAMP data. In Section 2 we briefly describe
the relevant Swarm data and our EPB detection method.
In Section 3 details of the L2-IBI product are outlined in
terms of format and meaning of each parameter. Section 4
presents a scientific validation of the L2-IBI product using
CHAMP data. Finally, results are summarized, and conclu-
sions are drawn in Section 5.

2. Data Sets and Processing Approach
ESA’s Swarm constellation is a geomagnetic field

mission consisting of three satellites which carry an
instrument suite similar to that of the CHAMP satel-
lite (http://www.esa.int/Our_Activities/

Observing_the_Earth / The_Living_Planet_
Programme/Earth_Explorers/Swarm). Two of
the satellites will fly at an initial altitude of 450 km while
the other one will be at a height of 530 km with slightly
different inclination. A Vector Field Magnetometer (VFM)
is sampling the three components of the geomagnetic field
at a rate of 50 Hz, and the Absolute Scalar Magnetometer
(ASM) provides high-resolution readings of the total field
once per second. These two data sets are combined to give
the very accurate vector magnetic field data product at a
rate of 1 Hz. The combined data are provided as Swarm
Level 1b, which means calibrated time series of Swarm
observations. The Electric Field Instrument (EFI) measures
plasma density, electron/ion temperatures, and ion drift.
From the EFI Level 1b data products we use the plasma
density for the EPB detection.

The automatic procedure for EPB detection largely fol-
lows the approach introduced by Stolle et al. (2006). First,
the 2 Hz plasma density data are synchronized to the time
tags of the 1 Hz magnetic field data by linear interpola-
tion. Then, the geomagnetic field contributions from the
Earth’s core, crust, and magnetosphere are removed from
the magnetic measurements. The three sources of geomag-
netic fields are represented by models: e.g., the International
Geomagnetic Reference Field (IGRF) for the core, Mag-
netic Field Model 7 (MF7: http://www.geomag.us/
models/MF7.html) for the crust, and Pomme6 (http:
//www.geomag.us/models/pomme6.html) for the
magnetospheric fields, respectively. During the Swarm mis-
sion more accurate models will replace the current ones.
By subtracting the sum of these three contributions (here-
after the ‘mean field’) from the observed magnetic field
vectors, we can isolate magnetic field variations originat-
ing from the ionosphere (hereafter the ‘residual field’). The
residual field is then converted into the Mean-Field-Aligned
(MFA) coordinate system. We project the residual field
onto the mean field vector to separate field-aligned varia-
tions (MFA Z-component, hereafter the ‘residual strength’)
from those perpendicular to the mean field (MFA X- and Y-
components). An example of the residual strength is shown
in Fig. 1(a).

The L2-IBI processor then selects night-time (18–06 lo-
cal time), low-latitude (geographic latitude (GLAT) < 45◦)
passes, because EPBs are generally known to occur in that
range (e.g. Stolle et al., 2006, figures 7–8). A high-pass
filter (−3 dB cutoff at the period of approximately 24 sec-
onds) is applied to the residual strength, limiting the signal
to a passband of approximately 0.04–0.5 Hz (0.5 Hz is the
Nyquist frequency). The passband corresponds to wave-
lengths of 15–188 km, assuming the vehicle orbit speeds
of about 7.5 km/s. This step further removes large-scale
magnetic field variations that are not related to EPBs. For
example, the electron density enhancement associated with
the Equatorial Ionization Anomaly (EIA) also exhibits a
diamagnetic effect (Lühr et al., 2003), which has much
larger scale lengths than typical EPBs. The filtered resid-
ual strength is shown in Fig. 1(b).

For further processing the filtered residual strength is rec-
tified. The filtered/rectified residual strength (Fig. 1(c)) is
then compared with an event detection threshold (e.g., 0.2
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Fig. 1. Illustration of the different processing steps for EPB detection: (a) residual strength, (b) filtered residual strength, (c) filtered/rectified residual
strength, (d) plasma density, (e) filtered plasma density, (f) Bubble Index and Bubble Probability, and (g) scatter plot of filtered residual strength and
filtered plasma density for the widest EPB in panel (f).

nT): see the upper dashed line in Fig. 1(c). Fluctuations ex-
ceeding the threshold are considered as an event. If two
events are separated by less than a certain time interval
(e.g., 60 seconds), they are merged to one event including
the interval in-between. An event can be considered as an
‘EPB’ if it first satisfies the following morphological criteria
(Stolle et al., 2006): fluctuations should not stand alone, but
be accompanied by similar fluctuations in the surrounding
(i.e. data points above the lower dashed line in Fig. 1(c)) as
well as by calm background (i.e. data points below the lower
dashed line in Fig. 1(c)). Our EPB detection approach goes
one step beyond that of Stolle et al. (2006) by considering
also the concurrent change in plasma density. In this final
step filtered residual strength (Fig. 1(b)) and plasma density

filtered in the same way (Fig. 1(e)) are correlated around
the detected events (Fig. 1(g)). If the square of the corre-
lation coefficient (the ‘Bubble Probability’: see Subsection
3.3 for details) is higher than a certain threshold (e.g., 0.5),
which confirms the diamagnetic effect, the event is deemed
a ‘Confirmed Bubble’. In Fig. 1(f) a ‘Confirmed Bubble’
appears with Bubble Index 1 with nonzero Bubble Prob-
ability: detailed descriptions of the Bubble Index and the
Bubble Probability will be given in Section 3. If (1) the
square of the correlation coefficient is lower than the thresh-
old, (2) there is no plasma density data, or (3) the morpho-
logical criteria are not satisfied, the event remains an ‘Un-
confirmed Bubble’. In Fig. 1(f) an ‘Unconfirmed Bubble’
appears with Bubble Index 1 and Bubble Probability 0. If
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Table 1. The list of parameters contained in the L2-IBI data product.

Component Description

Timestamp Time stamp in UTC

Latitude Geographic latitude

Longitude Geographic longitude

Radius Geographic radius

Bubble Index Plasma Bubble Index

Bubble Probability Probability of the Plasma Bubble Index

Flags Bubble Flags related to the Plasma Bubble Index

Flags F Flags characterizing the magnetic field intensity measurement (zero is nominal),

passed through from the L1b data

Flags B Flags characterizing the magnetic field vector measurement (zero is nominal),

passed through from the L1b data

Flags q Flags characterizing the attitude information (zero is nominal),

passed through from the L1b data

data points are obtained outside the night-side low-latitude
region, or if the data quality of the filtered residual strength
is poor (see Subsection 3.2 for details), the corresponding
data are considered as ‘Unanalyzable’: Bubble Index −1.

There are a number of free parameters that can be op-
timized throughout the Swarm lifetime. For example, the
event detection threshold (e.g. 0.2 nT) or the time gap
needed to separate adjacent EPBs (e.g., >60 seconds) will
be optimized according to the actual noise level and quality
of the Swarm L1b data. The detection threshold of various
non-EPB events (‘Unanalyzable’ data: to be described in
the following sections) can also be modified.

Note that this automatic detection algorithm cannot dis-
tinguish EPBs from plasma blobs which are localized
plasma density enhancements (e.g. Le et al., 2003). The
events identified by the L2-IBI processor thus contain also
blob events. However, the occurrence probability of EPBs
is significantly higher than that of blobs during solar max-
imum years (e.g. Watanabe and Oya, 1986, figure 3). Dur-
ing solar minimum years the two occurrence rates can be-
come comparable: the former may even be lower than the
latter for some locations and seasons (e.g. Choi et al., 2012,
figures 3–4). Therefore, the L2-IBI product during solar
minimum may contain significant contribution from plasma
blobs as well as from EPBs. With the help of plasma den-
sity profiles observed by the Swarm/EFI users can distin-
guish whether a ‘Confirmed Bubble’ in the L2-IBI product
originates from EPBs or blobs. An automatic distinction be-
tween EPB and blob will be considered in a future develop-
ment of the algorithm, whose performance can be verified
as soon as Swarm data will be available.

3. Description of the L2-IBI Product
In this section we describe the format of the L2-IBI data

product in detail. The main purpose of the L2-IBI product
is, as stated above, to flag whether a magnetic field mea-
surement is affected by EPBs or not. The main part of the
L2-IBI product consists of three parameters: Bubble Index,
Bubble Flag, and Bubble Probability. The three parameters
of the L2-IBI product are assigned to each L1b magnetic
field datum (1-second cadence). The remaining parts of the
L2-IBI product are auxiliary information such as the obser-
vation time, satellite position, and L1b data quality flags.

Table 2. Bubble Index.

Bubble Index Description

0 Quiet

1 Bubble

−1 Unanalyzable

Table 3. Bubble Flag.

Bubble Flag Description

0 Quiet

1 Confirmed Bubble

2 Unconfirmed Bubble

4 Jump

8 Data gap

16 Pulsations

32 Outside the night-time low-latitude region

Table 1 gives the parameter list of the L2-IBI data product.
3.1 Bubble Index

The Bubble Index marks every data point as to whether
a plasma irregularity is encountered. Table 2 presents the
three possible cases of the Bubble Index. Bubble Index
0 (Quiet) signifies that no small-scale fluctuation exists
around that data point. Data points of Bubble Index 0 are
most appropriate for geomagnetic field modeling. Bubble
Index 1 (Bubble) means that the data points are affected by
the diamagnetic effect of EPBs. Bubble Index −1 (Unan-
alyzable) means that either (1) the quality of the L1b data
point is poor (e.g. time gap or unphysical jump), or (2) the
data is outside the night-time low-latitude range, where we
refrain from indexing.
3.2 Bubble Flag

The Bubble Flag (the field name, ‘Flags Bubble’ in Ta-
ble 1) provides further information as to why the data point
is given the Bubble Index. Table 3 lists the meaning of pos-
sible Bubble Flags. When the Bubble Index is 0 (Quiet),
the corresponding Bubble Flag is also 0 (Quiet). An ex-
ample for such a case is presented in Fig. 2. The top
panel of Fig. 2 shows residual strength obtained from the
CHAMP/FGM observations. The second panel presents the
filtered residual strength, the rectification (absolute value)
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Fig. 2. An example of Bubble Index 0 and Bubble Flag 0 (Quiet). Each panel from top to bottom represents (a) residual strength, (b) filtered
residual strength, (c) filtered/rectified residual strength, (d) plasma density, (e) filtered plasma density, and (f) Bubble Index and Bubble Probability,
respectively.

of which is shown in the third panel. The fourth panel
presents plasma density, as observed by the Digital Ion Drift
Meter (DIDM) onboard CHAMP. In the fifth panel is given
the DIDM readings filtered by the same high-pass filter as
used for the second panel. Note that the DIDM was de-

graded during launch, and the measured plasma density re-
mained uncalibrated. However, the unknown scaling factor
and bias hardly affect its correlation with the geomagnetic
field residuals. The results obtained by running the L2-IBI
processor with the CHAMP data are shown in the bottom



1338 J. PARK et al.: SWARM L2-IBI

Fig. 3. An example of Bubble Index 1 and Bubble Flag 1 (Bubble). The format is the same as that of Fig. 2.

panel. The solid black line corresponds to the Bubble In-
dex, and the dashed line corresponds to Bubble Probability:
the Bubble Probability will be described in detail in Sub-
section 3.3. We can see that the L2-IBI processor correctly
judges that the magnetic data points are unaffected by any
significant magnetic fluctuations related to plasma density
gradients (Bubble Index 0 and Bubble Probability 0).

If the Bubble Index is 1 (Bubble), then the correspond-
ing Bubble Flag may be either 1 (Confirmed Bubble) or
2 (Unconfirmed Bubble). If an EPB event exhibits high
correlation between filtered residual strength and filtered
plasma density, Bubble Flag 1 (Confirmed Bubble) is set:
see Fig. 3. Otherwise, Bubble Flag is 2 (Unconfirmed Bub-
ble). In Fig. 3 we can see that the L2-IBI processor cor-
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Fig. 4. An example of Bubble Index −1 (Unanalyzable) and Bubble Flag 4 (Jump). The format is the same as that of Fig. 2.

rectly identifies (Bubble Index 1 and Bubble Flag 1) the
data points affected by EPBs (i.e. by abrupt plasma density
depletions).

If the Bubble Index is −1 (Unanalyzable), the corre-
sponding Bubble Flag value may be between 4 and 32. Out-
side the night-time low-latitude region the Bubble Flag is

always 32. The Bubble Flag is 4 (Jump) when there is an
unphysical jump of the residual strength (e.g., >6 nT: com-
pare this value to typical EPB signatures shown in Stolle
et al. (2006, figure 2)). In Fig. 4 we can see that the L2-
IBI processor correctly identifies the data points affected by
the short-duration data jumps, which have little relation to
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Fig. 5. An example of Bubble Index −1 (Unanalyzable) and Bubble Flag 8 (Time gap). The format is the same as that of Fig. 2.

plasma density variations.
Bubble Flag value is 8 (Data gap) when there are too

many (e.g., >12 times) individual gaps or a gap exceeding
a certain threshold (e.g., 100 seconds) in the L1b magnetic
field data over an orbital arc within ±45◦ GLAT. In Fig. 5
we can see that the L2-IBI processor correctly identifies the
data points affected by data gaps, and that the fluctuations

around the time gap actually show no relation to plasma
density variations.

When a significant amount (e.g., >25%) of the data
points on a night-time low-latitude pass exhibit magnetic
fluctuations, it is also deemed unrelated to EPBs. A typical
reason for that is magnetic pulsation in the Pc3 range. In
that case the Bubble Flag is given the value 16. Figure 6
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Fig. 6. An example of Bubble Index −1 (Unanalyzable) and Bubble Flag 16 (Pulsations). The format is the same as that of Fig. 2.

shows such an example. Onboard CHAMP the magnetic
torque current was modulated by a signal with a period of
about 20 seconds. In case of missing torque correction (see
Fig. 6) the resulting magnetic variations appear as contin-
uous pulsations, as are correctly indexed in Fig. 6. During
those times EPBs cannot be detected properly. For more
examples of Unanalyzable data the readers are referred to

Balasis et al. (2005).
3.3 Bubble Probability

When the Bubble Index is 1, the L2-IBI processor cal-
culates the correlation coefficient between filtered residual
strength and filtered plasma density. The square of the cor-
relation coefficient is used as the Bubble Probability. With
higher Bubble Probability it is more probable that the re-
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Fig. 7. EPB occurrence rates for equinox, June solstice, and December solstice months, respectively.

lated magnetic field data point is affected by EPBs. As
stated above, the Bubble Flag is 1 only if the Bubble Prob-
ability exceeds a certain threshold (e.g., 0.5). If the Bubble
Index is not 1, or there is no plasma density data around
the magnetically detected events (‘Unconfirmed Bubble’),

the Bubble Probability is set to 0 automatically. Combining
the Bubble Probability and the Bubble Index end users may
impose stricter criterion on the correlation between filtered
residual strength and filtered plasma density. For example,
end users may take only those data points with Bubble In-
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dex 1 and Bubble Probability ≥0.8 as ‘Confirmed Bubble’.

4. Scientific Validation of the L2-IBI Product
In order to validate the functionality of the L2-IBI

processor we have used the CHAMP/FGM and the
CHAMP/DIDM data from 126 days in 2001 and 43 days in
2002. The amount of the input data is limited by the diffi-
culty in finding enough DIDM data with reasonable quality.

The L2-IBI data are first binned by GLAT, geographic
longitude (GLON), and season. The sizes of the GLAT
(GLON) bins are 5◦ (10◦). We divide a year into three sea-
sons: equinox, June solstice, and December solstice. Each
solstice season is defined as 131 days around the corre-
sponding solstice day while the combined equinox is de-
fined as the sum of respective 65 days centered around
March and September equinoxes. As the 392 (= 131 +
131 + 65 × 2) days exceed the number of days in a year
(365 or 366), there are overlaps at the beginning/end of the
three seasons. The data of the few overlapping days are
counted twice, so that they contribute to the EPB statis-
tics of two seasons. Figure 7 was constructed from 649/355
(pre-midnight/post-midnight) equatorial passes of CHAMP
in equinox, 0/448 during June solstice, and 839/551 during
December solstice, respectively.

For each GLON-GLAT bin in Fig. 7 the EPB occur-
rence rate is calculated by dividing the number of EPB
data points (Bubble Index 1 and Bubble Flag 1) by that of
all the night-time low-latitude CHAMP/FGM data points
with good quality (Bubble Index 0 or 1). The result is
shown in Fig. 7, which resembles the well-known seasonal-
longitudinal (S/L) variation of EPB occurrence (e.g. Stolle
et al., 2006; Xiong et al., 2010). During December sol-
stice the occurrence rate is high around Brazil. During June
solstice the occurrence rate is lower than during the other
seasons; an occurrence peak exists around Africa. Dur-
ing equinox the occurrence rate maximizes near the At-
lantic Ocean. All these results are consistent with previous
studies on EPBs, and support that the L2-IBI processor cor-
rectly identifies EPB events. Note that the general level of
occurrence rates in our Fig. 7 is lower than that of Stolle
et al. (2006, figure 6) although both figures are based on
CHAMP data. The difference simply reflects different def-
initions of occurrence rates, and does not signify inconsis-
tency. In our Fig. 7 the occurrence rates are calculated for
each GLAT × GLON bin while in the case of Stolle et al.
(2006, figure 6) each CHAMP pass within a GLON bin is
considered as a whole.

For June solstice our result is rather poor since we only
have data from the post-midnight sector. We note that a sec-
ondary peak of occurrence rate, which should appear over
the Pacific Ocean (e.g. Stolle et al., 2006, figure 5), is miss-
ing. This discrepancy is caused by the limited amount of
the CHAMP/DIDM data during June solstice, as mentioned
above. The bias of our test data towards the post-midnight
sector causes the under-representation in the Pacific region,
where EPB activity is known to be stronger during pre-
midnight hours than in the post-midnight sector (e.g. Stolle
et al., 2008, figure 7). According to our Fig. 7 the max-
imum EPB occurrence rates are 20–30% except for June
solstice. These results are in general agreement with Park

et al. (2009, figure 2). Therefore, the results shown in Fig. 7
exhibit no conflict with previous works. More thorough sci-
entific validation will be conducted during the Swarm mis-
sion.

5. Conclusion
In this paper we have introduced the Swarm L2-IBI prod-

uct. Using CHAMP observations the L2-IBI production al-
gorithm has been validated scientifically by visual inspec-
tion of individual cases (Section 3) and by statistics (Sec-
tion 4). The L2-IBI product has the following ramifications
in the fields of space science and geomagnetism.

1) The L2-IBI product can provide the complete EPB
list (Bubble Index 1) in the Swarm data, so that iono-
spheric researchers need not strive for implementing
complex EPB detection algorithms. Moreover, the in-
formation on EPB occurrences is given at two different
altitudes of the three Swarm satellites, which can ex-
pedite EPB studies a lot.

2) The L2-IBI product can also give useful constraints
to the data selection process in the geomagnetic field
modeling. For example, Maus et al. (2007) built a
geomagnetic field model using the CHAMP/FGM ob-
servations, from which the data affected by EPB dia-
magnetic signatures were excluded. In a similar way,
modelers can select Swarm L1b data using the Swarm
L2-IBI product.

3) Finally, the algorithm of the L2-IBI production, as de-
scribed in this paper, can be adapted to ionospheric
regimes other than night-time low-latitude ionosphere.
For example, ionospheric irregularity at high latitudes
or on the dayside may be detected using similar algo-
rithms (e.g. Park et al., 2012).
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Lühr, H., M. Rother, S. Maus, W. Mai, and D. Cooke, The diamagnetic
effect of the equatorial Appleton anomaly: Its characteristics and im-
pact on geomagnetic field modeling, Geophys. Res. Lett., 30(17), 1906,
doi:10.1029/2003GL017407, 2003.

Martinis, C., J. V. Eccles, J. Baumgardner, J. Manzano, and M.
Mendillo, Latitude dependence of zonal plasma drifts obtained
from dual-site airglow observations, J. Geophys. Res., 108, 1129,
doi:10.1029/2002JA009462, 2003.
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